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We prove the well-posedness of the generalized Korteweg-de Vries-Burgers equation with nonlinear dispersion and nonlinear dissipation

Contrary to the linear case, the dispersion properties of the free evolution are useless and a vanishing parabolic regularization is then used.

I ntroduction

Fully nonlinear equations u t + f (u) x -δg(u xx ) x + εu xxxx = 0, proposed by Brenier and Levy [START_REF] Brenier | Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations[END_REF], can be viewed as a generalization of the Korteweg-de Vries-Burgers equation. When f (u) = u 2 /2, g(u) = u, ε = 0, the equation turns to the classical KdV equation [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves[END_REF], which describes the propagation of the one-dimensional gravity waves in shallow water. Such nonlinear dispersion, g(u xx ) x , significantly affects the dispersive behavior of the solutions what differs completely from the linear case. In particular, Brenier and Levy obtain dissipative behavior as soon as g is a nonlinear even concave function. The nonlinear dispersion has a tendency to stabilize the solutions. It is then conjectured [START_REF] Brenier | Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations[END_REF] that, for f strictly convex and g concave functions, the solution converges, when δ and εδ -1 go to zero, to the unique entropy solution of the hyperbolic conservation law

u t + f (u) x = 0.
Contrary to the linear case, when the considered flux f (u) = u 2 /2 and g(u xx ) = u xx , the solution converges under the condition δ = O(ε) [START_REF] Diperna | Measure-Valued Solutions to Conservation Laws[END_REF][START_REF] Lax | The small dispersion limit of the Korteweg-de Vries equation[END_REF][START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF][START_REF] Perthame | Moderate Dispersion in Conservation Laws with Convex Fluxes[END_REF][START_REF] Schonbek | Convergence of Solutions to Nonlinear Dispersive Equations[END_REF][START_REF] Whitham | Linear and Nonlinear Waves[END_REF]. The study of nonlinear dispersion is also of physical interest. Rosenau and Hyman highlight notable dispersive effects and obtain a new class of compactly supported solitary waves [START_REF] Rosenau | Compactons: solitons with finite wavelengths[END_REF][START_REF] Rosenau | Nonlinear dispersion and compact structures[END_REF]. Although the literature proposed many results related with the well-posedness [START_REF] Biswas | Solitary wave solution for KdV equation with power-law nonlinearity and timedependent coefficients[END_REF][START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation[END_REF][START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF][START_REF] Iorio | BO and friends in weighted Sobolev spaces[END_REF][START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]and the vanishing limit with nonlinear viscosity and linear dispersion [START_REF] Correia | Nonlinear diffusive-dispersive limits for multidimensional conservation laws[END_REF][START_REF] Lefloch | Conservation laws with vanishing nonlinear diffusion and dispersion[END_REF], this paper is one of the first theoretical proof dealing with nonlinear dispersion [START_REF] Bedjaoui | On vanishing dissipative-dispersive perturbations of hyperbolic conservation laws[END_REF].

In this paper, we study the initial value problem for a more general class of dissipative-dispersive hyperbolic conservation law defined by u t + f (u) x -δg(u xx ) x -εh(u x ) x = 0, for x, t ∈ R where h represents the dissipation satisfying

+∞ -∞ u x h(u x ) ≥ 0.
In this case, we can not take the advantage of the dispersive properties of the free evolution to obtain Strichartz type estimates [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation[END_REF][START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. A fourth order regularization is applied to avoid the third space derivative of the nonlinearity g. Nevertheless, to obtain the well-posedness, a condition which links the dispersion to the dissipation is needed. For all u 0 sufficiently smooth initial data, the condition can be written as follows, ε/δ, the condition (1.1) is satisfied. Notice that, when g is linear, it allows to consider a large range of dissipation, the inequality (1.1) being reduced to

- +∞ -∞ u 2 0,5x εh (u 0,x )dx ≤ 0.
With such a dissipation, the result remains true for nonlinear dispersion of type g(u xxx ) and g(u) xxx , including the K(m, n) equations [START_REF] Rosenau | Compactons: solitons with finite wavelengths[END_REF]. To improve this constraint on the dissipation, we consider in a second part nonlinear dispersion of type g(u x ) xx . The inequality (1.1) becomes

+∞ -∞ u 2 0,5x -εC 0 + C 1 δ||u 0 || αg-α h 4 dx ≤ 0.
and it allows us to consider dissipation in such a way

c h |u| α h ≤ h (u) ≤ C h |u| α h .
The paper is organised as follows. Section 2 deals with the well-posedness of the Cauchy problem with nonlinear dispersion of type g(u xx ) x . The fourth order regularization is introduced, then the regularization limit is obtained. In Section 3, we present the result concerning the nonlinearity g(u x ) xx . Finally, we state the well-posedness regarding nonlinearities g(u xxx ) and g(u) xxx .

