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We study the behavior of small solutions depending on time of the generalized and regularized Benjamin-Ono equation in both continuous and periodic context. In particular, we prove that these solutions remain small for a time scale improving the natural time given by the local well-posedness. In the continuous case, the result becomes global in time.

Introduction

We study the behavior of small solutions depending on time of the generalized and regularized Benjamin-Ono equation (grBO) (1 + b(t)H∂ x )u t + u x + a(t)u ρ u x = 0, where H denotes the Hilbert transform, ρ ≥ 1 an integer and a(t), b(t) real valued fonctions. This model is deduced from the Benjamin-Ono equation using the BBM trick [START_REF] Benjamin | Internal waves of permanent form in fluids of great depth[END_REF][START_REF] Ono | Algebraic solitary waves in stratified fluids[END_REF][START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] 

u t + u x -bHu xx + au ρ u x = 0.
Here coefficients a and b represent respectively the ratio between amplitude and depth, and between depth and wavelength. This equation models the long waves at the interface of two fluids with the top layer of infinite depth and the bottom of finite depth. Dispersive inequalities such as ||u(t)|| L q ≤ Cε(1 + |t|) -γ(q) , with γ(q) > 0, can be proved for a small initial datum using a method from Strauss [START_REF] Strauss | Dispersion of low-energy waves for two conservative equations[END_REF]. This decay time is obtained by studying the linearized equation around zero and Van der Corput's lemma. Concerning the model with time-dependent coefficients, our result reads as follows.
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Theorem 0.1 Let ρ ≥ 3 and ∀ t ∈ R, a(t) > 0, b(t) > 0 be real valued bounded functions. Let 0 < γ < 1/3 -8/(9ρ), s = 1/(2γ) -1, 1/p + 1/q = 1 with 0 < 1/q < 1/2 -4/(3ρ(1 -3γ)),

1/m + 1/n = 1 with 8 3ρ(1 -3γ)(1 -2/q) < n < 2 (1 -3γ)(1 -2/q) .
Assume that a/ B ∈ L m ( B), where B(t) := Then there exists ε > 0 such that for u 0 ∈ H s ∩ W 3-2/p,p (R), of norm smaller than ε, there exists a unique global in time solution u ∈ C(R, H s ∩ W 3-2/p,p (R)) of the grBO equation.

Moreover ∀t ∈ R, ||u(t)|| L q ≤ C(1 + B(t)) -1+3γ 2 
(1-2 q ) . This result follows the ones of Bisognin and Menzala [START_REF] Bisognin | Asymptotic behaviour of nonlinear dispersive models with variable coefficient[END_REF][START_REF] Bisognin | Asymptotic behaviour in time of KdV type equations with time dependent coefficients[END_REF]. They proved such a result for the time-dependent Korteweg-de Vries and the Benjamin-Bona-Mahony equations in the continuous context.

As regards the periodic case, the decay of the solution thanks to the oscillatory integral is no longer available. Based on a method of normal form [START_REF] Arnold | Geometric Methods in the Theory of Ordinary Differential Equations[END_REF][START_REF] Tzvetkov | Long time bounds for the periodic KP-II equation[END_REF], one still manages to show that, starting from a small initial datum, the solution remains small (but not necessarily decreasing to zero) for a finite time interval. The method of normal form consists in finding a bijective map which combines the solution u of the Benjamin-Ono equation with v solution of nonlinear partial differential equation with high-order nonlinearity. The well-posedness of v then extends the one of u.

In this paper, we prove the following result.

Theorem 0.2 Let ρ = 1 and ∀t ∈ R, a(t) > 0, b(t) > 0 be real valued bounded functions. Then there exists ε > 0 such that for u 0 ∈ H s (T), u 0 zero mean valued, with ||u 0 || s ≤ ε and the timederivative ||a || ∞ ≤ ε||a/b|| ∞ , there exists a unique solution u ∈ C([-T, T ], H s (T)) of the grBO equation.

Here

T := 1 C(||a/b|| ∞ ||u 0 || s ) 2 . Moreover ∀ t ∈ [-T, T ], ||u(t)|| s ≤ Cε.
We notice that the time given by this result is the square of the one given by the standard result of local well-posedness. Such a result can be found for the time-dependent Korteweg-de Vries and the Benjamin-Bona-Mahony equations with periodic conditions. We use the following notations: for Ω = R or T, and 1 ≤ p < ∞, we denote L p (Ω) the space of p-power integrable functions equipped with the norm

||u|| L p := Ω |u(x)| p dµ(x) 1/p
, where either the measure dµ(x) is the Lebesgue one on R such that

u(x) = 1 2π R e ikx û(k) dk, û(k) = R e -ikx u(x) dx,
or dµ(x) is chosen proportional to the Lebesgue one on T and normalized such that

u(x) = k∈Z * e ikx û(k), û(k) = T e -ikx u(x)dµ(x).
We denote L ∞ (Ω) the functions space equipped with the norm

||u|| ∞ = sup ess(u) := inf {c ; |u(x)| ≤ c almost everywhere in Ω} ,
and for 1 ≤ p ≤ ∞, W s,p (R) is the Sobolev space, and H s (R) := W s,2 (R). We also denote H s 0 (T) the space of zero x-mean value functions equipped with the norm

||u|| s = k∈Z * |k| 2s |û(k)| 2 1/2 ,
When there is no ambiguity, for any positive A and B, the notation A B means that there exists a constant C > 0 such that A ≤ C B.

The paper is organised the paper as follows. Section 1 is devoted to the continuous context, we establish the dispersion properties of the solution. The periodic context is studied in Section 2 using a method of normal form.

