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Abstract. We study the behavior of small solutions depending on time of the generalized and regularized Benjamin-

Ono equation in both continuous and periodic context. In particular, we prove that these solutions remain small for

a time scale improving the natural time given by the local well-posedness. In the continuous case, the result becomes

global in time.
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Introduction

We study the behavior of small solutions depending on time of the generalized and regularized
Benjamin-Ono equation (grBO)

(1 + b(t)H∂x)ut + ux + a(t)uρux = 0,

where H denotes the Hilbert transform, ρ ≥ 1 an integer and a(t), b(t) real valued fonctions. This
model is deduced from the Benjamin-Ono equation using the BBM trick [2, 10, 3]

ut + ux − bHuxx + auρux = 0.

Here coefficients a and b represent respectively the ratio between amplitude and depth, and between
depth and wavelength. This equation models the long waves at the interface of two fluids with the
top layer of infinite depth and the bottom of finite depth.
Dispersive inequalities such as

||u(t)||Lq ≤ Cε(1 + |t|)−γ(q),

with γ(q) > 0, can be proved for a small initial datum using a method from Strauss [13]. This
decay time is obtained by studying the linearized equation around zero and Van der Corput’s
lemma. Concerning the model with time-dependent coefficients, our result reads as follows.
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Theorem 0.1 Let ρ ≥ 3 and ∀ t ∈ R, a(t) > 0, b(t) > 0 be real valued bounded functions. Let

0 < γ < 1/3− 8/(9ρ),

s = 1/(2γ)− 1,

1/p+ 1/q = 1 with 0 < 1/q < 1/2− 4/(3ρ(1− 3γ)),

1/m+ 1/n = 1 with
8

3ρ(1− 3γ)(1− 2/q)
< n <

2

(1− 3γ)(1− 2/q)
.

Assume that a/B̃ ∈ Lm(B̃), where B̃(t) :=
∫ |t|

0
b(τ)/(1 + b(τ))3dτ , more precisely(∫ +∞

0

(
a(τ)

B̃(τ)

)m
B̃(τ)dτ

)1/m

< +∞.

Then there exists ε > 0 such that for u0 ∈ Hs ∩W 3−2/p,p(R), of norm smaller than ε, there exists
a unique global in time solution u ∈ C(R, Hs ∩W 3−2/p,p(R)) of the grBO equation.
Moreover ∀t ∈ R,

||u(t)||Lq ≤ C(1 + B̃(t))
−1+3γ

2 (1− 2
q ).

This result follows the ones of Bisognin and Menzala [5, 6]. They proved such a result for the
time-dependent Korteweg-de Vries and the Benjamin-Bona-Mahony equations in the continuous
context.
As regards the periodic case, the decay of the solution thanks to the oscillatory integral is no longer
available. Based on a method of normal form [1, 14], one still manages to show that, starting from
a small initial datum, the solution remains small (but not necessarily decreasing to zero) for a finite
time interval. The method of normal form consists in finding a bijective map which combines the
solution u of the Benjamin-Ono equation with v solution of nonlinear partial differential equation
with high-order nonlinearity. The well-posedness of v then extends the one of u.
In this paper, we prove the following result.

Theorem 0.2 Let ρ = 1 and ∀t ∈ R, a(t) > 0, b(t) > 0 be real valued bounded functions. Then
there exists ε > 0 such that for u0 ∈ Hs(T), u0 zero mean valued, with ||u0||s ≤ ε and the time-
derivative ||a′||∞ ≤ ε||a/b||∞, there exists a unique solution u ∈ C([−T, T ], Hs(T)) of the grBO
equation. Here

T :=
1

C(||a/b||∞||u0||s)2
.

Moreover ∀ t ∈ [−T, T ],
||u(t)||s ≤ Cε.

We notice that the time given by this result is the square of the one given by the standard result
of local well-posedness. Such a result can be found for the time-dependent Korteweg-de Vries and
the Benjamin-Bona-Mahony equations with periodic conditions.

We use the following notations: for Ω = R or T, and 1 ≤ p <∞, we denote Lp(Ω) the space of
p-power integrable functions equipped with the norm

||u||Lp :=

(∫
Ω

|u(x)|p dµ(x)

)1/p

,

where either the measure dµ(x) is the Lebesgue one on R such that

u(x) =
1

2π

∫
R

eikxû(k) dk, û(k) =

∫
R

e−ikxu(x) dx,

2



or dµ(x) is chosen proportional to the Lebesgue one on T and normalized such that

u(x) =
∑
k∈Z∗

eikxû(k), û(k) =

∫
T

e−ikxu(x)dµ(x).

We denote L∞(Ω) the functions space equipped with the norm

||u||∞ = sup ess(u) := inf {c ; |u(x)| ≤ c almost everywhere in Ω} ,

and for 1 ≤ p ≤ ∞, W s,p(R) is the Sobolev space, and Hs(R) := W s,2(R). We also denote Hs
0(T)

the space of zero x-mean value functions equipped with the norm

||u||s =

(∑
k∈Z∗

|k|2s|û(k)|2
)1/2

,

When there is no ambiguity, for any positive A and B, the notation A . B means that there exists
a constant C > 0 such that A ≤ C B.

The paper is organised the paper as follows. Section 1 is devoted to the continuous context,
we establish the dispersion properties of the solution. The periodic context is studied in Section 2
using a method of normal form.

1 The continuous context

We consider the following initial value problem

(1 + b(t)H∂x)ut + ux + a(t)uρux = 0,

u(x, 0) = u0(x)

1.1 Local well-posedness

Theorem 1.1 Let ∀t ∈ R, a(t) > 0, b(t) > 0 be real valued bounded functions and s > 1/2. Let
u0 ∈ Hs(R). There exists a constant C > 0, depending only on s, such that for

T =
1

C||a/b||∞||u0||ρs
,

there exists a unique solution u ∈ C([−T, T ];Hs(R)) of the Cauchy problem.
Moreover, for all M > 0 with ||u0||s ≤ M and ||v0||s ≤ M , there exists C1 > 0 such that
solutions u and v, with u0 and v0 as initial data respectively, satisfy for t ∈ [−T, T ], with T =
1/(CMρ||a/b||∞),

||u(t)− v(t)||s ≤ C1||u0 − v0||s.

