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We propose a new data mining process to extract original knowledge from hydro-ecological data, in order to
help the identification of pollution sources. This approach is based (1) on a domain knowledge discretization
(quality classes) of physico-chemical and biological parameters, and (2) on an extraction of temporal patterns
used as discriminant features to link physico-chemistry with biology in river sampling sites. For each bio-index
quality value, we obtained a set of significant discriminant features. We used them to identify the physico-
chemical characteristics that impact on different biological dimensions according to their presence in extracted
knowledge. The experiments meet with the domain knowledge and also highlight significant mismatches be-
tween physico-chemical and biological quality classes. Then, we discuss about the interest of using discriminant
temporal patterns for the exploration and the analysis of temporal environmental data such as hydro-ecological
databases.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Identifying pollution sources in aquatic ecosystems is currently a
major research area and remains a complex task. Many parameters
are involved in the determination of aquatic ecosystems quality. These
parameters are related to different aspects, such as biology, physico-
chemistry and hydromorphology. The importance of having operational
tools to help in the interpretation of complex information concerning
the water quality of rivers and their functioning, as well as assessment
of the effectiveness of ongoing action programs is underlined by inter-
national directives such as the European Water Framework Directive
(E. Union, 2000). Therefore, it is important to propose new methods
that take into account the complexity of the problem.

Measures of these different aspects are performed in river stations
by several organizations, with specific research goals. Because the data
collected by each actor of the domain have become substantial, it is im-
portant to design and implement a large, common and consistent data-
base to aggregate these complementary data. In order tomeet this issue,
the French ANR1 Fresqueau project2 has begun in 2011. This project
. Fabrègue).
aims at collecting and unifying databases that are linked to the quality
of water bodies. They include biological, physico-chemical and also
hydro-morphological data. The result is a consistent spatio-temporal
database that brings together information related to north-east and
south-east French watersheds. It concerns 11,329 sampling sites spread
over 161,100 km2 that represent 29.45% of metropolitan France. These
watersheds are grouped into two major hydrographic areas which are
Rhin-Meuse (north-east), denoted as RM and Rhône Méditerranée Corse
(south-east), denoted as RMC. Fig. 1 illustrates their respective geo-
graphic scopes. The dark gray area corresponds to RM while the black
area corresponds to RMC. White line separations in the figure corre-
spond to the different watershed delimitations.

Several dimensions of analysis have been collected. Fig. 2 illus-
trates the dimensions of analysis of the database: physico-chemistry,
hydrobiology, climate, land use, hydrology and hydromorphology. The
11,329 sampling sites are described by these 6 dimensions. The objec-
tive is to provide researchers with a maximum amount of data to ana-
lyze. It aims at facilitating studies that focus on the relations between
various environmental aspects, or the impact of one aspect on another
one. Furthermore, some of these different environmental aspects in-
volve a temporal dimension. For example, physico-chemical parame-
ters may be sampled every two months in sampling sites. Considering
the different hydro-ecological parameters with their temporal dimen-
sion allows the application of original methods. Indeed, some temporal

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2014.09.003&domain=pdf
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Fig. 1. French watersheds concerned by the Fresqueau database.
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data mining approaches are well-adapted to tackle such issues. With
specific data structures, they are able to process temporal information
that describe environmental aspects.

This paper presents such a data miningmethod applied on hydrobi-
ological and physico-chemical aspects. It addresses the following issue:

Can we temporally link sets of physico-chemical parameter values
with bio-index values?

Identifying these links is important to evaluate more precisely the im-
pact of physico-chemistry on biology. Finding temporally ordered sets
of physico-chemical parameter values may help to highlight the syner-
gy produced by their combination. The presented method proposes an
original temporal pattern based approach, called discriminant closed
partially ordered patterns, to obtain these correlations.

In Section 2, we present existing approaches from the literature. In
Section 3, we describe our method divided into three parts:

1. Section 3.1 details the preprocess operations performed on the
dataset, and the construction of quality class sub-datasets that corre-
spond to each bio-index.

2. Mining discriminant partially ordered patterns is presented in
Section 3.2.
Hydrographic ne
& 

Sampling si
Climate

Hydrology

Physico-chemistry

Fig. 2. Categories of data in t
3. The last part consists in selecting and reducing the discriminant par-
tially ordered pattern result set (Section 3.3).

We then provide experimental results performed on the Fresqueau
dataset (Section 4) and we finish with a discussion section (Section 5).
Fig. 3 synthesizes this process, which is detailed in Section 3.

2. Related work

Several works investigated the task of mining hydrological data.
An important amount of studies focus on macro-invertebrate com-

munities (D'heygere et al., 2003; Dakou et al., 2007; Dedecker et al.,
2004; Goethals et al., 2007). For example, Dakou et al. (2007) used de-
cision tree models in order to predict the habitat suitability of some
macro-invertebrate taxa in river Axios (Greece). Authors considered
physico-chemical and structural characteristics of the river. With the
same goal, the efficiency of artificial neural networks in predicting
macro-invertebrate taxa in Zwalm (Belgium) river has been shown by
Dedecker et al. (2004).

The impact of hydrologic alterations on fish communities in
Illinois River has been identified by Yang et al. (2008). Based on 32
indicators of hydrologic alteration, authors highlight the most
ecologically relevant indicators by using a genetic programming
approach.

Some other authors focused on flora instead of fauna. The first
comprehensive checklist of diatoms (948 taxa)with ecological indicator
values for pH, salinity, nitrogen uptake metabolism, saprobity, trophic
state and moisture was presented by Van Dam et al. (1994). Recently,
the physico-chemical impact on diatom communities has been studied
by Kocev et al. (2010). They used a multi-target regression trees
approach and identified a significant impact of metallic ions and nutri-
ents on diatoms. Recknagel et al. (2013) analyzed phytoplankton
phyla populations in Lake Kinneret (Israel), by using a hybrid evolution-
ary algorithm. Authors showed that considering both physico-chemical
and biological variables in models provides the best results in the pre-
diction of population dynamics. Likewise, Bertaux et al. (2009) rely on
Formal Concept Analysis to study biological traits of macrophytes taxa
in Rhin-Meuse watershed. The goal is to link environmental variables
with biological trait granularity in order to identify groups of taxa
adapted to a particular environmental context.

State-of-the-art methods show the importance of considering and
combining biological and physico-chemical variables in order to find
relevant knowledge. Nevertheless, none of these studies has taken
into account the temporal aspect based on temporal patternmining ap-
proaches, which is relevant to analyze pollution dynamics. The ap-
proach presented in this study is well-adapted to temporal datasets
twork
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Fig. 4. Example of partially ordered pattern with a frequency of 30%.

212 M. Fabrègue et al. / Ecological Informatics 24 (2014) 210–221
with multiple variables represented here by biology and physico-
chemistry. Furthermore, extracted knowledge from temporal pattern
approaches is easy to analyze by experts. We now introduce temporal
pattern mining approaches.