The continuous context

We consider the following initial value problem

(1 + b(t)H∂ x )u t + u x + a(t)u ρ u x = 0, u(x, 0) = u 0 (x)

Local well-posedness

Theorem 1.1 Let ∀t ∈ R, a(t) > 0, b(t) > 0 be real valued bounded functions and s > 1/2. Let u 0 ∈ H s (R). There exists a constant C > 0, depending only on s, such that for

T = 1 C||a/b|| ∞ ||u 0 || ρ s , there exists a unique solution u ∈ C([-T, T ]; H s (R)) of the Cauchy problem.
Moreover, for all M > 0 with ||u 0 || s ≤ M and ||v 0 || s ≤ M , there exists C 1 > 0 such that solutions u and v, with u 0 and v 0 as initial data respectively, satisfy for t ∈

[-T, T ], with T = 1/(CM ρ ||a/b|| ∞ ), ||u(t) -v(t)|| s ≤ C 1 ||u 0 -v 0 || s .
Proof. The proof is done for positive time.

Let T > 0. According to Duhamel's formula, u is the solution of the Cauchy problem if and only if u is the solution of the following equation, for t ∈ [0, T ],

u(t) = Φu(t) := S t u 0 - 1 ρ + 1 t 0 S t-τ a(τ )(1 + b(τ )H∂ x ) -1 ∂ x u ρ+1 (τ ) dτ S t v := 1 2π +∞ -∞ e ikx-iB(k,t) v(k) dk, B(k, t) := k t 0 dτ 1 + b(τ )|k| .
The Sobolev embedding and lemma X.4 from [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF] provide for s > 1/2

||Φu(t)|| s ≤ ||u 0 || s + 1 ρ + 1 t 0 a(τ )(1 + b(τ )H∂ x ) -1 ∂ x u ρ+1 (τ ) s (τ ) dτ ≤ ||u 0 || s + C s sup t∈R a(t) b(t) T sup t∈[0,T ] ||u(t)|| s ρ+1 , because ||(1 + b(τ )H∂ x ) -1 ∂ x u|| s ≤ +∞ -∞ (1 + k 2 ) s ik 1 + b(τ )|k| 2 |û(k)| 2 dk 1/2 ≤ 1 b(τ ) ||u|| s .
Then for T = (C||a/b|| ∞ ||u 0 || ρ s ) -1 , the closed ball

B T := u ∈ C([0, T ]; H s 0 (T)) ; sup t∈[0,T ] ||u(t)|| s ≤ 2||u 0 || s verifies Φ(B T ) ⊂ B T if C ≥ 2 ρ+1 C s .
Let u and v in B T . Duhamel's formula gives, for t ∈ [0, T ], with 

u ρ+1 -v ρ+1 = (u -v) ρ i=0 u ρ-i v i , ||Φu(t) -Φv(t)|| s ≤ 1 ρ + 1 t 0 a(τ )(1 + b(τ )H∂ x ) -1 ∂ x (u ρ+1 -v ρ+1 ) s (τ ) dτ, ≤ 2 ρ ρ ρ + 1 C s ||u 0 || ρ s sup t∈R a(t) b(t) T sup t∈[-T,T ] ||u -v|| s (t) ≤ 2 ρ C s C sup t∈[0,T ] ||u -v|| s (t). For C > 2 ρ C s ,
||u(t) -v(t)|| s ≤ ||u 0 -v 0 || s + 1 ρ + 1 t 0 a(τ )(1 + b(τ )H∂ x ) -1 ∂ x (u ρ+1 -v ρ+1 ) s (τ ) dτ ≤ ||u 0 -v 0 || s + 2 ρ C s CM ρ i=0 ||u 0 || ρ-i s ||v 0 || i s sup t∈[0,T ] ||u -v|| s (t). Since C 0 > 2 ρ C s , we find ||u(t) -v(t)|| s ≤ ||u 0 -v 0 || s + 1 2 sup t∈[0,T ] ||u -v|| s (t), thus sup t∈[0,T ] ||u -v|| s ≤ 2||u 0 -v 0 || s .

Estimates for the linear equation

We consider the linear initial-value problem, for (x, t) ∈ R × R,

(1 + b(t)H∂ x )u t + u x = 0 u(x, 0) = u 0 (x).
Let u 0 ∈ S(R). The Fourier transform in space provides the solution u of the ordinary differential equation, for all x ∈ R and t ∈ R * ,

u(x, t) = 1 2π R e ikx-iB(k,t) û0 (k) dk, with B(k, t) := t 0 kdτ 1 + b(τ )|k| . (1.1)
Let us recall Van der Corput's lemma [START_REF] Stein | Harmonic Analysis : real-variable methods, orthogonality, and oscillatory integrals[END_REF].

Lemma 1.2 Let n ≥ 2.
There exists C > 0 such that for all a ≤ b, λ > 0, and

h ∈ C ∞ ([a, b]) real valued satisfying for all k ∈ [a, b], |h (n) (k)| ≥ λ, we have b a e -ih(k) dk ≤ C λ 1/n . (1.2)
The following dispersive inequality is obtained.

Proposition 1.3 Let 0 < γ < 1/3 and s = 1/(2γ) -1. There exists a constant C s > 0, depending only on s, such that ∀u 0 ∈ L 1 (R) ∩ H s (R), ∀t ∈ R, we have +∞ -∞ e ikx-iB(k,t) û0 (k) dk ≤ C s ( u 0 L 1 + u 0 H s ) 1 + B(t) -1/2+3γ/2 , (1.3) 
B(t) := |t| 0 b(τ )dτ (1 + b(τ )) 3 . Proof. Let r ≥ 1, 0 ≤ k ≤ r and B(t) ≥ 1, we define h(k) := t 0 kdτ 1 + b(τ )k -kx , h (k) = t 0 dτ (1 + b(τ )k) 2 -x , h (k) = t 0 -2b(τ )dτ (1 + b(τ )k) 3 .
We deduce

|h (k)| ≥ 2 t 0 b(τ )dτ (1 + b(τ )r) 3 ≥ Cr -3 t 0 b(τ )dτ (1 + b(τ )) 3 .
Van der Corput's lemma is then applied to find

r 0 e ikx-iB(k,t) dk = r 0 e ikx-i t 0 kdτ 1+b(τ )k dk ≤ C r -3 t 0 b(τ )dτ (1 + b(τ )) 3 -1/2 = Cr 3/2 B(t) -1/2 .
The Fubini theorem provides