Proof. The proof is done for positive time.
Let T > 0. According to Duhamel’s formula, u is the solution of the Cauchy problem if and only
if u is the solution of the following equation, for t ∈ [0, T ],

u(t) = Φu(t) := Stu0 −
1

ρ+ 1

∫ t

0

St−τ
(
a(τ)(1 + b(τ)H∂x)−1∂xu

ρ+1
)

(τ) dτ

Stv :=
1

2π

∫ +∞

−∞
eikx−iB(k,t)v̂(k) dk, B(k, t) := k

∫ t

0

dτ

1 + b(τ)|k|
.
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The Sobolev embedding and lemma X.4 from [8] provide for s > 1/2

||Φu(t)||s ≤ ||u0||s +
1

ρ+ 1

∫ t

0

∣∣∣∣a(τ)(1 + b(τ)H∂x)−1∂xu
ρ+1(τ)

∣∣∣∣
s

(τ) dτ

≤ ||u0||s + Cs sup
t∈R

(
a(t)

b(t)

)
T

(
sup
t∈[0,T ]

||u(t)||s

)ρ+1

,

because

||(1 + b(τ)H∂x)−1∂xu||s ≤

(∫ +∞

−∞
(1 + k2)s

∣∣∣∣ ik

1 + b(τ)|k|

∣∣∣∣2 |û(k)|2dk

)1/2

≤ 1

b(τ)
||u||s.

Then for T = (C||a/b||∞||u0||ρs)−1, the closed ball

BT :=

{
u ∈ C([0, T ];Hs

0(T)) ; sup
t∈[0,T ]

||u(t)||s ≤ 2||u0||s

}

verifies Φ(BT ) ⊂ BT if C ≥ 2ρ+1Cs.

Let u and v in BT . Duhamel’s formula gives, for t ∈ [0, T ], with uρ+1−vρ+1 = (u−v)
∑ρ
i=0 u

ρ−ivi,

||Φu(t)− Φv(t)||s ≤ 1

ρ+ 1

∫ t

0

∣∣∣∣a(τ)(1 + b(τ)H∂x)−1∂x(uρ+1 − vρ+1)
∣∣∣∣
s

(τ) dτ,

≤ 2ρρ

ρ+ 1
Cs||u0||ρs sup

t∈R

(
a(t)

b(t)

)
T sup
t∈[−T,T ]

||u− v||s(t)

≤ 2ρCs
C

sup
t∈[0,T ]

||u− v||s(t).

For C > 2ρCs, the map Φ is a contraction on BT . The fixed point theorem implies that the
existence and uniqueness of the solution u of Φu(t) = u(t) in BT .
It remains to prove the continuity with the initial datum. Let u and v solutions of the Cauchy
problem with initial data u0 and v0 respectively, such that ||u0||s ≤M and ||v0||s ≤M . Duhamel’s

formula gives for t ∈ [0, T ], with T = 1/(CMρ supt∈R

(
a(t)
b(t)

)
)

||u(t)− v(t)||s ≤ ||u0 − v0||s +
1

ρ+ 1

∫ t

0

∣∣∣∣a(τ)(1 + b(τ)H∂x)−1∂x(uρ+1 − vρ+1)
∣∣∣∣
s

(τ) dτ

≤ ||u0 − v0||s +
2ρCs
CM

ρ∑
i=0

||u0||ρ−is ||v0||is sup
t∈[0,T ]

||u− v||s(t).

Since C0 > 2ρCs, we find

||u(t)− v(t)||s ≤ ||u0 − v0||s +
1

2
sup
t∈[0,T ]

||u− v||s(t),

thus
sup
t∈[0,T ]

||u− v||s ≤ 2||u0 − v0||s.

�
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1.2 Estimates for the linear equation

We consider the linear initial-value problem, for (x, t) ∈ R× R,

(1 + b(t)H∂x)ut + ux = 0

u(x, 0) = u0(x).

Let u0 ∈ S(R). The Fourier transform in space provides the solution u of the ordinary differential
equation, for all x ∈ R and t ∈ R∗,

u(x, t) =
1

2π

∫
R

eikx−iB(k,t)û0(k) dk, with B(k, t) :=

∫ t

0

kdτ

1 + b(τ)|k|
. (1.1)

Let us recall Van der Corput’s lemma [12].

Lemma 1.2 Let n ≥ 2. There exists C > 0 such that for all a ≤ b, λ > 0, and h ∈ C∞([a, b]) real
valued satisfying for all k ∈ [a, b], |h(n)(k)| ≥ λ, we have∣∣∣∣∣

∫ b

a

e−ih(k) dk

∣∣∣∣∣ ≤ C

λ1/n
. (1.2)

The following dispersive inequality is obtained.

Proposition 1.3 Let 0 < γ < 1/3 and s = 1/(2γ)− 1. There exists a constant Cs > 0, depending
only on s, such that ∀u0 ∈ L1(R) ∩Hs(R), ∀t ∈ R, we have∣∣∣∣∫ +∞

−∞
eikx−iB(k,t)û0(k) dk

∣∣∣∣ ≤ Cs(‖u0‖L1 + ‖u0‖Hs)
(

1 + B̃(t)
)−1/2+3γ/2

, (1.3)

B̃(t) :=

∫ |t|
0

b(τ)dτ

(1 + b(τ))3
.

Proof. Let r ≥ 1, 0 ≤ k ≤ r and B̃(t) ≥ 1, we define

h(k) :=

∫ t

0

kdτ

1 + b(τ)k
− kx , h′(k) =

∫ t

0

dτ

(1 + b(τ)k)2
− x , h′′(k) =

∫ t

0

−2b(τ)dτ

(1 + b(τ)k)3
.

