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Abstract—This paper presents a robust phase estimation to
detect fringes of self-mixing signals for all feedback levels. It
aims to avoid the need of restricting a particular working
feedback regime for a sensor which is usually done by external
optical/mechanical components. By removing the local offset from
a set of fringes, their orthogonal representation can be obtained
through the Hilbert transform allowing a unique calculation
disregarding their shape in time. From it, it is possible to retrieve
the displacement of a pointed target from a wide variety of usage
conditions. The pertinence of the proposed approach for sensor
implementation is also demonstrated.

I. INTRODUCTION

The development of non-contact sensors based on optical
feedback interferometry or self-mixing (SM), continues to
flourish mainly due to the compactness, low-cost and self-
aligned characteristics of this technology in which a laser acts
as a source and micro-interferometer at the same time [1].

In the context of target’s displacement reconstruction, when
a pointed surface moves away or towards a laser diode (LD),
a small fraction of the backscattered light re-enters the active
cavity of the laser interfering with the standing beam. The
resulting fringe pattern related to the amount and frequency
of the movement is obtained by monitoring the optical power
variations either by a built-in photodiode, or directly from the
junction voltage of the LD package. The equation describing
such power variations is:

P (t) = P0 {1 +m cos[xf (t)]} (1)

where P0 is the emitted optical power for the solitary LD,
m is a modulation coefficient, and xf the interferometric
phase of the signal subject to back-reflections. SM fringes are
not originated on free space, therefore a particular shape is
characteristic of this phenomenon which is linked to the LD’s
linewidth enhancement factor α and mainly to a feedback
coupling factor C. This adimensional parameter C depends
notably on the time of flight through the external cavity created
between the LD and the target, as well as the effective power
reflectivity on the surface. In practical applications, SM signals
with coupling values between 0.1 < C < 1 are said to be
in weak feedback regime. They start with a quasi-sinusoidal
shape (close to a usual interferometric waveform) from the
lowest boundary and continue taking a sawtooth-like shape.
Signals with C > 1 are referred to be in moderate feedback
regime. The appearance of hysteresis phenomenon affecting
the zero-crossing of a set of fringes can be observed for
increased values of C.

In order to retrieve the displacement of a remote tar-
get, a great variety of solutions can be found in literature
to exploit this kind of interferometric signals. A tradeoff
can be observed between adding external optical/mechanical
components to the base SM configuration so as to perform
simple signal processing over a restricted range of feedback
coupling levels, or to perform more elaborated algorithms
when the fully integrated nature of the SM sensing scheme
wants to be privileged. Within the different signal processing
techniques, usually it can be found algorithms performing for
a particular feedback level. To increase the range of usage
conditions, [2] implemented two different calculations in a
sensor which selects the convenient procedure based on a
custom peak detection criterion. Yet this selection requires an
externally triggered mechanical auto-focus of about 2 seconds
which penalizes its usage in dynamically changing feedback
conditions.

Instead of using external triggering procedures when opti-
cal conditions change, it is desirable to have a unique algorithm
suitable to handle different feedback levels. The approach
proposed by [3] uses an adaptive threshold criteria to dis-
criminate different feedback regimes. It then complements the
previous iterative procedure by filtering procedures convenient
to the identified regime. Recently, [4] signaled that the adaptive
threshold approach needs to be improved when noisy SM
signals are fed to its input. To this end, they proposed to
remove a first prefilter block and instead perform a predefined
piece-wise fringe detection. These two solutions require to
acquire at least one period of the target oscillation to work
properly, implying a huge quantity of system resources and
thus also compromising their implementation for in-situ usage.

To illustrate this point we have tested the algorithm from
[3] over a simulated SM signal corresponding to an amplitude
displacement of 6λ0 and a feedback coupling factor of C = 3,
being λ0 the LD’s wavelength emission. First, one period of
a sawtooth-like signal [Fig.1(a)] (generated by the behavioral
model described in [5]), was properly identified after 5 iter-
ations of the adaptive threshold algorithm. Phase transitions
of each fringe were processed in the correct direction of the
target movement. However, in a second test with only half
of the period of the same SM signal [Fig.1(b)], it can be
observed that the adaptive threshold algorithm produced false
transitions because this signal segment was processed with the
filter convenient to weak feedback due to a wrong convergence
of the iterative threshold. Notice that this use case may happen
for example if a remote target decreases its frequency movent
relative to a previous dimensioned value.