r 0 e ikx-iB(k,t) û0 (k) dk ≤ C u 0 L 1 r 3/2 B(t) -1/2 .
On the other hand, the Cauchy-Schwarz inequality gives, for

s > 1/2, +∞ r e ikx-iB(k,t) û0 (k) dk ≤ +∞ r |û 0 (k)| dk = +∞ r (1 + k) s (1 + k) s |û 0 (k)| dk, ≤ +∞ r (1 + k) 2s |û 0 (k)| 2 dk 1/2 +∞ r dk (1 + k) 2s 1/2 ≤ C s u 0 H s r -(2s-1)/2 It follows, choosing r = B(t) γ and s = 1/(2γ) -1 > 1, that +∞ -∞ e ikx-iB(k,t) û0 (k) dk ≤ C s ( u 0 L 1 + u 0 H s ) B(t) -1/2+3γ/2 . Since B(t) ≥ 1, we have B(t) ≥ (1 + B(t))/2, and the result is found. If B(t) ≤ 1, the Cauchy-Schwarz inequality provides +∞ 0 e ikx-iB(k,t) û0 (k) dk ≤ +∞ 0 |û 0 (k)| dk = +∞ 0 (1 + k 2 ) s/2 (1 + k 2 ) s/2 |û 0 (k)| dk ≤ C s u 0 H s . We conclude using B(t) ≤ 1 =⇒ 1 ≥ (1 + B(t))/2.
The contribution for k ≤ 0 is dealt with similar.

Corollary 1.4 Let 0 < γ < 1/3 and s = 1/(2γ) -1. There exists a constant C s > 0 such that for u 0 ∈ L p (R) ∩ H s (R), with 1 ≤ p ≤ 2, for all time t ∈ R, we have +∞ -∞ e ikx-iB(k,t) û0 (k) dk L q ≤ C s ( u 0 L p + u 0 H s )(1 + B(t)) (-1/2+3γ/2)(1-2/q) , (1.4) 
where 1 p + 1 q = 1. Proof. The proof is done via the Riesz-Thorin interpolation theorem.

Existence and Uniqueness of global solution

We consider the following nonlinear initial value problem

(1 + b(t)Hu x )u t + u x + a(t)u ρ u x = 0 (1.5) u(x, 0) = u 0 (x). (1.6)
We now prove the theorem 0.1. The proof is carried out for positive time. Let us denote θ :=

(1/2 -3γ/2) (1 -2/q) > 0.
Thanks to Duhamel's formula, u is the solution of (1.5)-(1.6) if and only if u is the solution of the following equation, for t ≥ 0

u(t) = Φu(t) := S t u 0 - 1 ρ + 1 t 0 S t-τ a(τ )(1 + b(τ )H∂ x ) -1 ∂ x u ρ+1 (τ ) dτ (1.7) S t u := 1 2π +∞ -∞ e ikx-iB(k,t) û(k) dk.
On the other hand, the Mikhlin-Hörmander theorem [START_REF] Stein | Harmonic Analysis : real-variable methods, orthogonality, and oscillatory integrals[END_REF] provides, for 1 < p < 2, a constant C p > 0 depending only on p such that

(1 + b(t)H∂ x ) -1 ∂ x u L p ≤ C p ||u|| L p . (1.8)
Let T > 0, we define the norm N T by

N T (u) := sup 0≤τ ≤T ||u(τ )|| L q (1 + B(τ )) θ + ||u(τ )|| H s + ||u(τ )|| W 3-2/p,p . (1.9) 
We prove a few technical lemmata first.

||Φu -Φv|| L q (t) ≤ C s,p a/ B L r ( B) ρ i=0 N T (u) ρ-i N T (v) i (1 + B(t)) -θ N T (u -v), (1.10) 
Proof. Let u and v two elements of H s (R) ∩ W 3-2/p,p (R), the Duhamel's formula and Corollary 1.4 give

||Φu -Φv|| L q ≤ 1 ρ + 1 t 0 a(τ ) S t-τ (1 + b(t)H∂ x ) -1 ∂ x (u ρ+1 -v ρ+1 ) L q (τ ) dτ ≤ C s,p t 0 a(τ ) ||u ρ+1 -v ρ+1 || L p + ||u ρ+1 -v ρ+1 || H s (τ ) (1 + B(t -τ )) θ dτ. Since u ρ+1 -v ρ+1 = (u -v) ρ i=0 u ρ-i v i
, thanks to the fractional Leibniz rule [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF] and the Minkowski inequality we obtain

||u ρ+1 -v ρ+1 || H s (τ ) ||u -v|| H s ρ i=0 ||u ρ-i v i || ∞ (τ ) + ||u -v|| ∞ ρ i=0 ||u ρ-i v i || H s (τ ) = I (τ ) + II (τ ).
Lemma 1.6 [7, Chapter 1 -Theorem 9.3] Let 1 ≤ p, q ≤ +∞ and 0 ≤ j < s, there exists a constant C > 0, depending on p, q, j and s, such that for all u ∈ S(R), we have

|| (-∂ x ) j/2 u|| L r ≤ C|| (-∂ x ) s/2 u|| a L p ||u|| 1-a L q ,
where 1/r = j + a (1/p -s) + (1 -a)/q and j/s ≤ a ≤ 1, with the following exception: if s -j -1/p is a non-negative integer, then the above inequality holds for j/s ≤ a < 1.