We deduce

|h′′(k)| ≥ 2

∫ t

0

b(τ)dτ

(1 + b(τ)r)3
≥ Cr−3

∫ t

0

b(τ)dτ

(1 + b(τ))3
.

Van der Corput’s lemma is then applied to find∣∣∣∣∫ r

0

eikx−iB(k,t) dk

∣∣∣∣ =

∣∣∣∣∫ r

0

eikx−i
∫ t
0

kdτ
1+b(τ)k dk

∣∣∣∣ ≤ C (r−3

∫ t

0

b(τ)dτ

(1 + b(τ))3

)−1/2

= Cr3/2B̃(t)−1/2.

The Fubini theorem provides∣∣∣∣∫ r

0

eikx−iB(k,t)û0(k) dk

∣∣∣∣ ≤ C‖u0‖L1r3/2B̃(t)−1/2.

On the other hand, the Cauchy-Schwarz inequality gives, for s > 1/2,∣∣∣∣∫ +∞

r

eikx−iB(k,t)û0(k) dk

∣∣∣∣ ≤ ∫ +∞

r

|û0(k)| dk =

∫ +∞

r

(1 + k)s

(1 + k)s
|û0(k)| dk,

≤
(∫ +∞

r

(1 + k)2s|û0(k)|2 dk
)1/2(∫ +∞

r

dk

(1 + k)2s

)1/2

≤ Cs‖u0‖Hsr−(2s−1)/2
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It follows, choosing r = B̃(t)γ and s = 1/(2γ)− 1 > 1, that∣∣∣∣∫ +∞

−∞
eikx−iB(k,t)û0(k) dk

∣∣∣∣ ≤ Cs(‖u0‖L1 + ‖u0‖Hs)B̃(t)−1/2+3γ/2.

Since B̃(t) ≥ 1, we have B̃(t) ≥ (1 + B̃(t))/2, and the result is found.

If B̃(t) ≤ 1, the Cauchy-Schwarz inequality provides∣∣∣∣∫ +∞

0

eikx−iB(k,t)û0(k) dk

∣∣∣∣ ≤ ∫ +∞

0

|û0(k)| dk =

∫ +∞

0

(1 + k2)s/2

(1 + k2)s/2
|û0(k)| dk ≤ Cs‖u0‖Hs .

We conclude using B̃(t) ≤ 1 =⇒ 1 ≥ (1 + B̃(t))/2.
The contribution for k ≤ 0 is dealt with similar. �

Corollary 1.4 Let 0 < γ < 1/3 and s = 1/(2γ)− 1. There exists a constant Cs > 0 such that for
u0 ∈ Lp(R) ∩Hs(R), with 1 ≤ p ≤ 2, for all time t ∈ R, we have∣∣∣∣∣∣∣∣∫ +∞

−∞
eikx−iB(k,t)û0(k) dk

∣∣∣∣∣∣∣∣
Lq
≤ Cs(‖u0‖Lp + ‖u0‖Hs)(1 + B̃(t))(−1/2+3γ/2)(1−2/q), (1.4)

where 1
p + 1

q = 1.

Proof. The proof is done via the Riesz-Thorin interpolation theorem. �

1.3 Existence and Uniqueness of global solution

We consider the following nonlinear initial value problem

(1 + b(t)Hux)ut + ux + a(t)uρux = 0 (1.5)

u(x, 0) = u0(x). (1.6)

We now prove the theorem 0.1. The proof is carried out for positive time. Let us denote θ :=
(1/2− 3γ/2) (1− 2/q) > 0.
Thanks to Duhamel’s formula, u is the solution of (1.5)-(1.6) if and only if u is the solution of the
following equation, for t ≥ 0

u(t) = Φu(t) := Stu0 −
1

ρ+ 1

∫ t

0

St−τ
(
a(τ)(1 + b(τ)H∂x)−1∂xu

ρ+1
)

(τ) dτ (1.7)

Stu :=
1

2π

∫ +∞

−∞
eikx−iB(k,t)û(k) dk.

On the other hand, the Mikhlin-Hörmander theorem [12] provides, for 1 < p < 2, a constant Cp > 0
depending only on p such that∣∣∣∣(1 + b(t)H∂x)−1∂xu

∣∣∣∣
Lp
≤ Cp||u||Lp . (1.8)

Let T > 0, we define the norm NT by

NT (u) := sup
0≤τ≤T

[
||u(τ)||Lq (1 + B̃(τ))θ + ||u(τ)||Hs + ||u(τ)||W 3−2/p,p

]
. (1.9)

We prove a few technical lemmata first.
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Lemma 1.5 There exists a constant Cs,p > 0 such that for all u and v in Hs(R) ∩W 3−2/p,p(R)

||Φu− Φv||Lq (t) ≤ Cs,p‖a/B̃‖Lr(B̃)

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + B̃(t))−θNT (u− v), (1.10)

Proof. Let u and v two elements of Hs(R)∩W 3−2/p,p(R), the Duhamel’s formula and Corollary
1.4 give

||Φu− Φv||Lq ≤ 1

ρ+ 1

∫ t

0

a(τ)
∣∣∣∣St−τ ((1 + b(t)H∂x)−1∂x(uρ+1 − vρ+1)

)∣∣∣∣
Lq

(τ) dτ

≤ Cs,p

∫ t

0

a(τ)
(
||uρ+1 − vρ+1||Lp + ||uρ+1 − vρ+1||Hs

)
(τ)

(1 + B̃(t− τ))θ
dτ.

Since uρ+1 − vρ+1 = (u− v)

ρ∑
i=0

uρ−ivi, thanks to the fractional Leibniz rule [8] and the Minkowski

inequality we obtain

||uρ+1− vρ+1||Hs(τ) . ||u− v||Hs
ρ∑
i=0

||uρ−ivi||∞(τ) + ||u− v||∞
ρ∑
i=0

||uρ−ivi||Hs(τ)

= I (τ) + II (τ).