2.1. Temporal pattern mining approaches

Currently, the most common pattern-based tools used to explore
temporal data are sequential pattern mining approaches. In the litera-
ture, such pattern approaches have been widely used in many studies
like analysis (Geng and Hamilton, 2006), classification (Cheng et al.,
2007, 2008) or prediction (Wang et al., 2008). They have been first
introduced by Agrawal and Srikant (1995) and are a temporal exten-
sion of association rules (Agrawal and Srikant, 1994) that have been
first developed and used to find strong correlations among super-
market products. Sequential patterns are more complex than associ-
ation rules since they lead to a more important search space. They
are used when information is totally ordered according to a specific
criterion, which is most often temporal. Let us consider a temporal
dataset and a sequential pattern 〈(Low oxygen level)(Disappearance
of species)〉 : 30 % extracted from the transactions of this dataset.
This sequential patternmeans that the Low oxygen level event is tem-
porally followed by the Disappearance of species event with a fre-
quency of 30% in the dataset. A transaction is represented by a
sequence of elements ordered on the temporal dimension. Mining
such features according to the temporal aspect is very useful for spe-
cialists in various domains such as software engineering (Ren et al.,
2009), medicine (Sallaberry et al., 2011) and marketing (George
and Binu, 2012). Despite their advantages, sequential patterns
often bring limited information since they only provide totally
ordered information about data. To illustrate this, let us consider
a second pattern 〈(Presence of pesticides)(Disappearance of spe-
cies)〉 : 30 % discovered in the same dataset. It is possible to extract
the two patterns exactly from the same set of transactions: they
coexist in the dataset. The coexistence of sequential patterns is not
taken into account with this method. However, this coexistence can
be synthesized based on partial ordering. Fig. 4 presents a so-called
partially ordered pattern that combines the two previous sequential
patterns.

This partially ordered pattern means that the Disappearance of spe-
cies event is frequently preceded by two events Low oxygen level and
Presence of pesticides, which themselves are not ordered. Partially or-
dered pattern approaches used on hydrobiological data have some
advantages:

1. They are well-adapted to the temporal aspect of the dataset.
2. They provide more information on order among elements than se-

quential patterns.
3. They are represented as a directed acyclic graph that facilitates the

understanding, which is important for hydrobiologists.

3. Material and methods

This work focuses on partially ordered patterns and more precisely
on discriminant closed partially ordered patterns, denoted by DCPO-
patterns in the following. The discriminative property of patterns had
been studied in itemset mining (Cheng et al., 2007, 2008). It is related
to the interestingness measure domain that consists in applying statis-
tical measures on patterns in order to select the most interesting ones
according to analyst's needs. Geng and Hamilton (2006) work is an ex-
haustive survey on existing interestingness measures. These measures
can be applied on all kinds of patterns since they are mainly based on
their frequency. Nevertheless, existing measures are mainly efficient
in the case of binary classes. In the following, we propose an interesting-
nessmeasure that considers the case of n classeswith the aim of retriev-
ing the most significant patterns for each class, i.e. the DCPO-patterns
that are more frequent in the considered class than in others. As we
shall see later, we construct such classes, denoted as quality class sub-
datasets, based on bio-index values. To simplify, the aim is to extract
DCPO-patterns that are more frequent in a polluted quality class than
in a non-polluted one, or conversely.

image of Fig.�3


Table 1
Dataset example.

Site Date NH4
+ NKJ NO2

− PO4
3− P IBGN/20

Site 1 02/07 – – – 0.123 0.032 –

06/07 – 0.672 0.026 – – –

07/07 0.088 1.235 0.134 0.011 –

09/07 – – – – – 17
12/07 0.154 – 0.246 0.168 0.338 –

02/08 0.062 0.040 0.091 0.025 0.003 –

04/08 – 0.023 0.198 – – –

05/08 – – – – – 12
07/08 – – – 0.046 0.009 –

Site 2 01/04 0.043 0.146 0.421 – – –

04/04 – – – 1.325 0.093 –

07/04 2.331 7.993 0.252 0.132 0.266 –

08/04 – 1.414 – – – –

09/04 – – – – – 8
11/04 0.117 0.0844 – 0.688 – –

12/04 – – – 0.067 0.278 –

03/05 – 0.182 0.0310 0.137 – –

06/05 0.004 – 0.012 0.035 0.134 –

08/05 – – – – – 10
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3.1. Data and preprocessing

Before extracting DCPO-patterns, we have to apply different prepro-
cessing steps to the data. The data focus on sampling stations, which are
characterized by some information such as their spatial coordinates and
a list of characteristic values sampled at various time intervals.Wedetail
this in the following. To facilitate the understanding of the overall pro-
cess, we take as example two sampling stations located along a same
river and illustrated by Fig. 5.

Since our approach is temporal-based, we have to consider river
sampling timestamps. The sampled characteristics are numerous and
varied, they are divided into two major categories representing the
physico-chemistry on the one hand, and the biology on the other hand.

Biological data
They concern the flora and the fauna taxa living in the river. They are

divided in several biological dimensions that are macro-invertebrates,
fishes, macrophytes and diatoms. Each dimension is represented
by a bio-index, giving a global quality mark about the viability of
the hydro-ecosytem for this dimension. Bio-indices are based on
French normalized standards. Bio-indices used in this paper are IBGN
(AFNOR (Association Française de NORmalisation), 1992, révision
2004) (macro-invertebrates), IBD (AFNOR (Association Française de
NORmalisation), 2000, révision 2007) (diatoms) and IPR (AFNOR
(Association Française de NORmalisation), 2004) (fishes) bio-indices.

Physico-chemical data
Physico-chemistry is the measurement of various physico-chemical

parameters. We can mention for example the measurement of temper-
ature, oxygen levels, analysis of elements such as nitrates and phospho-
rus or the presence of molecules such as synthetic pesticides and
hydrocarbons. As we explain below in the preprocess of the data,
these parameters are treated by family rather than individually because
of their large number. The Fresqueau dataset gathers more than 900
physico-chemical parameters.

