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Abstract-This paper investigates the use of feedback linearization to develop a control system for regulating the DC voltage and the reactive power of a VSC terminal. Firstly, a direct-quadrature (dq) state-space model of the VSC terminal is established. By analyzing the zero dynamics of the system, the static feedback linearization can be applied when the VSC terminal operates in inversion mode (power flowing from the DC side to the AC one). However, the system is not feedback linearizable when the VSC works in rectification mode (power flowing from the AC side to the DC one). Then, based on a simplified model, a new dynamic is introduced by an additional control variable which yields a higher order system, allowing the terminal to operate in rectification mode. Numerical simulations are carried out to verify the validity of the proposed control system.

I. INTRODUCTION

In the past decades, significant advances have been made in the development of high power devices for Voltage Source Converter based High Voltage Direct Current (VSC-HVDC) systems. These systems are capital to attain the objective of integrating large-scale offshore renewable energy sources. One of the most significant progress was the improvement of high rated transistors, such as insulated gate bipolar transistors (IGBT), that made VSC-HVDC systems operate in a flexible, efficient and reliable way. With these types of semiconductor devices, a second degree of freedom is given since they can be turned both on and off. This additional controllability gives many advantages. It is possible to control the reactive power independently of the active power and power transmission can be bidirectional. The application of Pulse Width Modulation (PWM) [START_REF] Ooi | Research in pulse width modulated HVDC transmission[END_REF] improves the harmonic distortion of the converter with less low frequency harmonics and gives a faster response. VSC-HVDC systems have also the potential benefits of transferring power flows to/from a weak AC network such as wind farms and solar plants while improving the stability and the robustness of the overall system [START_REF] Xu | Multi-terminal DC transmission systems for connecting large offshore wind farms[END_REF], [START_REF] Liang | Operation and control of multiterminal HVDC transmission for offshore wind farms[END_REF], [START_REF] Reidy | Comparison of VSC based HVDC and HVAC interconnections to a large offshore wind farm[END_REF], [START_REF] Haileselassie | Multiterminal HVDC for offshore wind farms-control strategy[END_REF].

Many studies have been devoted to the control design of VSC-HVDC systems. Traditional control structure involves the field-oriented vector control technique based on several PI controllers [START_REF] Lindberg | Inner current loop for large voltage low switching frequency[END_REF]. Generally speaking, two PI controllers are used to control the dq currents. According to different control objectives, an additional PI controller is dedicated to controlling the DC voltage or the active power. However, there exists a limitation in this conventional control method [START_REF] Li | Control of HVDC light system using conventional and direct current vector control approaches[END_REF]. Moreover, when the dynamics of the currents and the DC voltage are close to each other, such kind of vector control is not so efficient [START_REF] Chen | Control induced explicit time-scale separation to attain dc voltage stability for a vsc-hvdc terminal[END_REF]. Other possibilities have been recently studied. For example, a passivity property of the dynamical system has been exploited in [START_REF] Martinez-Perez | IDA passivity-based control of single phase backto-back converters[END_REF]. Though the global stability of the system is ensured, the control strategy in [START_REF] Martinez-Perez | IDA passivity-based control of single phase backto-back converters[END_REF] is based on the equilibrium values of the system which need to be calculated in advance and are strongly dependent on parameters and measurements.

In this work, we propose a new control system based on feedback linearization theory, which ensures that the converter can operate well in both rectification mode and inversion mode. The zero dynamics of the system are derived and analyzed in this paper, which is very important to help us understanding the behavior of the system. This paper is organized as follows. A synchronous dq reference frame based state-space model is introduced in Section II. The control structure is built in Section III where the zero dynamics of the system are analyzed. It is found that the system has the property of being feedback linearizable in inversion mode but not in rectification mode. Then, a control law based on a simplified model is derived for the converter in rectification mode. Simulation results are presented in Section IV. Finally, conclusions are drawn in Section V. A simplified representation of a VSC terminal is shown in Fig. 1 where a small resistance R l and a large inductance L l represent the phase reactor which dominates the dynamics of the converter on the AC side and C is the DC capacitor whose size determines the dynamics on the DC side. v l,dq are the voltages of the AC network, v c,dq are the voltages on the AC side of the converter, i l,dq are the currents through the phase reactor, u c is the DC voltage across the DC capacitor and i c is the measurable DC current representing the active power demand or supply from the connected DC grid. By convention, i c is positive if the power flows from the AC side to the DC side.