Lemma 1.6 [7, Chapter 1 - Theorem 9.3] Let 1 ≤ p, q ≤ +∞ and 0 ≤ j < s, there exists a
constant C > 0, depending on p, q, j and s, such that for all u ∈ S(R), we have

|| (−∂x)
j/2

u||Lr ≤ C|| (−∂x)
s/2

u||aLp ||u||1−aLq ,

where 1/r = j+a (1/p− s)+(1−a)/q and j/s ≤ a ≤ 1, with the following exception: if s− j−1/p
is a non-negative integer, then the above inequality holds for j/s ≤ a < 1.

The Sobolev inequality with 1/p+ 1/q = 1, r =∞, j = 0, a = 1/4 and s = 3− 2/p provides

||u||∞ ≤ Cp ||u||1/4
W

3− 2
p
,p
||u||3/4Lq . (1.11)

We deduce

I (τ) . ||u− v||Hs
ρ∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
(τ)

. ||u− v||Hs
ρ∑
i=0

(
||u||Lq

(1 + B̃(τ))θ

(1 + B̃(τ))θ

) 3(ρ−i)
4

||u||
ρ−i
4

W
3− 2

p
,p

(
||v||Lq

(1 + B̃(τ))θ

(1 + B̃(τ))θ

) 3i
4

||v||
i
4

W
3− 2

p
,p

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + B̃(τ))−

3θρ
4 NT (u− v).

For II (τ), the Leibniz rule is applied again

II (τ) . ||u− v||∞

(
||v||ρ−1

∞ ||v||Hs +

ρ−1∑
i=0

||u||ρ−i−1
∞ ||u||Hs ||v||i∞

+ ||u||ρ−1
∞ ||u||Hs +

ρ∑
i=1

||u||ρ−i∞ ||v||i−1
∞ ||v||Hs

)
(τ),

7



and the inequality (1.11) gives

II (τ) . ||u− v||3/4Lq ||u− v||
1/4

W
3− 2

p
,p
×[(

||v||3/4Lq ||v||
1/4

W
3− 2

p
,p

)ρ−1

||v||Hs +

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−1

||u||Hs

+

ρ−1∑
i=0

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i−1

||u||Hs
(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i
+

ρ∑
i=1

(
||u||3/4Lq ||u||

1/4

W
3− 2

p
,p

)ρ−i(
||v||3/4Lq ||v||

1/4

W
3− 2

p
,p

)i−1

||v||Hs
]

(τ)

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + B̃(τ))−

3θρ
4 NT (u− v).

Similar computations yield

||uρ+1 − vρ+1||Lp(τ) ≤ ||u− v||Lp
ρ∑
i=0

||u||ρ−i∞ ||v||i∞(τ)

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + B̃(τ))−

3θρ
4 NT (u− v).

To sum up, we find

||Φu− Φv||Lq (t) ≤ Cs,p

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v)

∫ t

0

a(τ)dτ

(1 + B̃(τ))
3θρ
4 (1 + B̃(t− τ))θ

.

However, the Hölder inequality implies for 1/m+ 1/n = 1∫ t

0

a(τ)dτ

(1 + B̃(τ))
3θρ
4 (1 + B̃(t− τ))θ

≤

(∫ t

0

(
a(τ)

B̃(τ)

)m
B̃(τ)dτ

)1/m(∫ B̃(t)

0

dτ

(1 + τ)
3nθρ

4 (1 + B̃(t)− τ)θn

)1/n

.

Lemma 1.7 [11] Let a > 0, b > 1 and F (t) be continuous real-valued function with, for all t ≥ 0,
F (t) ≥ 0. Then there exists 0 < c < 1, with c = a if 0 < a < 1, such that ∀ t ≥ 0∫ F (t)

0

dτ

(1 + F (t)− τ)a(1 + τ)b
.

1

(1 + F (t))c
.

The lemma 1.7 is applied with b = 3nθρ/4 > 1 and 0 < a = c = θn < 1 to give

||Φu− Φv||Lq (t) ≤ Cs,p‖a/B̃‖Lm(B̃)

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
(1 + B̃(t))−θNT (u− v).

Here b > 1 and 0 < a < 1 translated in

8

3ρ(1− 3γ)(1− 2/q)
< n <

2

(1− 3γ)(1− 2/q)
,

0 < 1/q < 1/2− 4/(3ρ(1− 3γ)),

0 < γ < 1/3− 8/(9ρ),

ρ ≥ 3.

�

8



Lemma 1.8 There exists a constant Cs,p > 0 such that for all u and v in Hs(R) ∩W 3−2/p,p(R),
we have

||Φu− Φv||Hs(t) + ||Φu− Φv||W 3−2/p,p(t) ≤ Cs,p‖a/B̃‖Lm(B̃)

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v).

(1.12)

Proof. We have

||Φu− Φv||W 3−2/p,p(t) .
∫ t

0

a(τ)
∣∣∣∣St−τ ((1 + b(t)H∂x)−1∂x(uρ+1 − vρ+1)

)∣∣∣∣
W 3−2/p,p(τ) dτ

.
∫ t

0

a(τ)
∣∣∣∣uρ+1 − vρ+1

∣∣∣∣
W 3−2/p,p(τ) dτ

As previously, the fractional Leibniz rule gives

||uρ+1 − vρ+1||
W

4− 2
p
,p(τ) .

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v)(1 + B̃(τ))−

3θρ
4

thus, thanks to the Hölder inequality implies

||Φu− Φv||W 3−2/p,p(t) .

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v)

∫ t

0

a(τ)(1 + B̃(τ))−
3θρ
4 dτ

.

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v)

×

(∫ t

0

(
a(τ)

B̃(τ)

)m
B̃(τ)dτ

)1/m(∫ B̃(t)

0

dτ

(1 + τ)
3nθρ

4

)1/n

≤ Cs,p‖a/B̃‖Lm(B̃)

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v).