The Sobolev inequality with 1/p + 1/q = 1, r = ∞, j = 0, a = 1/4 and s = 3 -2/p provides

||u|| ∞ ≤ C p ||u|| 1/4 W 3-2 p ,p ||u|| 3/4 L q . (1.11)
We deduce

I (τ ) ||u -v|| H s ρ i=0 ||u|| 3/4 L q ||u|| 1/4 W 3-2 p ,p ρ-i ||v|| 3/4 L q ||v|| 1/4 W 3-2 p ,p i (τ ) ||u -v|| H s ρ i=0 ||u|| L q (1 + B(τ )) θ (1 + B(τ )) θ 3(ρ-i) 4 ||u|| ρ-i 4 W 3-2 p ,p ||v|| L q (1 + B(τ )) θ (1 + B(τ )) θ 3i 4 ||v|| i 4 W 3-2 p ,p ρ i=0 N T (u) ρ-i N T (v) i (1 + B(τ )) -3θρ 4 N T (u -v).
For II (τ ), the Leibniz rule is applied again

II (τ ) ||u -v|| ∞ ||v|| ρ-1 ∞ ||v|| H s + ρ-1 i=0 ||u|| ρ-i-1 ∞ ||u|| H s ||v|| i ∞ + ||u|| ρ-1 ∞ ||u|| H s + ρ i=1 ||u|| ρ-i ∞ ||v|| i-1 ∞ ||v|| H s (τ ),
and the inequality (1.11) gives

II (τ ) ||u -v|| 3/4 L q ||u -v|| 1/4 W 3-2 p ,p × ||v|| 3/4 L q ||v|| 1/4 W 3-2 p ,p ρ-1 ||v|| H s + ||u|| 3/4 L q ||u|| 1/4 W 3-2 p ,p ρ-1 ||u|| H s + ρ-1 i=0 ||u|| 3/4 L q ||u|| 1/4 W 3-2 p ,p ρ-i-1 ||u|| H s ||v|| 3/4 L q ||v|| 1/4 W 3-2 p ,p i + ρ i=1 ||u|| 3/4 L q ||u|| 1/4 W 3-2 p ,p ρ-i ||v|| 3/4 L q ||v|| 1/4 W 3-2 p ,p i-1 ||v|| H s (τ ) ρ i=0 N T (u) ρ-i N T (v) i (1 + B(τ )) -3θρ 4 N T (u -v).
Similar computations yield

||u ρ+1 -v ρ+1 || L p (τ ) ≤ ||u -v|| L p ρ i=0 ||u|| ρ-i ∞ ||v|| i ∞ (τ ) ρ i=0 N T (u) ρ-i N T (v) i (1 + B(τ )) -3θρ 4 N T (u -v).
To sum up, we find

||Φu -Φv|| L q (t) ≤ C s,p ρ i=0 N T (u) ρ-i N T (v) i N T (u -v) t 0 a(τ )dτ (1 + B(τ )) 3θρ 4 (1 + B(t -τ )) θ .
However, the Hölder inequality implies for 1/m + 1/n = 1

t 0 a(τ )dτ (1 + B(τ )) 3θρ 4 (1 + B(t -τ )) θ ≤ t 0 a(τ ) B(τ ) m B(τ )dτ 1/m B(t) 0 dτ (1 + τ ) 3nθρ 4 (1 + B(t) -τ ) θn 1/n
. Lemma 1.7 [START_REF] Racke | Lectures on nonlinear evolution equations, Initial value problems, Aspects of Mathematics[END_REF] Let a > 0, b > 1 and F (t) be continuous real-valued function with, for all t ≥ 0, F (t) ≥ 0. Then there exists 0 < c < 1, with c = a if 0 < a < 1, such that ∀ t ≥ 0

F (t) 0 dτ (1 + F (t) -τ ) a (1 + τ ) b 1 (1 + F (t)) c .
The lemma 1.7 is applied with b = 3nθρ/4 > 1 and 0 < a = c = θn < 1 to give

||Φu -Φv|| L q (t) ≤ C s,p a/ B L m ( B) ρ i=0 N T (u) ρ-i N T (v) i (1 + B(t)) -θ N T (u -v).
Here b > 1 and 0

< a < 1 translated in 8 3ρ(1 -3γ)(1 -2/q) < n < 2 (1 -3γ)(1 -2/q) , 0 < 1/q < 1/2 -4/(3ρ(1 -3γ)), 0 < γ < 1/3 -8/(9ρ), ρ ≥ 3.
Lemma 1.8 There exists a constant C s,p > 0 such that for all u and v in H s (R) ∩ W 3-2/p,p (R), we have

||Φu -Φv|| H s (t) + ||Φu -Φv|| W 3-2/p,p (t) ≤ C s,p a/ B L m ( B) ρ i=0 N T (u) ρ-i N T (v) i N T (u -v).
(1.12)

Proof. We have

||Φu -Φv|| W 3-2/p,p (t) t 0 a(τ ) S t-τ (1 + b(t)H∂ x ) -1 ∂ x (u ρ+1 -v ρ+1 ) W 3-2/p,p (τ ) dτ t 0 a(τ ) u ρ+1 -v ρ+1 W 3-2/p,p (τ ) dτ
As previously, the fractional Leibniz rule gives

||u ρ+1 -v ρ+1 || W 4-2 p ,p (τ ) ρ i=0 N T (u) ρ-i N T (v) i N T (u -v)(1 + B(τ )) -3θρ 4 
thus, thanks to the Hölder inequality implies

||Φu -Φv|| W 3-2/p,p (t) ρ i=0 N T (u) ρ-i N T (v) i N T (u -v) t 0 a(τ )(1 + B(τ )) -3θρ 4 dτ ρ i=0 N T (u) ρ-i N T (v) i N T (u -v) × t 0 a(τ ) B(τ ) m B(τ )dτ 1/m B(t) 0 dτ (1 + τ ) 3nθρ 4 1/n ≤ C s,p a/ B L m ( B) ρ i=0 N T (u) ρ-i N T (v) i N T (u -v).
Same computations for ||Φu -Φv|| H s allow to conclude.

Lemma 1.9 There exists a constant C s,p > 0 such that for all u and v in H s (R) ∩ W 3-2/p,p (R), we have

N T (Φu -Φv) ≤ C s,p a/ B L m ( B) ρ i=0 N T (u) ρ-i N T (v) i N T (u -v), (1.13) 
and

N T (Φu) ≤ C s,p a/ B L m ( B) ||u 0 || H s + ||u 0 || W 3-2/p,p + N T (u) ρ+1 . (1.14)
Proof. Inequalities (1.10) and (1.12) give (1.13) . Taking v = 0 provides the second inequality.