(a) SM with C = 3 and one period of target’s displacement.

(b) The case when less than one period is processed.

Fig. 1: The adaptive threshold algorithm from [3] over two
segments of a same SM signal.

Since an amplitude displacement of λ0/2 leads to the
appearance of one fringe, an accurate measurement requires
to detect all the acquired fringes. In this work we propose
a unique calculation of phase transitions, allowing to detect
SM fringes disregarding their shape in time and without the
need of acquiring a full period of the target oscillation under
measurement. In this way, a greater flexibility can be expected
on the implementation of a displacement reconstruction sensor
by SM.

II. INSTANTANEOUS FREQUENCY OF SM SIGNALS

Let us briefly outline the motivations and theory behind
our proposed phase calculation by referring to Fig.2(a) where
a simulated SM signal of C = 0.2 from a sinusoidal dis-
placement of amplitude 10λ0 and 1 Hz of frequency, depicts
the difficulty to exploit SM signals in time domain relying
only on the fringes’ shape. Performing a well dimensioned
short time Fourier transform [Fig.2(b)], it can be observed
the varying frequency of each of the fringes according to
the target’s movement. Furthermore, their associated even and
odd harmonics clearly denote the non-sinusoidal characteristic
shape of SM interferograms. Considering the case of a sharp
sawtooth-like SM signal, the amount of harmonics associated
to each of the fringes shall increase, spreading the signal’s
bandwidth. This example reveals the need to account such
spectral variations along the time.

The notion of instantaneous frequency (IF) makes sense
in this context as presented in [6]. In general terms, IF is
understood as the rate of change of phase angle at a given
time:

IF =
1

2π

dφ(t)

dt
(2)

(a) SM with C = 0.2 and one period of target’s displacement.

(b) Spectrogram for a sinusoidal movement and weak C.

Fig. 2: The need to account fringes’ spectral variations along
the time, specially in harmonic movements.

With the introduction of the concept of analytic signals
from Gabor (see [7] for historical background), a conventional
approach is to calculate the Hilbert transform H, in order to
generate a unique analytic representation in the complex plane
of the data. On its simplest concept, H can be represented as
a filtering process between the kernel (−πt)−1 and the signal
s(t) of interest, i.e. a 90◦ phase shift of the original signal
over the orthogonal plane:

H[s(t)] = −1
πt
∗ s(t) (3)

Expressed in frequency domain via Fourier transform F :

F{H[s(t)]} = j · sgn(f)F{s(t)} (4)

where sgn(f), the signum function is defined as 1 for positive
frequencies, -1 for negative frequencies and null at zero.

Creating the analytic form of a SM signal can be seen as
a means to provide further information aimed to simplify its
exploitation. The formulation to obtain a SM signal in analytic
form Pa can be stated as:

Pa(t) = P (t) + Im {H[P (t)]} (5)

From this representation, it is possible to exploit its ortho-
gonality to calculate the phase from Eq. (2) by:

φ(t) = arctan

{
Im[Pa(t)]

Re[Pa(t)]

}
(6)

In the following section we analyze this calculation over
SM signals simulated at different feedback coupling levels.



III. ANALYTIC PHASE OF SM SIGNALS

A conventional phase estimation (e.g. [3], [4]), consists in
normalizing Eq. (1) in order to use:

x̂f (t) = arccos [PN (t)] (7)

The resulting signal is high-pass filtered and thresholded to
observe the transitions from one fringe to another. While this
makes more sense for quasi-sinusoidal signals, it produces just
a phase-mapped mirrored signal in the case of sawtooth-like
signals from moderate feedback.

Since the detection of one fringe contributes to a phase
unwrap of 2π, we extended the range of the estimated phase
from Eq. (6) via a four-quadrant arctan function (arctan2),
which is a variant of the trigonometric function arctan allowing
to distinguish diametrically opposite directions from the input
vectors for unambiguous results. In Fig.3 we compare these
two calculations over the SM signal in weak feedback regime
from Fig.2. In the case of conventional arccos phase estima-
tion, SM maxima points [-1 1] agree [π 0] respectively, while
our approach provides a linear fringe-phase representation over
(−π,π]. It is also noticed that in this calculation, the values do
not need to be normalized, so the usage of an automatic gain
control circuit can be avoided.