II. MODELING OF A VSC TERMINAL

A state-space model of the VSC terminal established in a synchronous dq frame is given by [START_REF] Thomas | Analysis of a robust DC-bus voltage control system for a VSC transmission scheme[END_REF]:

di ld dt = - R l L l i ld + ωi lq - 1 2L l M d u c + v ld L l (1) di lq dt = - R l L l i lq -ωi ld - 1 2L l M q u c + v lq L l (2) 
du c dt = - 1 C i c + 1 C 3 4 (M d i ld + M q i lq ) (3) 
where ω is the angular frequency of the AC network. Pulsewidth modulation (PWM) technology is applied to generate the converter voltages v c,dq where M dq are the modulation indices as the control inputs. v c,dq are controlled by M dq :

v c,dq = 1 2 M dq u c (4) 
The active and reactive power on the AC side of the converter are expressed as:

P l = 3 2 v ld i ld (5) 
Q l = - 3 2 v ld i lq (6) 
since the chosen dq reference frame makes the d-axis fixed to the AC area voltage, i.e. v ld = V l,rms and v lq = 0.

III. CONTROL STRATEGY

As presented in the state-space model ( 1)-( 3), there are two degrees of freedom. Thus, at least two variables can be controlled. In this paper, u c and Q l are chosen to be regulated at their desired values u * c and Q * l . As seen in ( 6), controlling Q l is equivalent to regulating i lq at i * lq which satisfies

i * lq = - 2Q * l 3v ld (7) 
In this paper, the control objective is to make u c and i lq track their references u * c and i * lq , respectively. An important feature of the VSC terminal is that the system can operate at unity power factor. For simplicity, i * lq is set to zero. In this paper, according to the direction of the power flows, two control laws are developed based on feedback linearization theory.

A. Static feedback linearization control

By defining (x 1 x 2 x 3 ) (i ld i lq u c ), we rewrite the system (1)-(3) as:

ẋ = f (x) + g d M d + g q M q (8)
where f (x), g d and g q ∈ R 3 are easily found.

According to the control objective, we first define the outputs as y 1 = u c i lq T . Consider the square system [START_REF] Chen | Control induced explicit time-scale separation to attain dc voltage stability for a vsc-hvdc terminal[END_REF] where the number of control inputs is equal to the number of outputs. It is easy to find that the relative degree of each output is r = 1. Let J be an 2 × 2 matrix such that:

J = L g d (i lq ) L gq (i lq ) L g d (u c ) L gq (u c ) (9) 
where the Lie derivatives of each output with respect to g d , g q and f are:

L g d (i lq ) = 0 L g d (u c ) = 3i ld 4C L gq (i lq ) = - u c 2L l L gq (u c ) = 3i lq 4C
J is non-singular under the condition u c i ld = 0. Therefore, a nonlinear feedback control can be developed as:

M d M q = J -1   v q -(-R l L l i lq -ωi ld + v lq L l ) v u -(- i c C )   (10) 
with

J -1 = 2L l uc i lq i ld 4C 3i ld -2L l uc 0 (11) 
where v q and v u are the additional control inputs yet to be designed, for instance by using linear technique. The complete system with the controller (10) can be written as:

di ld dt = - R l L l i ld + ωi lq + v ld L l - i lq i ld (v q -(- R l L l i lq -ωi ld + v lq L l )) - 2u c C 3i ld L l (v u + i c C ) (12) di lq dt =v q (13) du c dt =v u (14) 
We see that the additional inputs v q and v u are linear with respect to the outputs i lq and u c and hence a linear subspace of dimension two is generated. These new inputs can also transform the system (1)-( 3) into a much simpler structure. In addition, (12) represents the internal dynamics of the system. Since i * lq and u * c are the desired trajectories which are given by a higher control level, we design the additional inputs v q and v u as:

φq = i * lq -i lq (15) φu = u * c -u c (16) v q = di * lq dt + k pq (i * lq -i lq ) + k iq φ q (17) v u = du * c dt + k pu (u * c -u c ) + k iu φ u ( 18 
)
where k p,qu and k i,qu are positive.