Proof of theorem 0.1. Let M > 0, we consider the closed ball

B T,M := u ∈ C([-T, T ]; H s (R) ∩ W 3-2/p,p (R)); N T (u) ≤ M .
We aim at showing that there exists a unique solution u of the equation (1.7) in this ball by using Banach fixed point theorem. First, there exists ε > 0 sufficiently small such that if ||u 0 || H s + ||u 0 || W 3-2/p,p ≤ ε, even if we take C s,p M instead of M , it is enough to take M > 0 satisfying ε + M ρ+1 ≤ M so that the inequality (1.14) implies that the image of the closed ball B T,M by the map Φ is included in itself. Here, the crucial point is that ε is independent of T . Secondly, we prove that the map Φ is a contraction on this ball for M sufficiently small. Let u and v two elements of the closed ball B T,M . The inequality (1.13) gives

N T (Φu -Φv) ≤ C s,p a/ B L m ( B) M ρ N T (u -v),
and it is enough to take M > 0 sufficiently small so that the quantity C s,p M ρ < 1. Then, Banach fixed point theorem is applied and there exists a unique solution of the equation (1.7) in the closed ball B T,M . It remains to prove that this unique solution can be prolonged in time with all [0, +∞[. By uniqueness of the solution, the inequality (1.14) is written

N T (u) ≤ C s,p a/ B L m ( B) ||u 0 || H s + ||u 0 || W 3-2/p,p + N T (u) ρ+1 . (1.15)
Since there exists ε > 0 sufficiently small such that

||u 0 || H s + ||u 0 || W 3-2/p,p ≤ ε, we can find M > 0 such that N 0 (u) < M C s,p a/ B L m ( B) ε + M ρ+1 ≤ M.
Then for all T > 0, we have N T (u) < M . Indeed, if not, by continuity, there exists a time T > 0 such that

N T (u) = M > C s,p a/ B L m ( B) ε + M ρ+1 > C s,p a/ B L m ( B) ε + N T (u) ρ+1 ,
which contradicts the inequality (1.15). Finally, there exists a constant M > 0 such that for all T > 0, N T (u) < M . In particular, we have for all time t ≥ 0

||u(t)|| L q ≤ C s,p a/ B L m ( B) ||u 0 || H s + ||u 0 || W 3-2/p,p + N T (u) ρ+1 (1 + B(t)) -θ ≤ C s,p a/ B L m ( B) ε + M ρ+1 (1 + B(t)) -θ .
(1.16) Remark 1.10 Similar result including the Korteweg-de Vries and the Benjamin-Bona-Mahony equations with time-dependent coefficients can be found in [START_REF] Bisognin | Asymptotic behaviour of nonlinear dispersive models with variable coefficient[END_REF][START_REF] Bisognin | Asymptotic behaviour in time of KdV type equations with time dependent coefficients[END_REF].

Remark 1.11 Concerning the Benjamin-Ono equation

u t + u x -b(t)Hu xx + a(t)u ρ u x = 0,
we obtain in a similar way the global well-posedness with the following decay rate

||u(t)|| L ∞ ≤ C||u(t)|| L 1 (1 + B(t)) -1/2 , with B(t) := |t| 0 b(τ )dτ.

The periodic context

In this section, we only consider the case ρ = 1. The local in time well-posedness can be obtained in the same manner as for the continuous case.

We define, for k ∈ Z, σ(k) := ik/(1 + b(t)|k|). The Fourier symbol σ satisfies for all k and k 1 in

Z * = Z\{0} |σ(k 1 ) + σ(k -k 1 ) -σ(k)| ≥ b(t) 2 |kk 1 (k -k 1 )| (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) .
Proof. Indeed, six cases have to be studied according to the sign of k, k 1 and k -k

1 . i. If k > 0, k 1 > 0 and k -k 1 > 0, we have |σ(k 1 ) + σ(k -k 1 ) -σ(k)| = |b(t)(2 + b(t)k)k 1 (k -k 1 )| (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) . ii. If k > 0, k 1 > 0 and k -k 1 < 0, |σ(k 1 ) + σ(k -k 1 ) -σ(k)| = |b(t)k(2 + b(t)k 1 )(k -k 1 )| (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) .
iii. If k > 0 and k 1 < 0,

|σ(k 1 ) + σ(k -k 1 ) -σ(k)| = |b(t)kk 1 (2 + b(t)(k -k 1 ))| (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) . iv. If k < 0 and k 1 > 0, |σ(k 1 ) + σ(k -k 1 ) -σ(k)| = | -b(t)kk 1 (2 -b(t)(k -k 1 ))| (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) = b(t)|k|k 1 (2 + b(t)|k -k 1 |) (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) . v. If k < 0, k 1 < 0 and k -k 1 > 0, |σ(k 1 ) + σ(k -k 1 ) -σ(k)| = | -b(t)k(2 -b(t)k 1 )(k -k 1 )| (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) = b(t)|k|(2 + b(t)|k 1 |)(k -k 1 ) (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) . vi. If k < 0, k 1 < 0 and k -k 1 < 0, |σ(k 1 ) + σ(k -k 1 ) -σ(k)| = |(2 -b(t)k)(-b(t)k 1 )(k -k 1 )| (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) = (2 + b(t)|k|)b(t)|k 1 |(k -k 1 ) (1 + b(t)|k|)(1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) .
For δ > 0, we set

U δ := {u ∈ H s 0 (T); ||u|| s < δ}. Let D := (k, k 1 ) ∈ Z 2 ; k = 0, k 1 = 0, k = k 1 , we define the operator Λ by Λu := u + K(u, u) for u ∈ H s 0 (T), with K(u, v) := - 1 2 D e ikx ik 1 + b(t)|k| û(k 1 ) v(k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) .
Introducing Λ is used to define v = Λu so that v is solution of the equation

v t + L(v) = F (u),
with F trilinear whereas u is solution of a quadratic Boussinesq system. Thus the well-posedness of v and the definition of K are used to estimate u with respect to v and to extend its well-posedness.