Table 1 gives an example of biological and physico-chemical sam-
plings on the two sampling stations of Fig. 5. Samples of Site 1 corre-
spond to the temporal period from February 2007 to July 2008, and
samples in Site 2 correspond to the temporal period from January
2004 to August 2005. This example provides sampling of five physico-
chemical parameters and measures of the IBGN bio-index at different
timestamps. Briefly, ammonium (NH4

+), Kjeldahl nitrogen (NKJ) and ni-
trite (NO2

−) are a part of nitrogenous matter. Orthophosphate (PO4
3−)

and total phosphorus (P) are representative of the level of phosphorous
matter in water. In our illustrative example, we only consider the IBGN
bio-indexwhich characterizes themacro-invertebrate dimension. Some
macro-invertebrate taxa are for instance typical of a good river quality,
denoted as polluo-sensitive, while some other taxa are not. Then, a
high abundance of polluo-sensitive taxa often leads to a good IBGN
score. These biological samplings are done once a year for each site. In
the dataset, a value of 2.331 mg/l NH4

+ is for example sampled on July
2004 for Site 2 and an IBGN score of 8/20 is measured two months
later on September 2004 in the same sampling site.
1 2

Fig. 5. Hydro-ecological network example.
The Fresqueau dataset only contains numerical values. Pattern-
based methods only perform on discrete data. We now present the
discretization process based on domain knowledge.
3.1.1. Data discretization
To process the dataset with pattern-based approaches, each

physico-chemical or biological variable needs to be discretized. Instead
of choosing arbitrary intervals, we base our discretization on existing
works in hydrobiology. Indeed, French water agencies published
technical reports that provide quality intervals for biology and
physico-chemistry. For both parameter categories, there are five
quality values related to the river quality: “Very good”, “Good”,
“Medium”, “Bad” and “Very bad” represented by colors Blue, Green,
Yellow, Orange and Red, respectively. In the following, a quality value
for a parameter is called a quality class. The bio-index quality classes
are given by AFNOR standards of bio-indices (AFNOR (Association
Française de NORmalisation), 1992, révision 2004 for IBGN, AFNOR
(Association Française de NORmalisation), 2000, révision 2007 for IBD
and AFNOR (Association Française de NORmalisation), 2004 for IPR).

Although biological quality classes are easy to apply on our data,
physico-chemical quality classes require a more complex procedure.

Biological discretization
AFNOR standards provide discretization quality intervals for many

bio-indices and in particular the three bio-indices focused in this
paper: IBGN, IPR and IBD. Table 2 gives us discretization intervals for
the IBGN bio-index. It means that an IBGN value of 15 is discretized as
aGreen quality and an IBGN value of 6 is discretized as anOrange quality.

Physico-chemical discretization
The number of physico-chemical parameters is huge. The SEQ-eau

Standard allows us to significantly reduce this number of parameters
by providing 15 macro-parameters that group the initial ones. These
macro-parameters are relevant since they group parameters in families
according to their nature or their function (as phosphorus, organic mat-
ters, pesticides, …). Given a macro-parameter, the process consists in
computing the discretized quality class for each included parameter to
Table 2
Discretization thresholds for the IBGN bio-index according to NFT90-350 standardized
method (AFNOR (Association Française de NORmalisation), 1992, révision 2004).

Parameter Blue Green Yellow Orange Red

IBGN [20,17] ]17,13] ]13,9] ]9,5] ]5,0]



Table 3
Quality class intervals composing AZOT and PHOS macro-parameters according to SEQ-
eau.

Group Parameter Blue Green Yellow Orange Red

AZOT NH4
+ (mg/l) [0,0.1[ [0.1,0.5[ [0.5,2[ [2,5[ [5,∞]

NKJ (mg/l) [0,1[ [1,2[ [2,4[ [4,10[ [10,∞]
NO2

− (mg/l) [0,0.03[ [0.03,0.3[ [0.3,0.5[ [0.5,1[ [1,∞]
PHOS PO4

3− (mg/l) [0,0.1] [0.1,0.5[ [0.5,1[ [1,2[ [2,∞]
P (mg/l) [0,0.05[ [0.05,0.2[ [0.2,0.5[ [0.5,1[ [1,∞]
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assign the worst quality class to the macro-parameter. Table 3 provides
the two macro-parameters related to the five physico-chemical param-
eters illustrated in the initial dataset in Table 1. For example with an or-
thophosphate (PO4

3−) value of 0.026 and a total phosphorus value of
0.67, PO4

3− is discretized as a Blue quality class and total phosphorus is
discretized as a Yellow quality class. The macro-parameter PHOS is
then discretized as a Yellow quality class by taking the worst quality in
the included macro-parameters. Furthermore, it is important to note
that a macro-parameter can be computed even if there are missing
values for some included parameters, at least one valued parameter
is required. The reason is that some macro-parameters contain a large
number of parameters, and the sampling of some of these parameters
is expensive and is rarely carried out in rivers. For example, let us
take samples on April 2008 from Site 1 (Table 1), there are values for
NKJ and NO2

− parameters but the value is missing for NH4
+ parameter.

Given the discretization table, NKJ value is discretized as a Blue qual-
ity class and NO2

− value as a Green quality class, then the macro-
parameter AZOT value has a Green quality class.

Based on the initial dataset in Table 1, Table 4 gives us the discretized
dataset obtained by grouping parameters.We can note that the number
of variables decreases in this new dataset: based on Table 3, NH4

+, NKJ
and NO2

− parameters are reduced to the AZOT macro-parameter while
PO4

3− and P parameters are reduced to the PHOS macro-parameter.
Applying AFNOR and SEQ-eau standards has several advantages:

1. The discretization process is based on domain knowledge instead of
an arbitrary number of intervals.

2. It significantly reduces the initial dataset variables by providing
macro-parameters.

3. It avoids somemissing values since only one variable is needed to be
able to compute the corresponding macro-parameter.

The dataset is now ready to be transformed in sequences.
Table 4
Discretized dataset example.

Site Date AZOT PHOS IBGN

Site 1 02/07 – Green –

06/07 Blue – –

07/07 Green Blue –

09/07 – – Blue
12/07 Green Yellow –

02/08 Green Blue –

04/08 Green – –

05/08 – – Yellow
07/08 – Blue –

Site 2 01/04 Yellow – –

04/04 – Orange –

07/04 Orange Yellow –

08/04 Green – –

09/04 – – Orange
11/04 Green Yellow –

12/04 – Yellow –

03/05 Green Green –

06/05 Blue Green –

08/05 – – Yellow
3.1.2. Sequence preprocessing
The aim of this step is to build sequences by ordering measure

samplings according to their timestamp. Pattern mining ap-
proaches consider items, which would be in our case the
physico-chemical and biological measures. An itemset IS is a
non-ordered group of measures sampled at a same timestamp. A
sequence S = 〈IS1IS2 … IS|S|〉 is a non-empty and ordered list of
itemsets, i.e. groups of measures ordered according to their
timestamp. For each river site, a sequence is built according to
all discretized variables of the dataset in Table 4. Table 5 presents
these sequences.

Let us consider the river Site 1, there are a Green quality class
PHOS at timestamp 02/07, a Blue quality class AZOT at timestamp
06/07, a Green quality class AZOT and a Blue quality class PHOS at
timestamp 07/07. Thus Site 1 sequence starts with the sequence
〈(PHOSGreen)(AZOTBlue)(AZOTGreen, PHOSBlue)〉. It means that item
PHOSGreen is temporally followed by item AZOTBlue, itself followed
by the two items AZOTGreen and PHOSBlue. Given the dataset of se-
quences, we now present the next step that cuts sequences in order to
construct specific biological quality class sub-datasets.
3.1.3. Quality class sub-datasets
At this step, the obtained sequence dataset is not yet easily

explorable to link physico-chemistry with biology. Site sequences
are often long since they cover many years of samplings. For a
same sampling site, a good biological value may be measured at
a given timestamp and a bad biological value may be measured
at another timestamp. Thus, a sampling site sequence may de-
scribe different water quality episodes over the time. Furthermore,
given a biological measured value, considering physico-chemical
values measured some years before is not relevant. Then a time-
constraint is necessary to avoid or limit non-sense knowledge.