Same computations for ||Φu− Φv||Hs allow to conclude. �

Lemma 1.9 There exists a constant Cs,p > 0 such that for all u and v in Hs(R) ∩W 3−2/p,p(R),
we have

NT (Φu− Φv) ≤ Cs,p‖a/B̃‖Lm(B̃)

(
ρ∑
i=0

NT (u)ρ−iNT (v)i

)
NT (u− v), (1.13)

and
NT (Φu) ≤ Cs,p‖a/B̃‖Lm(B̃)

(
||u0||Hs + ||u0||W 3−2/p,p +NT (u)ρ+1

)
. (1.14)

Proof. Inequalities (1.10) and (1.12) give (1.13) . Taking v = 0 provides the second inequality. �

Proof of theorem 0.1. Let M > 0, we consider the closed ball

BT,M :=
{
u ∈ C([−T, T ];Hs(R) ∩W 3−2/p,p(R)); NT (u) ≤M

}
.

We aim at showing that there exists a unique solution u of the equation (1.7) in this ball by using
Banach fixed point theorem.
First, there exists ε > 0 sufficiently small such that if ||u0||Hs + ||u0||W 3−2/p,p ≤ ε, even if we take
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Cs,pM instead of M , it is enough to take M > 0 satisfying ε+Mρ+1 ≤ M so that the inequality
(1.14) implies that the image of the closed ball BT,M by the map Φ is included in itself. Here, the
crucial point is that ε is independent of T . Secondly, we prove that the map Φ is a contraction on
this ball for M sufficiently small. Let u and v two elements of the closed ball BT,M . The inequality
(1.13) gives

NT (Φu− Φv) ≤ Cs,p‖a/B̃‖Lm(B̃)M
ρNT (u− v),

and it is enough to take M > 0 sufficiently small so that the quantity Cs,pM
ρ < 1. Then, Banach

fixed point theorem is applied and there exists a unique solution of the equation (1.7) in the closed
ball BT,M .
It remains to prove that this unique solution can be prolonged in time with all [0,+∞[. By
uniqueness of the solution, the inequality (1.14) is written

NT (u) ≤ Cs,p‖a/B̃‖Lm(B̃)

(
||u0||Hs + ||u0||W 3−2/p,p +NT (u)ρ+1

)
. (1.15)

Since there exists ε > 0 sufficiently small such that ||u0||Hs + ||u0||W 3−2/p,p ≤ ε, we can find M > 0
such that

N0(u) < M

Cs,p‖a/B̃‖Lm(B̃)

(
ε+Mρ+1

)
≤M.

Then for all T > 0, we have NT (u) < M . Indeed, if not, by continuity, there exists a time T > 0
such that

NT (u) = M

> Cs,p‖a/B̃‖Lm(B̃)

(
ε+Mρ+1

)
> Cs,p‖a/B̃‖Lm(B̃)

(
ε+NT (u)ρ+1

)
,

which contradicts the inequality (1.15). Finally, there exists a constant M > 0 such that for all
T > 0, NT (u) < M . In particular, we have for all time t ≥ 0

||u(t)||Lq ≤ Cs,p‖a/B̃‖Lm(B̃)

(
||u0||Hs + ||u0||W 3−2/p,p +NT (u)ρ+1

)
(1 + B̃(t))−θ

≤ Cs,p‖a/B̃‖Lm(B̃)

(
ε+Mρ+1

)
(1 + B̃(t))−θ. (1.16)

�

Remark 1.10 Similar result including the Korteweg-de Vries and the Benjamin-Bona-Mahony
equations with time-dependent coefficients can be found in [5, 6].

Remark 1.11 Concerning the Benjamin-Ono equation

ut + ux − b(t)Huxx + a(t)uρux = 0,

we obtain in a similar way the global well-posedness with the following decay rate

||u(t)||L∞ ≤ C||u(t)||L1(1 +B(t))−1/2, with B(t) :=

∫ |t|
0

b(τ)dτ.

2 The periodic context

In this section, we only consider the case ρ = 1. The local in time well-posedness can be obtained
in the same manner as for the continuous case.
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We define, for k ∈ Z, σ(k) := ik/(1 + b(t)|k|). The Fourier symbol σ satisfies for all k and k1 in
Z∗ = Z\{0}

|σ(k1) + σ(k − k1)− σ(k)| ≥ b(t)2 |kk1(k − k1)|
(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)

.

Proof. Indeed, six cases have to be studied according to the sign of k, k1 and k − k1.
i. If k > 0, k1 > 0 and k − k1 > 0, we have

|σ(k1) + σ(k − k1)− σ(k)| = |b(t)(2 + b(t)k)k1(k − k1)|
(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)

.

ii. If k > 0, k1 > 0 and k − k1 < 0,

|σ(k1) + σ(k − k1)− σ(k)| = |b(t)k(2 + b(t)k1)(k − k1)|
(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)

.

iii. If k > 0 and k1 < 0,

|σ(k1) + σ(k − k1)− σ(k)| = |b(t)kk1(2 + b(t)(k − k1))|
(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)

.

iv. If k < 0 and k1 > 0,

|σ(k1) + σ(k − k1)− σ(k)| =
| − b(t)kk1(2− b(t)(k − k1))|

(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)

=
b(t)|k|k1(2 + b(t)|k − k1|)

(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)
.

v. If k < 0, k1 < 0 and k − k1 > 0,

|σ(k1) + σ(k − k1)− σ(k)| =
| − b(t)k(2− b(t)k1)(k − k1)|

(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)

=
b(t)|k|(2 + b(t)|k1|)(k − k1)

(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)
.

vi. If k < 0, k1 < 0 and k − k1 < 0,

|σ(k1) + σ(k − k1)− σ(k)| =
|(2− b(t)k)(−b(t)k1)(k − k1)|

(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)

=
(2 + b(t)|k|)b(t)|k1|(k − k1)

(1 + b(t)|k|)(1 + b(t)|k1|)(1 + b(t)|k − k1|)
.

�

For δ > 0, we set Uδ := {u ∈ Hs
0(T); ||u||s < δ}. Let D :=

{
(k, k1) ∈ Z2 ; k 6= 0, k1 6= 0, k 6= k1

}
,

we define the operator Λ by Λu := u+K(u, u) for u ∈ Hs
0(T), with

K(u, v) := −1

2

∑
D

eikx
ik

1 + b(t)|k|
û(k1) v̂(k − k1)

σ(k1) + σ(k − k1)− σ(k)
.