Lemma 2.1 Let s > 1/2. There exists a constant C > 0 such that for all u and v in H s 0 (T)

||K(u, v)|| s ≤ C b(t) 2 ||u|| s ||v|| s .
Proof. By duality, to prove the lemma is equivalent to proving for all w ∈ C ∞ (T)

D K(u, v)(k) ŵ(k) ≤ C b(t) 2 (||u|| s ||v|| s ) ||w|| -s .
(2.1) Indeed, we have

||K(u, v)|| 2 s = k∈Z * |k| 2s | K(u, v)(k)| 2 = k∈Z * K(u, v)(k) |k| 2s K(u, v)(k) .
We set ŵ(k) = |k| 2s K(u, v)(k) and we write

||K(u, v)|| 2 s = k∈Z * K(u, v)(k) ŵ(k),
and according to the inequality (2.1)

||K(u, v)|| 2 s ≤ C b(t) 2 (||u|| s ||v|| s ) ||w|| -s . However ||w|| -s = k∈Z * |k| -2s |k| 4s | K(u, v)(k)| 2 1/2 = k∈Z * |k| 2s | K(u, v)(k)| 2 1/2 = ||K(u, v)|| s . If we define û1 (k) = |k| s û(k) , v1 (k) = |k| s v(k) and ŵ1 (k) = |k| -s ŵ(k), it is enough to prove 1 2 D ik 1 + b(t)|k| |k| s û1 (k 1 )v 1 (k -k 1 ) ŵ1 (k) |k 1 | s |k -k 1 | s (σ(k 1 ) + σ(k -k 1 ) -σ(k)) ≤ C b(t) 2 (||u 1 || L 2 ||v 1 || L 2 ) ||w|| L 2 .
On one hand, we have for k and k

1 in D ik 1 + b(t)|k| 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) 1 b(t) 2 .
Indeed, since b(t) is a non-negative real valued bounded funtion, and k, k 1 ∈ Z * , it gets

ik 1 + b(t)|k| 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) ≤ (1 + b(t)|k 1 |)(1 + b(t)|k -k 1 |) b(t) 2 |k 1 (k -k 1 )| .
On the other hand, for s ≥ 0, the triangle inequality implies

|k| s |k 1 | s |k -k 1 | s 1 |k 1 | s + 1 |k -k 1 | s , and it remains to bound 1 b(t) 2 D |û 1 (k 1 )| |v 1 (k -k 1 )|| ŵ1 (k)| |k 1 | s + 1 b(t) 2 D |û 1 (k 1 )| |v 1 (k -k 1 )|| ŵ1 (k)| |k -k 1 | s =: 1 b(t) 2 (I + II).
The Cauchy-Schwarz inequality in k, then in k 1 , provides

I ≤        k∈Z *        k 1 ∈ Z * k 1 = k |û 1 (k 1 )| |v 1 (k -k 1 )| |k 1 | s        2        1/2 k∈Z * | ŵ1 (k)| 2 1/2 ≤        k 1 ∈ Z * k 1 = k 1 |k 1 | 2s        1/2        k∈Z * k 1 ∈ Z * k 1 = k |û 1 (k 1 )| 2 |v 1 (k -k 1 )| 2        1/2 k∈Z * | ŵ1 (k)| 2 1/2 .
Since s > 1/2, there exists C > 0 such that

I ≤ C (||u 1 || L 2 ||v 1 || L 2 ) ||w 1 || L 2 .
A similar inequality for II is found by symmetry.

Proposition 2.2 Let s > 1/2. Then there exist 0 < δ < min{b(t) 2 /a(t), t ∈ R}, δ > 0, and C > 0 such that for all v ∈ U δ , there exists a unique u ∈ U δ such that Λu = v. Moreover

||u|| s ≤ C||v|| s ,
and the map Λ -1 is of class C 1 .

Proof. For u ∈ H s 0 (T),The differential of this operator is given by, for all ϕ ∈ C ∞ (T) dΛ(u) , ϕ = ϕ + 2K(u, ϕ), the preceding lemma implies that dΛ is continuous from H s 0 (T) to itself. Since dΛ(0) is the identity, the inverse function theorem is applied to give the following lemma.

Proposition 2.3 Let s > 1/2. There exists a trilinear operator

K 1 : H s 0 (T) × H s 0 (T) × H s 0 (T) -→ H s 0 (T) such that, if u ∈ C([-T, T ]; H s 0 (T)) is solution of (1 + b(t)Hu x )u t + u x + a(t)u ρ u x = 0, then v defined by v(t) := u(t) + a(t)K(u(t), u(t)), f ort ∈ [-T, T ],
is solution of

v t + (1 + b(t)H∂ x ) -1 v x = a (t)K(u, u) + a(t) 2 K 1 (u, u, u).
Moreover, there exists a constant C > 0 such that for all (u 1 , u 2 , u 3 ) ∈ H s 0 (T) × H s 0 (T) × H s 0 (T)

||K 1 (u 1 , u 2 , u 3 )|| s ≤ C 1 b(t) 2 ||u 1 || s ||u 2 || s ||u 3 || s ,
Proof. We write

v t + (1 + b(t)H∂ x ) -1 v x = u t + a (t)K(u, u) + a(t)∂ t K(u, u) + (1 + b(t)H∂ x ) -1 u x + a(t)(1 + b(t)H∂ x ) -1 ∂ x K(u, u) = - a(t) 2 (1 + b(t)H∂ x ) -1 ∂ x u 2 + a (t)K(u, u) + a(t)∂ t K(u, u) + a(t)(1 + b(t)H∂ x ) -1 ∂ x K(u, u).
On one hand, we have by symmetry and for u solution of (1.5),