To tackle those issues the idea is as follows, the sequence
dataset is transformed into quality class sub-datasets composed
of sequences for each bio-index, where each sequence represents
a water quality episode from sequences of sampling stations. A
quality class sub-dataset corresponds to a given quality class of a
bio-index, for example the value green for the IBGN. It means
that for IBGN bio-index, there are five quality class sub-datasets
representing a different discretized IBGN value (Blue, Green, Yellow,
Orange or Red). In the dataset in Table 5, discretized bio-index
values are included as variables in sequences. Then to manage bio-
indices to build different datasets, we have to cut initial sequences
in sub-sequences for each bio-index quality value. For example,
given the value IBGNBlue, it consists in collecting all sub-sequences
in the dataset of sequences that precede an item IBGNBlue given a
chosen time interval represented by a window.

We illustrate this step by cutting sequences from the discretized
dataset in Table 4. In this dataset, the IBGN bio-index has three dif-
ferent values: Blue, Yellow and Orange. Thus we obtain three quality
class sub-datasets IBGNBlue, IBGNYellow and IBGNOrange. The selected
temporal interval is equal to 6 months. It collects all discretized
physico-chemical variables that appear in this interval before a
discretized bio-index quality class. This process is illustrated in
Table 6 where biological index values are framed, and not collected
variables are blurred. For example, the first PHOSGreen item from
Site 1 sequence is not collected since it is sampled 7 months before
the first IBGN measure. Then according to this process, we build the
sub-datasets in Table 7, where each IBGN quality class is composed
of the set of sub-sequences that precede its measurement. For eas-
ier understanding of the following section with a more complete
example, we add some new sub-sequences in Table 7 that do not
exist in Table 5.

We can now use this IBGN dataset to mine DCPO-patterns. The
following section presents our temporal pattern based method.



Table 5
Sequence dataset example.

Site Sequence

Site 1 PHOSGreen
� �

AZOTBlue
� �

AZOTGreen ;PHOSBlue
� �

IBGNBlue
� �

AZOTGreen;PHOSYellow
� �D

AZOTGreen ;PHOSBlue
� �

AZOTGreen
� �

IBGNYellow
� �

PHOSBlue
� �E

Site 2 AZOTYellow
� �

PHOSOrange
� �

AZOTOrange ; PHOSYellow
� �

AZOTGreen
� �

IBGNOrange
� �D

AZOTGreen; PHOSYellow
� �

PHOSYellow
� �

AZOTGreen ;PHOSGreen
� �

AZOTBlue ; PHOSGreen
� �

IBGNYellow
� �E

Table 7
Quality class sub-datasets example for IBGN bio-index.

Sub-datasets Sequence

IBGNBlue
AZOTBlue

� �
AZOTGreen;PHOSBlue

� �D E

AZOTBlue;PHOSGreen
� �

PHOSGreen
� �

AZOTYellow;PHOSBlue
� �D E

IBGNYellow
AZOTGreen;PHOSGreen

� �
AZOTBlue;PHOSGreen

� �D E

PHOSOrange
� �

AZOTOrange ;PHOSYellow
� �

AZOTGreen;PHOSYellow
� �D E

AZOTGreen;PHOSYellow
� �

AZOTGreen ;PHOSBlue
� �

AZOTGreen
� �D E

IBGNOrange
AZOTOrange;PHOSYellow

� �
AZOTRed; PHOSOrange

� �
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3.2. Pattern extraction

This step is the core of our proposition. It consists in extracting
closed partially ordered patterns by quality class sub-dataset. In the
general case, extracting closed partially ordered patterns is a complex
task, because on real datasets the search space is often huge. It is related
to combinatorial problems and pattern extraction approaches are all
based on the same fundamentals. We use the algorithm OrderSpan
thatwe proposed in Fabrègue et al. (2013) andwe adapted it formining
multiple quality class sub-datasets. Initially, OrderSpan is only able to
mine a single dataset. The trick is to mine iteratively DCPO-patterns
for each quality class sub-datasets, while the non-discriminant DCPO-
patterns are removed in a post process, as detailed below.

A pattern is characterized by a support, or a frequency, that represents
the number of sequences in which the pattern appears. In the case of
closed partially ordered patterns, a pattern appears in a sequence (or is
supported by a sequence) if the order between all elements in the pattern
is also observed in the sequence. Let us consider the partially ordered pat-
tern in Fig. 6. This partially ordered pattern is supported by all sequences
fromquality class sub-dataset IBGNOrange andnone fromquality class sub-
dataset IBGNBlue. Indeed, in all sequences from quality class sub-dataset
IBGNOrange, itemsAZOTOrange and PHOSOrange both appear and are followed
by item AZOTGreen. Conversely, AZOTOrange and PHOSOrange are ordered
differently in the sequences. Thus, this pattern has a support of 2 and
a frequency of 2/2 in quality class sub-dataset IBGNOrange.

In order to limit the search space exploration, a minimum frequency
parameter noted θ is required as algorithmparameter. Given a θ value, it
means that all extracted partially ordered patterns have a frequency
higher than θ. In our case, we have to mine multiple quality class sub-
datasets in parallel since each quality class sub-dataset is considered
as an independent sequence dataset. It consists in extracting all partially
ordered patterns whose support is higher than a minimum frequency θ
in the concerned quality class sub-dataset. In addition, we retrieve the
frequency of partially ordered patterns in other quality class sub-
datasets. Then, each mined partially ordered pattern has multiple
frequencies. For example, the partially ordered pattern in Fig. 7 has
a frequency of 0/2 (support of 0) in quality class sub-dataset IBGNBlue,
1/3 in quality class sub-dataset IBGNYellow and 2/2 in quality class sub-
dataset IBGNOrange. This pattern can be mined from IBGNYellow quality
class sub-dataset with θ ≤ 1/3 or from IBGNOrange quality class sub-
dataset with θ ≤ 2/2.
Table 6
Sequence cutting example.

SequenceSite

Site 1

Site 2
Furthermore, we only consider partially ordered patterns that are
closed, i.e. CPO-patterns. The closure property allows us to extract a
smaller set of patterns without information loss. This property works
on the following principle: given a partially ordered pattern P and S
the set of sequences that support it, if there is no other partially ordered
pattern P′ such that P′ is more specific than P and P′ supported by all se-
quences in S, then P is closed. More details about this property are pro-
vided in Fabrègue et al. (2013). For example, the partially ordered
pattern in Fig. 6 is not closed since we point out that each time this pat-
tern is supported by a sequence, at the same time we observe a
PHOSYellow item. It leads to the partially ordered pattern in Fig. 7 that in-
cludes the pattern in Fig. 6 which has exactly the same support or fre-
quency in each quality class sub-dataset. Thus, the partially ordered
pattern in Fig. 6 is not closed and is redundant with respect to the par-
tially ordered pattern in Fig. 7.