With ( 17) and ( 18), the closed-loop system is written as:

φq = i * lq -i lq (19) φu = u * c -u c (20) di ld dt = - R l L l i ld + ωi lq + v ld L l - i lq i ld ( di * lq dt + k pq (i * lq -i lq ) + k iq φ q -(- R l L l i lq -ωi ld + v lq L l )) - 2u c C 3i ld L l × ( du * c dt + k pu (u * c -u c )+ k iu φ u + i c C ) (21) di lq dt = di * lq dt + k pq (i * lq -i lq ) + k iq φ q (22) du c dt = du * c dt + k pu (u * c -u c ) + k iu φ u (23)
As seen in ( 22) and ( 23), the surfaces i * lq -i lq = 0 and u * c -u c = 0 define two manifolds for the system, which are globally attractive. When the outputs of the system are identically equal to their reference values, the behavior of the system is governed by:

di ld dt = 1 L l i ld [v ld i ld -R l i 2 ld + 1 i ld (- 2 3 u * c i c )] (24) 
which is the zero dynamic relative to the outputs y 1 . Linearizing (24) around the equilibrium point īld , we obtain

A = 1 L l 2 3 u * c i c -R l ( īld ) 2 ( īld ) 2 (25) 
If i c < 0, the converter operates in inversion mode and we have a negative A, which means that the zero dynamic is locally asymptotically stable. In this case, the system (1)-(3) can be locally stabilized under the proposed nonlinear feedback control law [START_REF] Isidori | Nonlinear Control Systems[END_REF]. In fact, from (24), there are two equilibrium points of which one is negative and the other is positive. By taking into account technology limitations, only the negative one can be attained. In addition, it is also found that the attraction region of this negative equilibrium point is very large.

If i c > 0, the converter works as a rectifier. The term R l ( īld ) 2 represents the losses when the power flows through the phase reactor. In practice, the power injected into the HVDC grid represented by 2 3 u * c i c should be much larger than the losses represented by R l ( īld ) 2 . Thus, the term 2 3 u * c i c -R l ( īld ) 2 should always be positive, which leads to a positive A such that the zero dynamic (24) is unstable. Therefore, we can conclude that the system (1)-( 3) is not feedback linearizable in rectification mode. In the next section, we develop a new control law based on a simplified model and feedback linearization technique such that the stability of the converter in rectification mode can be ensured.

B. Feedback linearization control based on the simplified model

As mentioned in Section III-A, a positive i c results in unstable internal dynamics. One possible approach to tackling this problem is to redefine the outputs as y 2 = i ld i lq T .

According to (12), v u can be expressed as:

v u = - i c C + 3L l 2Cu c {[v d -(- R l L l i ld + ωi lq + v ld L l )]i ld +[v q -(- R l L l i lq -ωi ld + v lq L l )]i lq } (26)
where v d is an additional control input yet to be determined. With this expression of v u , the system (12)-( 14) becomes:

di ld dt =v d (27) 
di lq dt =v q (28)

du c dt = - i c C + 3L l 2Cu c {[v d -(- R l L l i ld + ωi lq + v ld L l )]i ld + [v q -(- R l L l i lq -ωi ld + v lq L l )]i lq } (29) 
We find that i l,dq are linearized and decoupled from the rest of the system and (29) describes the internal dynamics of the system relative to the outputs y 2 . Now the actual control inputs M dq are designed as a nonlinear state feedback control by combining ( 10) and (26):