∂ t K(u, u) = K(u t , u) + K(u, u t ) = 2K(u t , u) = - D e ikx ik 1 + b(t)|k| ût (k 1 )û(k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) = - a(t) 2 D e ikx kk 1 (1 + b(t)|k|)(1 + b(t)|k 1 |) u 2 (k 1 )û(k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) + 1 2 D e ikx ik 1 + b(t)|k| (σ(k 1 ) + σ(k -k 1 ))û(k 1 )û(k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) .
On the other hand, we have

(1 + b(t)H∂ x ) -1 ∂ x K(u, u) = - 1 2 D e ikx ik 1 + b(t)|k| σ(k)û(k 1 )û(k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) (1 + b(t)H∂ x ) -1 ∂ x u 2 = D e ikx ik 1 + b(t)|k| û(k 1 )û(k -k 1 ).
Finally, we find

v t + (1 + b(t)H∂ x ) -1 v x = a (t)K(u, u) + a(t) 2 K 1 (u, u, u).
where K 1 is defined, for

D 1 := {(k, k 1 , k 2 ) ∈ Z 3 ; k = 0, k 1 = 0, k 2 = 0, k = k 1 , k 1 = k 2 } K 1 (u 1 , u 2 , u 3 ) := - 1 2 D1 e ikx kk 1 (1 + b(t)|k|)(1 + b(t)|k 1 |) û1 (k 2 )û 2 (k 1 -k 2 )û 3 (k -k 1 ) σ(k 1 ) + σ(k -k 1 ) -σ(k) .
However, we have for k, k 1 and k 2 in D 1

kk 1 (1 + b(t)|k|)(1 + b(t)|k 1 |) 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) 1 b(t) 2 .
In the same manner as lemma 2.1, it is enough to bound

I := 1 2b(t) 2 D1 |k| s |û 1 (k 2 )| |û 2 (k 1 -k 2 )| |û 3 (k -k 1 )| |û 4 (k)| |k 2 | s |k 1 -k 2 | s |k -k 1 | s .
The Cauchy-Schwarz inequality is applied first in k to give

I ≤ 1 b(t) 2        k∈Z *        (k 1 , k 2 ) ∈ (Z * ) 2 k 1 = k, k 2 = k 1 |k| s |û 1 (k 2 )| |û 2 (k 1 -k 2 )| |û 3 (k -k 1 )| |k 2 | s |k 1 -k 2 | s |k -k 1 | s               1/2 ||u 4 || L 2 ,
and then in (k 2 , k 1 ),

I ≤ 1 b(t) 2        k∈Z * (k 1 , k 2 ) ∈ (Z * ) 2 k 1 = k, k 2 = k 1 |û 1 (k 2 )| 2 |û 2 (k 1 -k 2 )| 2 |û 3 (k -k 1 )| 2 × (k 1 , k 2 ) ∈ (Z * ) 2 k 1 = k, k 2 = k 1 |k| 2s |k 2 | 2s |k 1 -k 2 | 2s |k -k 1 | 2s        1/2 ||u 4 || L 2 ,
The triangle inequality implies

|k| 2s |k 2 | 2s |k 1 -k 2 | 2s |k -k 1 | 2s ≤ C 1 |k 2 | 2s |k 1 -k 2 | 2s + 1 |k 2 | 2s |k -k 1 | 2s + 1 |k 1 -k 2 | 2s |k -k 1 | 2s , thus sup k∈Z * (k 1 , k 2 ) ∈ (Z * ) 2 k 1 = k, k 2 = k 1 |k| 2s |k 2 | 2s |k 1 -k 2 | 2s |k -k 1 | 2s < +∞.
Proof of the theorem 0.2. We suppose t > 0, the proof being similar for negative time. Let us denote X := L ∞ ([0, T ]; H s 0 (T)). Let δ and δ the positive constants involved in Lemma 2.2. According to the local well-posedness theorem, there exists

ε 0 > 0 such that if u 0 ∈ U ε , for ε ∈]0, ε 0 [, then for t ≤ C 1 (ε sup t∈R a(t)/b(t)) -1 =: T , u(t) + a(t)K(u, u)(t) ∈ U δ , u(t) ∈ U δ and u(t) = Λ -1 v(t). Duhamel's formula gives for t ∈ [0, T ] v(t) = S t (u 0 + a(t)K(u 0 , u 0 )) + t 0 S t-τ a (τ )K(u, u) + a(τ ) 2 K 1 (u, u, u) (τ ) dτ (2.2) S t v := k∈Z * e ikx-iB(k,t) v(k). (2.3) 
Thanks to Lemma 2.1, and for ε 0 > 0 sufficiently small, we have

||S t (u 0 + a(t)K(u 0 , u 0 ))|| s ≤ ||u 0 || s + ||K(u 0 , u 0 )|| s ≤ ||u 0 || s + C a(t) b(t) 2 ||u 0 || 2 s ≤ C 1 ε 1 + ε a(t) b(t) 2 ≤ 2 C 2 ε.
(2.4)

The preceding lemmas yield for t ∈ [0, T ]

t 0 S t-τ a(τ ) 2 K 1 (Λ -1 v, Λ -1 v, Λ -1 v) (τ ) dτ X ≤ C 3 sup t∈[0,T ] a(t) b(t) 2 T ||v|| 3 X (2.5) t 0 S t-τ a (τ )K(Λ -1 v, Λ -1 v) (τ ) dτ X ≤ C 3 sup t∈[0,T ] (a (t)) T ||v|| 2 X . (2.6) 
Even if we take ε 0 > 0 smaller, we assume 2C 1 ε 0 < δ. We set

C 0 = (18C 2 C 3 (1 + 3C 2 )) -1 and T 0 = C 0 (ε sup t∈R a(t)/b(t)) -2 . It follows then ||v|| L ∞ ([0,T0];H s 0 (T)) ≤ 3 C 2 ε. (2.7) 
Let us suppose that the inequality (2.7) fails. Since 

||v(0)|| s = ||u 0 + a(t)K(u 0 , u 0 )|| s ≤ C 2 ε 1 + ε a(t) b(t) 2 < 3 C 2 ε
||v|| X ≤ 2 C 2 ε + C 3 sup t∈[0,τ ] a(t) b(t) 2 τ ||v|| 3 X + C 3 sup t∈[0,τ ] (a (t)) τ ||v|| 2 X . Since sup t∈[0,τ ] (a (t)) ≤ sup t∈[0,τ ] (a(t)/b(t)) 2 ε, we find τ ≥ 2 C 0 ε sup t∈[0,τ ] a(t) b(t) -2 = 2T 0 .
This is in contradiction with the fact τ ∈ [0, T 0 ]. Indeed, here σ(k) = |k|k and for k, k 1 in D kk 1 σ(k 1 ) + σ(k -k 1 ) -σ(k) is not bounded from above.