3.2.1. Discriminant patterns filtering
This step is a filtering process on extracted partially ordered

patterns. For each quality class sub-dataset, not all extracted closed par-
tially ordered patterns are meaningful and relevant. We opted to adapt
the Growth Rate interestingness measure. Growth Rate had been first
used in emerging pattern mining (Dong and Li, 1999) and is defined
by Definition 1.

Definition 1. Given a closed partially ordered pattern P and two quality
class sub-datasets C1 and C2, the growth rate of P in C1 with respect to C2,
denoted GR(P, C1, C2), is defined as

0; if FreqC1 Pð Þ ¼ 0 and FreqC2 Pð Þ ¼ 0
∞; if FreqC1 Pð Þ≠0 and FreqC2 Pð Þ ¼ 0
FreqC1 Pð Þ
FreqC2 Pð Þ; otherwise:

8>><
>>:

ð1Þ

A growth rate greater than 1 in a quality class sub-datasetC1 with re-
spect to another quality class sub-datasetC2 means that the partially or-
dered pattern is more frequent in C1 than in C2 . A closed partially
ordered pattern must comply with this condition to be considered as
a discriminant closed partially ordered pattern in C1, i.e. denoted as a
DCPO-pattern. In our case, this property is very interesting to extract
< >
AZOTOrange

AZOTGreen

PHOSOrange

Fig. 6. A partially ordered pattern example.



< >
AZOTOrange , PHOSYellow

AZOTGreen

PHOSOrange

Fig. 7. A closed partially ordered pattern example which brings exactly the same informa-
tion as the partially ordered pattern in Fig. 6.

(a) (b)

Fig. 9. Preliminary tests: the 20 most frequent (a) and 20 most discriminant
(b) DCPO-patterns.
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environmental markers for each biological quality class sub-dataset.
Nevertheless, the growth rate measure defined in the literature is not
adapted for a number of quality class sub-datasets higher than two. It
is only possible to apply the measure on a quality class sub-dataset
with respect to another. We then propose a generalized growth rate
that considers multiple quality class sub-datasets (Definition 2).

Definition 2. Given a closed partially ordered pattern P, a quality class
sub-dataset C and a set of quality class sub-datasets C1; C2;…; Cnf g, the
generalized growth rate of P in C with respect to C1; C2;…; Cnf g, denoted
GGR P; C C1; C2;…; Cnf gð Þ, is defined as

0; FreqC Pð Þ ¼ 0 and max
�
FreqC1 Pð Þ; FreqC2 Pð Þ;…; FreqCn Pð Þ

�
¼ 0

∞; if FreqC Pð Þ≠0 and max
�
FreqC1 Pð Þ; FreqC2 Pð Þ;…; FreqCn Pð Þ

�
¼ 0

FreqC Pð Þ
max FreqC1 Pð Þ; FreqC2 Pð Þ;…; FreqCn Pð Þ

� �; otherwise:

8>>>>><
>>>>>:

ð2Þ

This generalized definition leads to compute the growth rate of a
pattern in a quality class sub-dataset Cwith respect to the maximal fre-
quency in a set of other quality class sub-datasets. Retrieving the maxi-
mal frequency of a pattern P in other quality class sub-datasets ensures
that with a generalized growth rate greater than 1 in C, the frequency of
P in C is higher than its frequency in all other quality class sub-datasets,
thus P is discriminant in C. For example, given a minimum frequency
θ = 30%, the closed partially ordered pattern in Fig. 7 is extracted
from quality class sub-datasets IBGNYellow and IBGNOrange with a fre-
quency of 1/3 and 2/2 respectively. This closed partially ordered pattern
is removed from quality class sub-dataset IBGNYellow since it is more fre-
quent in quality class sub-dataset IBGNOrange.Wenote thatwith the gen-
eralized growth rate measure, a DCPO-pattern cannot be discriminant
in two quality class sub-datasets simultaneously.

In several pattern mining applications, the amount of extracted pat-
terns may be huge with thousand or millions of extracted patterns.
Fig. 8. DCPO-pattern distribution from quality class sub-dataset IBGNRed.
Analyzing such results is extremely complex and requires the use of in-
terestingness measures (Geng and Hamilton, 2006) to filter and reduce
the result set. Section 3.3 introduces a selection operation based on
some identified dimensions for analysis.

3.3. Interestingness measures and pattern selection

To solve the problem of the huge number of patterns, we define a
method to filter the k most interesting DCPO-patterns for analysis. We
then define the notion of interestingness specific to this work. After
some preliminary tests and discussions, we have identified three differ-
ent relevant aspects on DCPO-patterns:

1. Frequency: represented by the number of sequences in quality class
sub-datasets that support the DCPO-patterns (Section 3.2). Analysts
are interested in the most frequent DCPO-patterns per quality class
sub-dataset since high frequency DCPO-patterns aremore supported
in the dataset than low frequency DCPO-patterns.

2. Discriminance: represented by the generalized growth rate value
(Section 3.2). Analysts are interested in the most discriminant
DCPO-patterns per quality class sub-dataset. The more discriminant
a DCPO-pattern is in a quality class sub-dataset, the more specific it
is in this quality class sub-dataset.

3. Redundancy: in DCPO-pattern mining, it is usual to find DCPO-
patterns that carry almost the same knowledge and that describe
almost the same set of sequences. Avoiding redundancy in results
is important to improve DCPO-pattern analysis, by retrieving an ex-
ample of each different case found in the data, without retrieving
similar cases.

The ideal result is a small set of DCPO-patterns that are themost fre-
quent and themost discriminant, while they retrieve a viewpoint on the
diversity in the data. Nevertheless, selecting such a small subset in thou-
sands of DCPO-patterns is not an easy task. We illustrate this issue by
projecting information about extracted DCPO-patterns from quality
class sub-dataset IBGNRed (Fig. 8). This projection is obtained by
performing a multidimensional scaling approach (Brog and Groenen,
1997) that aims at modeling dissimilarity among pairs of objects into
(a) (b)

Fig. 10. PB_Index tests: the 20 (a) and the 50 (b) most balanced DCPO-patterns from
quality class sub-dataset IBGNRed.

image of Fig.�7


Table 8
Biological quality class sub-datasets.

IBGN IBD IPR

Blue 1056 1076 52
Green 2405 1375 162
Yellow 1282 532 126
Orange 556 108 76
Red 89 17 62
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points in a low-dimensional geometric space. These points can be repre-
sented graphically and visualized afterwards. For our purpose, points
represent DCPO-patterns and the dissimilaritymeasure is the Hamming
distance (Hamming, 1950) (explained below).