Introducing Λ is used to define v = Λu so that v is solution of the equation

vt + L(v) = F (u),

with F trilinear whereas u is solution of a quadratic Boussinesq system. Thus the well-posedness of
v and the definition of K are used to estimate u with respect to v and to extend its well-posedness.
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Lemma 2.1 Let s > 1/2. There exists a constant C > 0 such that for all u and v in Hs
0(T)

||K(u, v)||s ≤ C

b(t)2
||u||s||v||s.

Proof. By duality, to prove the lemma is equivalent to proving for all w ∈ C∞(T)∣∣∣∣∣∑
D

K̂(u, v)(k)ŵ(k)

∣∣∣∣∣ ≤ C

b(t)2
(||u||s||v||s) ||w||−s. (2.1)

Indeed, we have

||K(u, v)||2s =
∑
k∈Z∗

|k|2s|K̂(u, v)(k)|2 =
∑
k∈Z∗

K̂(u, v)(k)
(
|k|2sK̂(u, v)(k)

)
.

We set ŵ(k) = |k|2sK̂(u, v)(k) and we write

||K(u, v)||2s =
∑
k∈Z∗

K̂(u, v)(k) ŵ(k),

and according to the inequality (2.1)

||K(u, v)||2s ≤
C

b(t)2
(||u||s||v||s) ||w||−s.

However

||w||−s =

(∑
k∈Z∗

|k|−2s|k|4s|K̂(u, v)(k)|2
)1/2

=

(∑
k∈Z∗

|k|2s|K̂(u, v)(k)|2
)1/2

= ||K(u, v)||s.

If we define
û1(k) = |k|sû(k) , v̂1(k) = |k|sv̂(k) and ŵ1(k) = |k|−sŵ(k),

it is enough to prove∣∣∣∣∣12 ∑
D

ik

1 + b(t)|k|
|k|sû1(k1)v̂1(k − k1)ŵ1(k)

|k1|s|k − k1|s(σ(k1) + σ(k − k1)− σ(k))

∣∣∣∣∣ ≤ C

b(t)2
(||u1||L2 ||v1||L2) ||w||L2 .

On one hand, we have for k and k1 in D∣∣∣∣ ik

1 + b(t)|k|
1

σ(k1) + σ(k − k1)− σ(k)

∣∣∣∣ . 1

b(t)2
.

Indeed, since b(t) is a non-negative real valued bounded funtion, and k, k1 ∈ Z∗, it gets∣∣∣∣ ik

1 + b(t)|k|
1

σ(k1) + σ(k − k1)− σ(k)

∣∣∣∣ ≤ (1 + b(t)|k1|)(1 + b(t)|k − k1|)
b(t)2|k1(k − k1)|

.

On the other hand, for s ≥ 0, the triangle inequality implies

|k|s

|k1|s|k − k1|s
.

(
1

|k1|s
+

1

|k − k1|s

)
,
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and it remains to bound

1

b(t)2

∑
D

|û1(k1)| |v̂1(k − k1)||ŵ1(k)|
|k1|s

+
1

b(t)2

∑
D

|û1(k1)| |v̂1(k − k1)||ŵ1(k)|
|k − k1|s

=:
1

b(t)2
(I + II).

The Cauchy-Schwarz inequality in k, then in k1, provides

I ≤


∑
k∈Z∗


∑

k1 ∈ Z∗
k1 6= k

|û1(k1)| |v̂1(k − k1)|
|k1|s


2

1/2(∑
k∈Z∗

|ŵ1(k)|2
)1/2

≤


∑

k1 ∈ Z∗
k1 6= k

1

|k1|2s


1/2

∑
k∈Z∗

∑
k1 ∈ Z∗
k1 6= k

|û1(k1)|2|v̂1(k − k1)|2


1/2(∑

k∈Z∗
|ŵ1(k)|2

)1/2

.

Since s > 1/2, there exists C > 0 such that

I ≤ C (||u1||L2 ||v1||L2) ||w1||L2 .

A similar inequality for II is found by symmetry. �

Proposition 2.2 Let s > 1/2. Then there exist 0 < δ′ < min{b(t)2/a(t), t ∈ R}, δ > 0, and C > 0
such that for all v ∈ Uδ, there exists a unique u ∈ Uδ′ such that Λu = v. Moreover

||u||s ≤ C||v||s,

and the map Λ−1 is of class C1.

Proof. For u ∈ Hs
0(T),The differential of this operator is given by, for all ϕ ∈ C∞(T)

〈dΛ(u) , ϕ〉 = ϕ+ 2K(u, ϕ),

the preceding lemma implies that dΛ is continuous from Hs
0(T) to itself. Since dΛ(0) is the identity,

the inverse function theorem is applied to give the following lemma. �

Proposition 2.3 Let s > 1/2. There exists a trilinear operator

K1 : Hs
0(T)×Hs

0(T)×Hs
0(T) −→ Hs

0(T)

such that, if u ∈ C([−T, T ];Hs
0(T)) is solution of

(1 + b(t)Hux)ut + ux + a(t)uρux = 0,

then v defined by
v(t) := u(t) + a(t)K(u(t), u(t)), fort ∈ [−T, T ],

is solution of
vt + (1 + b(t)H∂x)−1vx = a′(t)K(u, u) + a(t)2K1(u, u, u).

Moreover, there exists a constant C > 0 such that for all (u1, u2, u3) ∈ Hs
0(T)×Hs

0(T)×Hs
0(T)

||K1(u1, u2, u3)||s ≤ C
1

b(t)2
||u1||s||u2||s||u3||s,
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Proof. We write

vt + (1 + b(t)H∂x)−1vx = ut + a′(t)K(u, u) + a(t)∂tK(u, u) + (1 + b(t)H∂x)−1ux

+ a(t)(1 + b(t)H∂x)−1∂xK(u, u)

= −a(t)

2
(1 + b(t)H∂x)−1∂xu

2 + a′(t)K(u, u) + a(t)∂tK(u, u)

+ a(t)(1 + b(t)H∂x)−1∂xK(u, u).