Numerical simulations

We propose to present in this section some numerical illustrations showing the dispersive properties for some (not exhaustive) choices of functions a(t), b(t). The aim of this section is not to perform a complete numerical study, but rather to present some relevant simulations. We use a relaxation scheme proposed in [START_REF] Besse | A relaxation scheme for the nonlinear Schrödinger equation[END_REF]. This method allows us to replace the solution of a nonlinear problem and thus provides a time saving. We rewrite the grBO equation We consider a bounded domain [-L, L], L > 0 (large fixed value). We denote N x > 0 the number of Fourier modes, ∆t > 0 the time step, and for n ∈ N, ûn , resp. Φn+1/2 , is the approximation of û(n∆t), resp. Φ((n + 1/2)∆t).

Algorithm:

Set u 0 and Φ-1/2 = u ρ+1 0 .

For n = 0, 1, . . ., compute:

Φn+1/2 (ξ) + Φn-1/2 (ξ) 2 = u ρ+1 n (ξ)

(1 + b n |ξ|) ûn+1 (ξ) -ûn (ξ) ∆t + iξ ûn+1 (ξ) + ûn (ξ) 2 + iξa n Φn+1/2 (ξ) = 0

ξ = k π L , - N x 2 ≤ k ≤ N x 2 -1.
Simulations are performed with L = 3000, N x = 2 14 , ∆t = 0.02 and start from the initial datum:

u 0 (x) = 4d 1 + ( d d+1 ) 2 x 2 .
This initial datum provides, in the case ρ = 1, a(t) = b(t) = 1, a solitary wave solution of the regularized Benjamin-Ono equation, given by u(x, t) = u 0 (x -ct). We can notice, for ρ = 1, a(t) = b(t) = 1, the H 1/2 -norm is conserved, i.e. ∀t ∈ R, ||u(t)|| H 1/2 = ||u 0 || H 1/2 . Figure 1 shows the evolution with time of the solution, the H 1/2 and L ∞ -norms, and the error between the approximate solution and the solitary wave. On the left, the solution at time t = 0, 500, 2000. In the center, the H 1/2 and L ∞ -norms. On the right, the error between the approximate solution and the solitary wave.

|t| 0 b

 0 (τ )/(1 + b(τ )) 3 dτ , more precisely
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 1 b(t)H∂ x )u t + u x + a

2 Figure 1 :

 21 Figure1: Result for ρ = 1, a(t) = b(t) = 1. On the left, the solution at time t = 0, 500, 2000. In the center, the H 1/2 and L ∞ -norms. On the right, the error between the approximate solution and the solitary wave.

  the map Φ is a contraction on B T . The fixed point theorem implies that the existence and uniqueness of the solution u of Φu(t) = u(t) in B T . It remains to prove the continuity with the initial datum. Let u and v solutions of the Cauchy problem with initial data u 0 and v 0 respectively, such that ||u 0 || s ≤ M and ||v 0 || s ≤ M .

		Duhamel's
	formula gives for t ∈ [0, T ], with T = 1/(CM ρ sup t∈R	a(t) b(t) )

  , by continuity with time, there exists τ ∈ [0, T 0 ] such that for t ∈ [0, τ ]||v(t)|| s ≤ 3 C 2 ε and ||v(τ )|| s = 3 C 2 ε.Let C the positive constant involved in Lemma 2.2, we also impose 3 C 1 Cε 0 < δ . We know that u(t) ∈ U δ for |t| ≤ T , and with this choice of ε, it follows that u(t) ∈ U δ for t ∈ [0, τ ]. Indeed, if there exists τ 1 ∈ [0, τ ] such that for t ∈ [0, τ 1 ] ||u(t)|| s < δ and ||u(τ 1 )|| s = δ , then by continuity with time and according to Lemma 2.2, we have δ = ||u(τ 1 )|| s = lim

t→τ1 ||u(t)|| s ≤ sup 0≤t<τ1 ||u(t)|| s ≤ sup 0≤t<τ1 C||v(t)|| s ≤ 3C 2 Cε < δ ,

which is a contradiction. Finally, we deduce from Duhamel's formula and inequalities (2.4), (2.5) and

(2.6) 

  Then the inequality (2.7) is true and using Lemma 2.2, it get for t ∈ [0, T 0 ] ||u(t)|| s ≤ C||v(t)|| s ≤ 3 C 2 Cε. Remark 2.4 This method does not apply to the Benjamin-Ono equation u t + u x -b(t)Hu xx + a(t)u ρ u x = 0.

We notice that the approximate solution remains close to the soliton. The norms are well preserved and the error remains small. The numerical scheme appears to be relevant for the simulations. We represent in Figure 2 

On the left, the solution at time t = 0, 500, 2000. On the right, the L ∞ -norm.

We observe that the solution decreases and the decay rate is close to (1 + t) -1/2 . We also note that the Fourier modes of the wave split. The test with ρ = 3, a(t) = b(t) = 1/(1 + log(1 + t)) is illustrated in Figure 3. 

On the left, the solution at time t = 0, 500, 2000. On the right, the L ∞ -norm.

The solution decreases slowly and the Fourier modes also disperse more slowly. In contrast, when ρ = 3, a(t) = b(t) = log(1 + t), the solution given by Figure 4, decreases rapidly as well as its Fourier modes.