M d M q = 2L l u c (-R l i ld + ωL l i lq + v ld ) -v d (-R l i lq -ωL l i ld + v lq ) -v q (30) 
If i * ld represents a reference signal for i ld , we may choose the additional input v d as:

v d = di * ld dt + k pd (i * ld -i ld ) + k id φ d (31) 
where k pi,d are positive and φ d satisfies:

φd = i * ld -i ld (32) 
With ( 17) and (31), the closed-loop system is deduced as:

φd =i * ld -i ld (33) di ld dt = di * ld dt + k pd (i * ld -i ld ) + k id φ d (34) di lq dt = di * lq dt + k pq (i * lq -i lq ) + k iq φ q (35) du c dt = 3L l 2Cu c {[( di * ld dt + k pd (i * d -i ld ) + k id φ d -(- R l L l i ld + ωi lq + v ld L l )]i ld + [( di * lq dt + k pq (i * lq -i lq ) + k iq φ q ) -(- R l L l i lq -ωi ld + v lq L l )]i lq } - i c C (36) 
It is seen that the surfaces i * ld -i ld = 0 and i * lq -i lq = 0 give globally attractive manifolds and the zero dynamics relative to the outputs y 2 are:

uc = - i c C + 3 2Cu c [-R l (i * ld ) 2 + v ld i * ld ] (37) 
and then the linearizd zero dynamics is:

B = ∂ uc ∂u c | u * c = 3[R l (i * ld ) 2 -v ld i * ld ] 2C(u * c ) 2 (38) 
A positive i c means that the AC network supplies the power, which equals v ld i * ld , to the HVDC grid. In practice, v ld i * ld should be much larger than the losses represented by R l (i * ld ) 2 . Thus, the term R l (i * ld ) 2 -v ld i * ld results in B < 0. Therefore, the zero dynamics (37) is well behaved and locally stable. The overall system (34)-( 36) is locally asymptotically stable [START_REF] Isidori | Nonlinear Control Systems[END_REF] and the converter can operate in rectification mode. Now the crucial step in this procedure is to determine the reference value of i ld which is not directly given but might be deduced from the known u * c and i * lq . In this paper, i * ld is developed based on a simplified model. By considering that when i ld and i lq converge to i * ld and i * lq , (3) can be replaced by the following simplified model:

du c dt = - i c C + 3 4C (M d i * ld + M q i * lq ) (39) 
where

M d M q = 2 u c -R l i * ld + ωL l i * lq -R l i * lq -ωL l i * ld ( 40 
)
and i * ld can be viewed as the control input. We would like to develop a strategy for i * ld such that u c in ( 39) is stabilized at u * c . Since (i * ld ) 2 explicitly appears in (39), we then add an integrator in i * ld which yields a higher order system as:

du c dt =- i c C + 3 2C (v ld i * ld -R l i * 2 ld ) + (v lq i * lq -R l i * 2 lq ) u c (41) di * ld dt =u d (42) 
The above system is in a standard form:

ẋ0 = f 0 (x 0 ) + g 0 u d ( 43 
)
with the trivial expressions for f 0 and g 0 ∈ R 2 where x 0 u c i * ld T . We define u c as the output and then the relative degree of u c is 2. Consequently, the following expressions can be deduced:

uc =L 1 f0 (u c ) (44) üc =L 2 f0 (u c ) + L g0 L 1 f0 (u c )u d (45) 
where

L 1 f0 (u c ) = - i c C + 3 2C × (-R l i * 2 ld + v ld i * ld ) + (-R l i * 2 lq + v lq i * lq ) u c (46) L 2 f0 (u c ) = - 3 uc 2C (-R l i * 2 ld + v ld i * ld -R l i * 2 lq + v lq i * lq ) u 2 c (47) L g0 L 1 f0 (u c ) = 3 2C 1 u c (-2R l i * ld + v ld ) (48) 
Hence, we can define the change of coordinates as:

z 1 =u c (49) z 2 =L 1 f0 (u c ) (50) 
in which the system (39)-( 42) is rewritten as: 