On one hand, we have by symmetry and for u solution of (1.5),

∂tK(u, u) = K(ut, u) +K(u, ut) = 2K(ut, u)

= −
∑
D

eikx
ik

1 + b(t)|k|
ût(k1)û(k − k1)

σ(k1) + σ(k − k1)− σ(k)

= −a(t)

2

∑
D

eikx
kk1

(1 + b(t)|k|)(1 + b(t)|k1|)
û2(k1)û(k − k1)

σ(k1) + σ(k − k1)− σ(k)

+
1

2

∑
D

eikx
ik

1 + b(t)|k|
(σ(k1) + σ(k − k1))û(k1)û(k − k1)

σ(k1) + σ(k − k1)− σ(k)
.

On the other hand, we have

(1 + b(t)H∂x)−1∂xK(u, u) = −1

2

∑
D

eikx
ik

1 + b(t)|k|
σ(k)û(k1)û(k − k1)

σ(k1) + σ(k − k1)− σ(k)

(1 + b(t)H∂x)−1∂xu
2 =

∑
D

eikx
ik

1 + b(t)|k|
û(k1)û(k − k1).

Finally, we find
vt + (1 + b(t)H∂x)−1vx = a′(t)K(u, u) + a(t)2K1(u, u, u).

where K1 is defined, for D1:={(k, k1, k2) ∈ Z3; k 6= 0, k1 6= 0, k2 6= 0, k 6= k1, k1 6= k2}

K1(u1, u2, u3) := −1

2

∑
D1

eikx
kk1

(1 + b(t)|k|)(1 + b(t)|k1|)
û1(k2)û2(k1 − k2)û3(k − k1)

σ(k1) + σ(k − k1)− σ(k)
.

However, we have for k, k1 and k2 in D1∣∣∣∣ kk1

(1 + b(t)|k|)(1 + b(t)|k1|)
1

σ(k1) + σ(k − k1)− σ(k)

∣∣∣∣ . 1

b(t)2
.

In the same manner as lemma 2.1, it is enough to bound

I :=
1

2b(t)2

∑
D1

|k|s|û1(k2)| |û2(k1 − k2)| |û3(k − k1)| |û4(k)|
|k2|s|k1 − k2|s|k − k1|s

.

The Cauchy-Schwarz inequality is applied first in k to give

I ≤ 1

b(t)2


∑
k∈Z∗


∑

(k1, k2) ∈ (Z∗)2

k1 6= k, k2 6= k1

|k|s|û1(k2)| |û2(k1 − k2)| |û3(k − k1)|
|k2|s|k1 − k2|s|k − k1|s




1/2

||u4||L2 ,

and then in (k2, k1),
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I ≤ 1

b(t)2


∑
k∈Z∗

∑
(k1, k2) ∈ (Z∗)2

k1 6= k, k2 6= k1

|û1(k2)|2 |û2(k1 − k2)|2 |û3(k − k1)|2

×
∑

(k1, k2) ∈ (Z∗)2

k1 6= k, k2 6= k1

|k|2s

|k2|2s|k1 − k2|2s|k − k1|2s


1/2

||u4||L2 ,

The triangle inequality implies

|k|2s

|k2|2s|k1 − k2|2s|k − k1|2s
≤ C

(
1

|k2|2s|k1 − k2|2s
+

1

|k2|2s|k − k1|2s
+

1

|k1 − k2|2s|k − k1|2s

)
,

thus

sup
k∈Z∗

∑
(k1, k2) ∈ (Z∗)2

k1 6= k, k2 6= k1

|k|2s

|k2|2s|k1 − k2|2s|k − k1|2s
< +∞.

�

Proof of the theorem 0.2. We suppose t > 0, the proof being similar for negative time. Let us
denote X := L∞([0, T ];Hs

0(T)). Let δ and δ′ the positive constants involved in Lemma 2.2.
According to the local well-posedness theorem, there exists ε0 > 0 such that if u0 ∈ Uε, for
ε ∈]0, ε0[, then for t ≤ C1 (ε supt∈R a(t)/b(t))−1 =: T ,

u(t) + a(t)K(u, u)(t) ∈ Uδ, u(t) ∈ Uδ′ and u(t) = Λ−1v(t).

Duhamel’s formula gives for t ∈ [0, T ]

v(t) = St (u0 + a(t)K(u0, u0)) +

∫ t

0

St−τ
(
a′(τ)K(u, u) + a(τ)2K1(u, u, u)

)
(τ) dτ (2.2)

Stv :=
∑
k∈Z∗

eikx−iB(k,t)v̂(k). (2.3)

Thanks to Lemma 2.1, and for ε0 > 0 sufficiently small, we have

||St (u0 + a(t)K(u0, u0))||s ≤ ||u0||s + ||K(u0, u0)||s

≤ ||u0||s + C
a(t)

b(t)2
||u0||2s ≤ C1ε

(
1 + ε

a(t)

b(t)2

)
≤ 2C2ε. (2.4)

The preceding lemmas yield for t ∈ [0, T ]∣∣∣∣∣∣∣∣∫ t

0

St−τ
(
a(τ)2K1(Λ−1v,Λ−1v,Λ−1v)

)
(τ) dτ

∣∣∣∣∣∣∣∣
X

≤ C3 sup
t∈[0,T ]

(
a(t)

b(t)

)2

T ||v||3X (2.5)∣∣∣∣∣∣∣∣∫ t

0

St−τ
(
a′(τ)K(Λ−1v,Λ−1v)

)
(τ) dτ

∣∣∣∣∣∣∣∣
X

≤ C3 sup
t∈[0,T ]

(a′(t))T ||v||2X . (2.6)

Even if we take ε0 > 0 smaller, we assume 2C1ε0 < δ. We set C0 = (18C2C3(1 + 3C2))−1 and
T0 = C0(ε supt∈R a(t)/b(t))−2. It follows then

||v||L∞([0,T0];Hs0 (T)) ≤ 3C2ε. (2.7)
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Let us suppose that the inequality (2.7) fails. Since

||v(0)||s = ||u0 + a(t)K(u0, u0)||s ≤ C2ε

(
1 + ε

a(t)

b(t)2

)
< 3C2ε,

by continuity with time, there exists τ ∈ [0, T0] such that for t ∈ [0, τ ]

||v(t)||s ≤ 3C2ε and ||v(τ)||s = 3C2ε.