In this two dimension space, each circle represents a discriminant
DCPO-pattern: its diameter is proportional to the frequency of the
DCPO-pattern while its darkness is proportional to the discriminance
(generalized growth rate value). Two circles far from each other mean
that the corresponding DCPO-patterns are supported by different se-
quences of the dataset, thus they probably contain a different informa-
tion. The Hamming distance is used to compute the distance between
two DCPO-patterns according to the set of sequences supporting
them. For example, a dataset of six sequences can be represented with
a binary code. A DCPO-pattern with the binary code 011101 means
that it is supported by all sequences of the dataset except the first and
the fifth sequences (1 when the DCPO-pattern is supported, 0 other-
wise). The Hamming distance between two binary codes is the number
of bits that differ. Then, the Hamming distance between binary codes
010101 and 011100 is 2 because they differ at the third and the sixth in-
dices. In the projection, we observe that the most frequent DCPO-
patterns are rarely the most discriminant and vice versa. Furthermore,
many DCPO-patterns are grouped into clusters (almost three in the ex-
ample). It means that in the result set, a lot of DCPO-patterns aremostly
supported by the same sequences of the dataset.

Given this big set of DCPO-patterns, the aim is to select the k top in-
teresting DCPO-patterns. We have first tried two selection approaches
based on the k most frequent and on the k most discriminant DCPO-
patterns. Based on the extracted DCPO-patterns from quality class
sub-dataset IBGNRed and their projection in Fig. 8, we selected and
projected the 20 top DCPO-patterns according to their frequency
(Fig. 9a) and the 20 top DCPO-patterns according to their discriminance
(Fig. 9b). Based on Fig. 8, all the unselected DCPO-patterns in Fig. 9a and
b are grayed.

Selecting the most frequent DCPO-patterns leads to select the most
common DCPO-patterns in the dataset. We observe that DCPO-patterns
contained in the dense clusters are not selected. DCPO-patterns
in clusters are in majority less frequent but their darkness means that
they have a high generalized growth rate and are very discriminant.
Conversely, selecting the most discriminant DCPO-patterns leads to only
select DCPO-patterns in clusters and skipping some more frequent
DCPO-patterns that probably better describe the dataset. Both
(a) IBGN (b)

Fig. 11. Number of DCPO-patterns fo
approaches present the same drawback. Many selected DCPO-patterns
are often very closed in the projection. Thus they probably carry a
very similar information and are redundant, which is not relevant for
analysis.
3.4. Combination of the dimensions of analysis

To tackle this issue, we choose to combine the distance, the general-
ized growth rate and the frequency. Given the setP of unselectedDCPO-
patterns and the set SP of already selected DCPO-patterns, the aim is to
compute a score of interestingness between0 and1 for each P∈P. Then,
the DCPO-pattern Pwith the highest score is added to the set of selected
DCPO-patternsSP. To give exactly the sameweight to the three dimen-
sions, we have normalized the generalized growth ratemeasure and the
Hamming distance to calculate a value between 0 and 1 for the two
measures. The frequency is already a score between 0 and 1, i.e. a fre-
quency equal to 0.2 corresponds to a DCPO-pattern supported by 20%
of the dataset.

Our balanced measure is denoted PB_Index for Pattern Balance
Index. Given the set P of unselected DCPO-patterns and the set SP of
already selected DCPO-patterns, for each P ∈ P the measure is defined
as follows:

withNMH(P;SP) theminimal normalized Hamming distance between
P and the set of patterns SP (this distance is equal to 1 when the set of
selected DCPO-patterns is empty), Freq(P) the frequency of P and
NGGR(P) the normalized generalized growth rate of P in the considered
quality class sub-dataset. In the numerator, the multiplication between
each dimension of analysis allows us to penalize DCPO-patterns for
which the value for one or more dimensions is low, thus a selected
DCPO-pattern is balanced between dimensions, i.e. each dimension is
considered as important. Themultiplicative factor 3 is for normalization,
i.e. obtaining a score between 0 and 1. Given a parameter k, this method
adds iteratively the most balanced DCPO-pattern to the set of selected
DCPO-patterns until the size of the set is equal to k. Fig. 10a and b
shows experiments performed on DCPO-patterns extracted from quali-
ty class sub-dataset IBGNRed by selecting the 50 and the 20 most
balanced DCPO-patterns.

We observe that the selected DCPO-patterns are more diverse
(less redundant) than the k most frequent or the k most discriminant,
while they are a good balance between the most frequent and the
most discriminant. In addition, increasing the parameter k leads to ex-
plore even more the diversity of the overall DCPO-patterns set, with a
minimized redundancy.

We now present the obtained results.
 IBD (c) IPR

r each biological quality value.



(a) IBGN (b) IBD (c) IPR

Fig. 12. Computation time (in seconds) of DCPO-patterns for each biological quality value.

3 http://engees-fresqueau.unistra.fr/patterns/patterns.html.
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4. Results

In this section, we provide experiments for three bio-indices
available in the Fresqueau dataset and discussed in Section 3.1. As a
reminder, these bio-indices are IBGN, IBD and IPR that correspond to
macroinvertebrate, diatom and fish dimensions, respectively. By apply-
ing the process on each index, we generate their corresponding biolog-
ical datasets. According to expert knowledge, for each bio-index we
have chosen different time intervals in order to capture sequences
that precede a biological sampling. Thus,we select a time interval corre-
sponding to fourmonths before ameasurement of IBGNand IPR, andwe
select a time interval of twomonths before ameasure of IBD. The reason
is that diatom populations renew faster than macro-invertebrates and
fishes. Then, it is relevant to restrict the interval of physico-chemical se-
quences on the IBD bio-index. Table 8 synthesizes the number of se-
quences obtained for each quality class sub-dataset. For instance, we
generated 1375 sequences for the quality class sub-dataset IBDGreen.
We obtain very unbalanced quality class sub-datasets: the green IBGN
quality class sub-dataset contains 2405 sequences while the red IBGN
quality class sub-dataset contains 89 sequences.

The red IBD quality class sub-dataset is problematic with only 17 se-
quences. Then, with a minimum frequency threshold of 10%, DCPO-
patterns supported by only two sequences are extracted. In statistics
and data mining domains, extracting knowledge from two data obser-
vations is not relevant. Thus, we merged red and orange IBD quality
class sub-datasets in a new quality class sub-dataset IBDOrange-Red com-
posed of 125 sequences. We now show results obtained from each
index.

4.1. Overall results

Wemined DCPO-patterns with a minimum frequency threshold θ of
10% in all biological datasets.We choose this value because it allows us to
extract a significant number of DCPO-patterns from the data. Extracting
below this minimum frequency threshold is less statistically significant,
especially for sub-datasets with a small number of sequences.

Fig. 11a, b and c shows the number of DCPO-patterns extracted in
each quality class sub-dataset. We observe that the number of DCPO-
patterns per quality class sub-dataset is unbalanced. In order to highlight
this aspect, a logarithmic scale is used on the ordinate axis. For example,
6202 DCPO-patterns are extracted from quality class sub-dataset IBDYellow

while 31 DCPO-patterns are extracted from quality class sub-dataset
IBDGreen. For the three bio-indices, the yellow quality class sub-dataset is
always the one having the biggest amount of DCPO-patterns, at least
two times over other quality class sub-datasets. Furthermore, no DCPO-
patterns are found from the IPR green quality class sub-dataset and only
one DCPO-pattern is extracted from the IBGN green quality class sub-
dataset.