ż1 = z 2 (51) ż2 = L 2 f0 (u c ) + L g0 L 1 f0 (u c )u d ( 52 
)

AC side

S b = 10 kVA V b = 415 √ 2 V DC side S dc,b = 10 kVA V dc,b = 730 V
By introducing a synthetic input θ d , u d is designed as

u d = 1 L g0 L 1 f0 (u c ) (-L 2 f0 (u c ) + θ d ) (53) 
where θ d is chosen using linear techniques as:

θ d = -c 1 (u c -u * c ) + c 2 z 2 -c 3 φ u ( 54 
)
where c 1 , c 2 and c 3 are positive. Finally, i * ld is developed as:

di * ld dt = -L 2 f0 (u c )-c 1 (u c -u * c )-c 2 z 2 +c 3 φ u L g0 L 1 f0 (u c ) (55) 
Remark 1: From the above description, a reference trajectory i * ld is deduced from the simplified model by adding the additional integrator. The dynamics of i * ld can be controlled by regulating the control gains c 1 , c 2 and c 3 . Thus, when implementing v d in (31), we usually remove the feedforward term di * ld dt which can be regulated to have much slower dynamics compared with i ld . This action makes the controller much easier to be implemented and represents a small additive disturbance in a stable system.

Remark 2: In the case of i c = 0, we can also apply the control strategy (30) under condition that u c in (30) must be replaced by u * c to eliminate the static error.

IV. SIMULATION RESULTS

In order to validate the developed control structure, simulations are performed using MATLAB/Simulink. The parameters of the VSC terminal are listed in Table I. The base quantities used in the per-unit system are in Table II.

As previously described, the control system consists of two parts, i.e. the static feedback linearization control law and the dynamic one based on the simplified model. The direction of i c is the key to determine which one is applied to the VSC terminal. In order to evaluate the performances of the control structure, several simulation scenarios are considered in this paper and all of them just use the exact feedback linearization, which means that the integral part was simplified in the control system.

A. Performance evaluation of the static feedback linearization control law

In this scenario, the converter operates in inversion mode. At the start of the simulation, the system works in a state with u c = 1.0 p.u., i c = -0.219 p.u., i lq = 0.01 p.u. and i ld = -0.219 p.u.. Before t = 6 s, i c is subjected to a step change every one second, as shown in Fig. 2(a). New reference value of u * c is given t = 8 s as illustrated in Figs. 2(d).

(a) Sequence of events applied to ic.

(b) i ld response.

(c) i lq and its reference. (d) uc and its reference. Since the initial value of i lq is not equal to its reference value, i.e. i * lq = 0 p.u., i lq has a fast response and converges to the origin in seconds with the proposed control law as depicted in Fig. 2(c).

As shown in Fig. 2 From the simulation results of this scenario, it is clarified that the static feedback linearization control law has the ability to regulate the DC voltage and the q-axis current when the converter operates in inversion mode.

B. Performance evaluation of the feedback linearization control law based on the simplified model

In this scenario, keeping i c non-negative, we evaluate the performance of the designed feedback linearization control law based on the simplified model. In the following, we illustrate the case when the converter operates in rectification mode. The system initially operates at u c = 1.0 p.u., i c = 0.219 p.u., i lq = 0.01 p.u. Then, every one second we give a new value to i c until t = 4 s as shown in Fig. 3(a). In the simulation results, we denote the solutions of the simplified model ( 41)-(42) as i ld,nom and u c,nom . As presented in Fig. 3(c), i ld reaches the corresponding steady state every time i c varies. We also find that the trajectories of i ld and i ld,nom almost coincide with each other as seen in Fig. 4 As shown in Fig. 3(d), although i lq starts from the point i lq = 0.01 p.u., it quickly converges to its reference value, i.e. i * lq = 0 p.u.. The above simulation results illustrate that we can use the simplified model ( 41)-(42) to generate the reference signal for i ld such that u c can be well regulated at its desired value. 