In Fig.4 we have increased the feedback coupling value
of the previous signal to obtain a moderate regime (C = 3)
and a marked hysteresis phenomenon (C = 7). In both cases
it can be observed that our calculation via arctan2 is not
constant in amplitude, but instead presents a trending offset
and a wraparound of instantaneous phase values. However, it
can be realized that by calculating the absolute value of this
instantaneous phase, waveforms similar to the arccos can be
obtained. This means that abs(arctan2) leads to similar results
for transition detection like the conventional phase estimation.

We found an approach allowing to extend the usefulness
of the proposed calculation, it consists in removing hysteresis
phenomenon from the affected SM fringes in order to keep

Fig. 3: Phase calculation comparison for the SM signal in weak
regime (C = 0.2) from Fig.2(a).

(a) SM signal with C = 3 for sinusoidal target’s displacement
of 10λ0 at 1 Hz.

(b) SM signal with C = 7 for sinusoidal target’s displacement
of 10λ0 at 1 Hz.

Fig. 4: Phase calculation comparison for a SM signal in
moderate regime.

them centered to the zero-axis. A common calculation to reject
this bias offset is to estimate a bandpass filter preventing low
signal fluctuations as well as high frequency noise components.
For convenience, we used a running average filter over a set of
fringes of each target direction. Then, this averaged signal was
subtracted to the hysteresis affected fringes like represented in
Fig.5(a) for a simulated signal of C = 3.

Referring to the regular analytic phase calculation of the
signal in moderate feedback from Fig.4(a). It can be observed
in Fig.5(b) that its equivalent centered signal produces an
homogeneous phase estimation in an extended range as was
observed for the case of weak feedback (Fig.3). According
to Eq. (2), the phase derivative leads to the instantaneous
frequency of the SM signal as denoted by the peaks of 2π
amplitude obtained for the centered SM signal. The presence
of small amplitude peaks can be considered as a harmonics
indication since they become more important in the case of
moderate regime. By settling a fixed threshold to select these
major peaks, increased robustness for fringe detection can be
achieved disregarding their shape in time.

Once the fringes are segmented, the remaining point con-
sists in assigning their direction to retrieve a target’s move-
ment. As a matter of fact, in SM literature there can be
found several useful methods to reveal the direction of a



(a) SM with C = 3 and subtracted hysteresis.

(b) Instantaneous frequency for zero-centered SM signal.

Fig. 5: Useful exploitation of SM signals in moderate regime
through its analytic phase.

moving target. In our implementation, a simple procedure was
conceived to save on calculation resources. First, the acquired
signal is differentiated and converted into positive and negative
impulsions according to their sign value. An example of this
procedure is shown in Fig.6 where a SM signal in moderate
regime (C = 3) produced a train of pulsed values. These
values were then multiplied by the instantaneous frequency
peaks denoted in Fig.5(b) to obtain thus the assigned direction
for each phase transition. It must be said that this procedure
needs to be improved in the case of noisy signals, however for a
generic implementation it keeps a good agreement between the
results and the complexity of calculations. We have tested this
procedure for a variety of feedback conditions and observed
a correct direction assignation by this simple procedure. The
major improvement is on the robust detection of fringes as
demonstrated hereafter.

IV. COMPARATIVE RESULTS

We have implemented our proposed algorithm over the
segment of the SM signal [Fig.1(b)] used to denote a drawback
of the adaptive threshold algorithm from [3] (this is also
expected for the algorithm in [4]). In Fig.7 it can observed
that our calculation, denoted HT due to the Hilbert transform
basis, is able to properly find the fringes on a small segment
of acquired signal, while the previously analyzed algorithm
produced wrong detections in the middle of the segment.

V. CONCLUSION

We have demonstrated that the usage of analytic SM signals
allows a similar phase observation than the classical approach
based on the inverse calculation of the cosine function, with the
added value of avoiding the need for an automatic gain control
for normalizing the input signals. We have also identified

Fig. 6: Direction assignation of detected fringes for a SM
signal in moderate feedback (C = 3).

Fig. 7: The case when less than one period is processed by
the algorithm from [3], is corrected by our proposal.

a method to detect the fringes from SM signals in either
weak or moderate feedback avoiding the complex need of
classifying. Our approach has been demonstrated to work for
small segments of signals, and since it is based on filtering
procedures, it is convenient to perform real-time displacement
reconstruction.
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