Let C the positive constant involved in Lemma 2.2, we also impose 3C1Cε0 < δ′. We know that
u(t) ∈ Uδ′ for |t| ≤ T , and with this choice of ε, it follows that u(t) ∈ Uδ′ for t ∈ [0, τ ]. Indeed, if
there exists τ1 ∈ [0, τ ] such that for t ∈ [0, τ1]

||u(t)||s < δ′ and ||u(τ1)||s = δ′,

then by continuity with time and according to Lemma 2.2, we have

δ′ = ||u(τ1)||s = lim
t→τ1

||u(t)||s ≤ sup
0≤t<τ1

||u(t)||s

≤ sup
0≤t<τ1

C||v(t)||s ≤ 3C2Cε < δ′,

which is a contradiction.
Finally, we deduce from Duhamel’s formula and inequalities (2.4), (2.5) and (2.6)

||v||X ≤ 2C2ε+ C3 sup
t∈[0,τ ]

(
a(t)

b(t)

)2

τ ||v||3X + C3 sup
t∈[0,τ ]

(a′(t)) τ ||v||2X .

Since supt∈[0,τ ](a
′(t)) ≤ supt∈[0,τ ] (a(t)/b(t))

2
ε, we find

τ ≥ 2C0

(
ε sup
t∈[0,τ ]

(
a(t)

b(t)

))−2

= 2T0.

This is in contradiction with the fact τ ∈ [0, T0]. Then the inequality (2.7) is true and using Lemma
2.2, it get for t ∈ [0, T0]

||u(t)||s ≤ C||v(t)||s ≤ 3C2Cε.

�

Remark 2.4 This method does not apply to the Benjamin-Ono equation

ut + ux − b(t)Huxx + a(t)uρux = 0.

Indeed, here σ(k) = |k|k and for k, k1 in D∣∣∣∣ kk1

σ(k1) + σ(k − k1)− σ(k)

∣∣∣∣
is not bounded from above.

3 Numerical simulations

We propose to present in this section some numerical illustrations showing the dispersive properties
for some (not exhaustive) choices of functions a(t), b(t). The aim of this section is not to perform
a complete numerical study, but rather to present some relevant simulations. We use a relaxation
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scheme proposed in [4]. This method allows us to replace the solution of a nonlinear problem and
thus provides a time saving. We rewrite the grBO equation

(1 + b(t)H∂x)ut + ux +
a(t)

ρ+ 1
Φx = 0

Φ = uρ+1

We consider a bounded domain [−L,L], L > 0 (large fixed value). We denote Nx > 0 the number
of Fourier modes, ∆t > 0 the time step, and for n ∈ N, ûn, resp. Φ̂n+1/2, is the approximation of
û(n∆t), resp. Φ̂((n+ 1/2)∆t).

Algorithm:

Set u0 and Φ̂−1/2 = ûρ+1
0 .

For n = 0, 1, . . ., compute:

Φ̂n+1/2(ξ) + Φ̂n−1/2(ξ)

2
= ûρ+1

n (ξ)

(1 + bn|ξ|)
(
ûn+1(ξ)− ûn(ξ)

∆t

)
+ iξ

(
ûn+1(ξ) + ûn(ξ)

2

)
+ iξanΦ̂n+1/2(ξ) = 0

ξ = k
π

L
,−Nx

2
≤ k ≤ Nx

2
− 1.

Simulations are performed with L = 3000, Nx = 214,∆t = 0.02 and start from the initial datum:

u0(x) =
4d

1 + ( d
d+1 )2x2

.

This initial datum provides, in the case ρ = 1, a(t) = b(t) = 1, a solitary wave solution of the
regularized Benjamin-Ono equation, given by u(x, t) = u0(x− ct). We can notice, for ρ = 1, a(t) =
b(t) = 1, the H1/2−norm is conserved, i.e. ∀t ∈ R, ||u(t)||H1/2 = ||u0||H1/2 . Figure 1 shows
the evolution with time of the solution, the H1/2 and L∞−norms, and the error between the
approximate solution and the solitary wave.
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Figure 1: Result for ρ = 1, a(t) = b(t) = 1. On the left, the solution at time t = 0, 500, 2000. In
the center, the H1/2 and L∞−norms. On the right, the error between the approximate solution
and the solitary wave.
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We notice that the approximate solution remains close to the soliton. The norms are well preserved
and the error remains small. The numerical scheme appears to be relevant for the simulations.
We represent in Figure 2 the evolution of the solution starting from a solitary wave with ρ =
3, a(t) = b(t) = 1.
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Figure 2: Result for ρ = 3, a(t) = b(t) = 1. On the left, the solution at time t = 0, 500, 2000. On
the right, the L∞−norm.

We observe that the solution decreases and the decay rate is close to (1 + t)−1/2. We also note
that the Fourier modes of the wave split.
The test with ρ = 3, a(t) = b(t) = 1/(1 + log(1 + t)) is illustrated in Figure 3.
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Figure 3: Result for ρ = 3, a(t) = b(t) = 1/(1 + log(1 + t)). On the left, the solution at time
t = 0, 500, 2000. On the right, the L∞−norm.

The solution decreases slowly and the Fourier modes also disperse more slowly.
In contrast, when ρ = 3, a(t) = b(t) = log(1 + t), the solution given by Figure 4, decreases rapidly
as well as its Fourier modes.
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Figure 4: Result for ρ = 3, a(t) = b(t) = log(1+t). On the left, the solution at time t = 0, 500, 2000.
On the right, the L∞−norm.
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