C. Performance evaluation of the combination of the static and the dynamic feedback linearization control law

In this scenario, we evaluate the system performance when the converter operates from one operation mode to the other mode. As depicted in Fig. 6(a), i c reverses from the negative to the positive, which requires the converter to operate from inversion mode to rectification mode.

Before t = 6 s, since i c is negative, the static feedback control law is applied to the VSC terminal. As illustrated in Fig. 6(b) and Fig. 6(d), u c and i lq are well controlled at their respective desired values. During t ∈ (6, 8) s, i c = 0. As mentioned in Remark 2, the DC voltage can be kept at its desired level under the controller. When i c reverses, the feedback linearization control law based on the simplified model is used. We see that u c is still stabilized at its reference value after a short transient and the trajectories of u c and u c,nom are very close to each other. Figure 6(c) shows the response of i ld . In order to keep the power balance on both sides of the converter, i ld is brought into a new steady state every time i c or u * c changes. The simulation results clearly shows that the proposed control structure can make the VSC terminal fulfill bidirectional power transfer.

V. CONCLUSION

Focusing on the DC voltage control of a VSC terminal using feedback linearization, this paper shows that the converter is feedback linearizable in inversion mode but not in rectification mode when u c and i lq are defined as the outputs. In order to overcome this limitation, a simplified model is developed to generate a reference signal for i ld , since the system is feedback linearizable in rectification mode by defining i l,dq as the outputs.

The advantage of this control system is that we can use linear techniques to design the closed-loop system since the partial nonlinearity of the system can be canceled. As seen from the simulation results, when the converter operates in inversion mode, the performance of the system is good enough since there is almost no overshoot. Therefore, the proposed control system is especially suitable for such VSC-HVDC system which is used to transfer the power flow from the unstable energy sources, such as wind farms and solar plants, to the mainland AC network. However, the main drawback is that the control system is complicated which needs to switch between two control laws according to the direction of the power flow, although this case most likely happens only a few times a day.

Fig. 1 .

 1 Fig. 1. A simplified configuration of a VSC terminal.

Fig. 2 .

 2 Fig. 2. Simulation results with the static feedback control law.

  (d), u c always remains at its reference value, i.e. 1.0 p.u., before t = 8 s, irrespective of the variations in i c . When u * c increases by 10% at t = 8 s, u c starts to increase and then arrives at the new reference value, i.e. 1.1 p.u., after a short transient. Due to the power balance on both sides of the converter, i ld gives a corresponding response to the change of i c as shown in Fig. 2(b). During the interval t ∈ (8, 10) s, keeping i c unchanged but increasing u * c , i ld attains a new steady state around i ld = -0.1605 p.u..

Fig. 3 .

 3 Fig. 3. Simulation results with the feedback linearization control law based on the simplified model.

  (b).

Figure 5 (

 5 b) clearly shows that the discrepancy between i ld and i ld,nom is extremely small. The response of DC voltage are shown in Fig. 3(b). If u * c is kept unchanged, u c is well controlled at 1 p.u. in spite of the change of i c . At t = 6 s, u * c is increased by 10% as in Section IV-A. u c gives a fast response and converges to the new reference value, i.e. 1.1 p.u. As seen in Fig. 4(a), the response of u c is almost identical to that of u c,nom . The error between the two responses is very small (see Fig. 5(a)).

  (a) Zoom of uc around t = 4 s. (b) Zoom of i ld around t = 4 s.

Fig. 4 .

 4 Fig. 4. The responses of uc and i ld around t = 4 s.

Fig. 5 .

 5 Fig. 5. Error between the physical model and the simplified model.

Fig. 6 .

 6 Fig. 6. Simulation results with the proposed control system.

TABLE I THE

 I VSC TERMINAL PARAMETERS.

	R l	L l	V line	C	f
	10.1 mΩ 3.2 mH	415 V 680 µF	50 Hz
			TABLE II		
	BASE QUANTITIES APPLIED IN THE PER-UNIT SYSTEM.
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