The computation time for each quality class sub-dataset is given by
Fig. 12a, b and c.We observe that the number of DCPO-patterns extract-
ed is very correlated. Indeed, patternmining approaches are almost lin-
ear according to the number of extracted patterns. The maximal
computation time is 177.11 s for the quality class sub-dataset IPRYellow

(3554 patterns) and the minimal one is 0.046 s for the quality class
sub-dataset IPRGreen (0 pattern). Thus, the computation time is accept-
able since this hydrobiological application does not require a real time
approach. It does not exceed 3 min in the worst case.

In the next section are presented more detailed results for each bio-
index using the selection operation presented in Section 3.3.

4.2. Filtered patterns

For each biological dataset (IBGN, IBD and IPR), we present two
DCPO-patterns extracted from the red and blue quality class sub-
datasets, i.e. the two extreme quality classes, except for IBD where the
orange and the red quality class sub-datasets are merged. These
DCPO-patterns are picked from the set of selected DCPO-patterns ob-
tained with the PB_Index measure with a parameter k = 15, i.e. we ex-
tracted the 15 most balanced DCPO-patterns. We choose the number of
15 DCPO-patterns empirically since after many tests, we observe that it
provides a small set of results easy to analyze and it captures the diver-
sity contained in the data. The set of the 15 most balanced DCPO-
patterns per bio-index quality class is accessible at this webpage3 (in
color). For the sake of clarity, DCPO-patterns presented in this paper
contain a maximum of four items and two timestamps, but more com-
plex DCPO-patterns are provided on the webpage.

4.2.1. IPR
By analyzing fish taxa in a river, this bio-index aims at providing an

evaluation of the river quality. For a river station, itmeasures the gapbe-
tween the currentfish population and thefish population that should be
present without human activity impact. Experts also consider parame-
ters such as the watershed surface, the average air temperature and
the width and the depth of the river station. An IPR score of 0 means
that there is no difference between the measured situation and the
ideal situation. As this score increases, the gap between the current sit-
uation and the ideal situation ismore important. Figs. 13 and 14 provide
two DCPO-patterns extracted from blue IPR quality class sub-dataset
and red IPR quality class sub-dataset, respectively. The DCPO-pattern
in Fig. 13 has a frequency equal to 39.62% in the blue IPR quality class
sub-dataset and 16.12% in the red one.

4.2.2. IBGN
This biological dimension has already been briefly presented in

Section 3.1. It is based on the presence or absence of over 100 pollu-
sensitive macro-invertebrate taxa. The obtained value (a score between
0 and 20) is based on macro-invertebrate taxa and on their abundance
in sampling. A score of 20 is representative of a very good river quality,
while a score of 0 is characteristic of a very bad river quality. As for IBGN
bio-index, we present two extracted DCPO-patterns in Figs. 15 and 16.

4.2.3. IBD
This last bio-index concerns the microscopic granularity of the biol-

ogy. Like IPR and IBGN bio-indices, IBD is the measurement of a score
that highlights the viability of the river. Here, the viability is

http://engees-fresqueau.unistra.fr/patterns/patterns.html
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MOOXBlueAZOTBlue

Fig. 13.DCPO-pattern fromquality class sub-dataset IPRBluewith frequencies: Blue= 39.62%,
Green = 25.34%, Yellow= 17.07%, Orange = 20.28%, Red = 16.12%.

< >MOOXGreenPESTBlue

Fig. 14. DCPO-pattern from quality class sub-dataset IPRRed with frequencies: Blue = 5.66%,
Green = 7.53%, Yellow= 5.69%, Orange = 4.34%, Red = 9.67%.

< >
MOOXGreen

AZOTBlue PHOSBlue

Fig. 17. DCPO-pattern from quality class sub-dataset IBDBlue with frequencies: Blue =
14.95%, Green = 4.58%, Yellow = 1.21%, Orange-Red = 0.74%.

Table 9
Correspondence between colors and quality categories.
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representative of micro-algae populations. It consists in analyzing and
counting 400 individuals from a sample. As with IBGN, the calculation
is based on a data dictionary providing the polluo-sensitivity and the
ability of the species to be in various environments. Figs. 17 and 18
show two examples of DCPO-patterns on this bio-index.

The above experiments are performed to show the methodology
and some obtained results. We now present a qualitative study of the
proposed process.

5. Discussion

This section is a discussion about the advantages of mining DCPO-
patterns over other data mining techniques. For the clarity reasons,
Table 9 reminds the relationship between the colors and the quality
categories.

5.1. DCPO-patterns meet with domain knowledge

Here, we discuss about the fact that DCPO-patterns well match with
existing knowledge in hydrobiology, and also provide new knowledge.
We take as example IBGN and IPR indices.

IBGN index has beenmainly developed to address the problemof or-
ganic matter pollutions (MOOX) (Vernaux et al., 1982). With DCPO-
patterns, we are able to retrieve this knowledge: blue MOOX appears
in blue IBGN patterns (Fig. 15) while a red MOOX appears in red IBGN
patterns (Fig. 16). Thus, in the case of the IBGN index, the analysis
of patterns shows a correspondence between MOOX quality classes
and IBGN quality classes. For example, a blue MOOX is observed with
a blue IBGN, a yellow MOOX is observed with a yellow IBGN, etc. How-
ever, the impact of phosphorus pollutions (macro-parameter PHOS) on
the IBGN index value is a lesser-known fact and DCPO-patterns also
show a correspondence between PHOS quality classes and IBGN. Such
a correspondence is interesting since it may highlight that the source
of phosphorus pollutions has an impact on macro-invertebrates (IBGN
index).

Concerning the IPR index, the DCPO-pattern in Fig. 13 shows that
very good fish communities need very good quality river. Indeed, we
< >
PHOSBlue

PHOSBlueMOOXBlue

PAESGreen

Fig. 15. DCPO-pattern from quality class sub-dataset IBGNBlue with frequencies:
Blue = 16.84%, Green = 10.12%, Yellow = 5.41%, Orange = 1.77%, Red = 0%.

< >MOOXRed PHOSRed

Fig. 16.DCPO-pattern from quality class sub-dataset IBGNRedwith frequencies: Blue= 0%,
Green = 0.16%, Yellow = 1.23%, Orange = 7.8%, Red = 19.1%.
know that fishes are sensitive to organic and nitrogenous matters
(because of oxygen consumption during biodegradation of organic
matter). On the other hand (Fig. 14), a bad fish community can exist
with no bad physico-chemical parameters if hydromorphological con-
ditions are not sufficient (concrete channels, dam, etc.). Indeed,
hydromorphological conditions have an important impact on fish
habitat.
5.2. Using domain knowledge to discretize the data

Discretizing data with domain knowledge (SEQ-eau and AFNOR
standards) is useful. By extracting DCPO-patterns by quality class sub-
datasets (biological quality classes), we can highlight and measure the
concordance between physico-chemical and biological parameter qual-
ity classes. For example, the impact of the physico-chemical parameter
PHOS on diatoms has been widely studied (Coring, 1999; Kelly et al.,
1995) and is well-known. The river biological quality class for diatoms
is often bad when very high PHOS concentrations are measured.
Currently, it is not possible to predict precisely its impact on IBD index
value. It is just possible to say that a moderate/bad biological quality
class, e.g. a yellow, an orange or a red IBD class, is predictable with
high probability. By analyzing some DCPO-patterns, we observe that
for each IBD quality class sub-dataset, a PHOS quality class is related.
Table 10 sums it up: we can observe that the IBD index quality classes
do not correspond exactly with physico-chemical quality classes. IBD
quality classes decrease more rapidly than PHOS quality classes. For in-
stance, a yellow IBD is related to a green PHOS and an orange IBD is re-
lated to a yellow PHOS. Furthermore, a red IBD is related to a red PHOS,
but specifically concerned by a red PHOS combinedwith a red AZOT and
a redMOOX. Then,with IBD,we observe that: (1) the biological status is
very sensitive to water disturbances and (2) the combination of multi-
ple bad physico-chemical values produces necessarily degradation of
the biological dimension. It leads to new perspectives: suggesting to de-
termine new interval values for physico-chemical parameter quality
classes to match with bio-index classes and to evaluate more precisely
the impact of the combination of physico-chemical parameters.
Color Quality category

Blue Very good
Green Good
Yellow Medium
Orange Bad
Red Very bad

Table 10
Correspondence between IBD quality classes and PHOS quality classes.

IBD Physico-chemistry

Yellow PHOSGreen

Orange PHOSYellow

Red PHOSRed

100% Red PHOSRed, AZOTRed, MOOXRed
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Fig. 18. DCPO-pattern from quality class sub-dataset IBDRed with frequencies: Blue = 0%,
Green = 0.12%, Yellow = 1.03%, Orange-Red = 12.68%.
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Furthermore, when analyzing the physico-chemistry, sampled values
are usually aggregated by using percentiles or a statistical average. The
interpretation of results is thus sensitive to the aggregation method.
Using temporal patterns such as DCPO-patterns avoids the aggregation
issue since it is based on sequences of discretized parameters. Thus, all
sampled parameters are taken into account.

5.3. Selection of the most balanced DCPO-patterns

The Pattern Balance Index proposed in Section 3.3 highlights with a
few dozen of DCPO-patterns the knowledge diversity contained in sev-
eral hundreds of thousands DCPO-patterns. It allows hydrobiologists to
mine the data at low minimum frequency thresholds to discover and
capture less frequent but new and potentially interesting knowledge
without having to manage and analyze a huge volume of DCPO-
patterns. It provides a global overview of the results.

5.4. Benefits of applying DCPO-pattern approaches

This paper presents the application of a DCPO-pattern method to
discover links between physico-chemistry values and biological values.
Furthermore, this approach could beuseful formany other hydrobiolog-
ical or environmental problems.

On such temporal data, sequential pattern approaches are also a
possible alternative to DCPO-patterns. Compared to DCPO-patterns,
sequential patterns are represented by a flat list of symbolic values.
DCPO-patterns have the advantage of taking into consideration ele-
ments at different timestamps with no temporal link. For example,
let us look at the DCPO-pattern provided by Fig. 17, AZOTBlue and
PHOSBlue are frequently measured at the same time and, in parallel,
a MOOXGreen is measured without being ordered. A sequential pat-
tern mining approach would led to extract two different sequential
patterns: 〈(AZOTBlue, PHOSBlue)〉 and 〈(MOOXGreen)〉. Such a divi-
sion of the knowledge with sequential patterns is a drawback be-
cause the information about the co-existence of physico-chemical
parameters, even if they are not temporally ordered, allows hydro-
biologists to better identify which parameters and which combina-
tions have a stronger impact. In our work, this feature is very
important because hydrobiologists make the assumption that
many physico-chemical parameters are not temporally correlated
between them.

Thus DCPO-patterns are well-suited for the problem of identifying
temporal observations with many variables. Indeed, such patterns are
able to capture groups of variables that are observed at the same time,
at the following timestamp or at different timestampswith no temporal
link. Each DCPO-pattern corresponds to a frequent information in the
data and it does not provide any information about the correlation be-
tween variables. Nevertheless, it could be extended to obtain such cor-
relations by post-processing DCPO-patterns with approaches based on
association rules (Agrawal and Srikant, 1994) or sequential rules
(Fournier-Viger et al., 2011).

This technique andmore generally temporal pattern approaches are
sensitive to the discretization process. However, this process is also
well-adaptedwhen there exists domain knowledge. Indeed, continuous
values are not always easy to analyze and discretized values can provide
simple and robust information based on previous works, such as SEQ-
eau and AFNOR standards.
Pattern mining approaches are adapted to the case of hundred or
thousand instances in the data. It is possible to first use such methods
to obtain an overview of the knowledge contained in the data, and
then to process multivariate statistics (Legendre and Legendre, 2012).
The idea is to refine the knowledge by specifically analyzing parameters
frequently observed in patterns. Thus, patternminingmethods could be
a good addition to statistical approaches.

5.5. Perspectives

We applied this generic process on the three bio-indices IBGN, IBD
and IPR because they are studied and measured for many years in
French river ecosystems. It then gives us a substantial amount of data
to explore. However there exist more recent bio-indices that concern
the river viability for macrophytes with the IBMR bio-index (AFNOR
(Association Française de NORmalisation), 2003) and oligochetes with
the IOBS bio-index (AFNOR (Association Française de NORmalisation),
2002).We are interested in analyzing them to discover new knowledge
on rivers. Exploring all the biological dimensions is important to mea-
sure a global river quality.

In addition, since DCPO-patterns are useful to capture the discrimi-
nant features for different biological qualities, we wish to extend our
process to classification (Cheng et al., 2007, 2008) and prediction
(Wang et al., 2008) of river quality. This perspective completely
matches with the objectives of the European Water Framework
Directive. Measuring bio-indices on the field leads to long delays in
analysis. Predicting accurately the river viability for biological dimen-
sions by just analyzing recent physico-chemical samplings could then
be straightforward. Many methods mainly focus on extreme biological
quality classes (blue and red), but we show that taking into account in-
termediate quality classes is mandatory to improve the understanding
of river ecosystems.

6. Conclusion

This article proposes a temporal pattern based approach applied to
hydro-ecological data to extract the relations between the physico-
chemistry and the biology.

The proposedmethod is generic since it takes into consideration the
different biological dimensions of river ecosystems. It highlights the link
of physico-chemistrywith biology andpoints theway towards newper-
spectives on the quantification of these relations.

In future work, we aim to use the extracted discriminant closed par-
tially ordered patterns as physico-chemical bio-markers to perform the
classification, or the prediction of river quality according to the biology
to reach good quality in rivers as required by the European Water
Framework Directive.
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