2 Nonlinearity of type g(u xx ) x

Regularization

Let first consider the parabolic equation

u t + µ(-1) q ∂ 2q
x u = 0 with µ > 0 and q ∈ N * . The semi-group is given by

S t u(x) := 1 2π +∞ -∞
e iξx-µξ 2q t û(ξ)dξ, and satisfies the following regularization property.

Lemma 2.1 Let r, s ≥ 0 and u ∈ H s (R). Then for all t ∈ R,

||S t u|| r+s ≤ C r 1 + 1 2µ|t| r/q 1/2 ||u|| s .
Proof. We have

||S t u|| 2 r+s ≤ +∞ -∞ (1 + ξ 2 ) r+s e -2µξ 2q t |û(ξ)| 2 dξ ≤ sup ξ∈R (1 + ξ 2 ) r e -2µξ 2q t ||u|| 2 s .
However,

ξ 2r e -2µξ 2q t = ξ 2q e 2µξ 2q t/(r/q) r/q ≤ r q r/q 1 2µt r/q .
To compute the well-posedness of the initial value problem, the following parabolic regularization is used

u t + f (u) x -δg(u xx ) x -εh(u x ) x + µu xxxx = 0 (2.1) u(x, 0) = u 0 (x). (2.2) 
Lemma 2.2 Assume that there exists s ≥ 3 such that the functions f, g, h are locally Lipschitzian in the Sobolev space

H s (R), H s-2 (R) and H s-1 (R) respectively, with f (0) = g(0) = h(0) = 0.
Then there exists T µ > 0, depending on µ, such that

φ(u)(t) := S t u 0 - t 0 S t-τ (f (u) x -δg(u xx ) x -εh(u x ) x )(τ )dτ, ( 2.3) 
is a contraction mapping on the closed ball

B(T µ ) = {u ∈ C([0, T µ ]; H s (R)); ||u(t) -u 0 || s ≤ 3||u 0 || s }.
Moreover, there exists C > 0 such that the solutions u and v, with u 0 and v 0 as initial datum respectively, satisfy for t ≤ T µ ,

||u(t) -v(t)|| s ≤ C||u 0 -v 0 || s .
Proof. Let us denote C f , C g , C h > 0 the Lipschitz constants of the functions f, g, h respectively. Let u, v ∈ B(T µ ). We have

φ(u)(t) -φ(v)(t) = - t 0 S t-τ ((f (u) x -f (v) x ) -δ(g(u xx ) x -g(v xx ) x ) -ε(h(u x ) x -h(v x ) x ))(τ )dτ.
On one hand, thanks to Lemma 2.1 with q = 2, r = 1, we write

||S t-τ (f (u) x -f (v) x )(τ )|| s = ||S t-τ (f (u) x -f (v) x )(τ )|| (s-1)+1 ≤ C 1 1 + 1 2µ(t -τ ) 1/2 1/2 ||f (u) x -f (v) x || s-1 , and ||f (u) x -f (v) x || s-1 = ||f (u) -f (v)|| s ≤ C f ||u -v|| s .
On the other hand, it gets with q = 2, r = 3

||S t-τ (g(u xx ) x -g(v xx ) x )(τ )|| s = ||S t-τ (g(u xx ) x -g(v xx ) x )(τ )|| (s-3)+3 ≤ C 3 1 + 1 2µ(t -τ ) 3/2 1/2 ||g(u xx ) x -g(v xx ) x || s-3 ≤ C 3 C g 1 + 1 2µ(t -τ ) 3/2 1/2 ||u -v|| s ,
and with q = 2, r = 2,

||S t-τ (h(u x ) x -h(v x ) x )(τ )|| s = ||S t-τ (h(u x ) x -h(v x ) x )(τ )|| (s-2)+2 ≤ C 2 1 + 1 2µ(t -τ ) 1/2 ||h(u x ) x -h(v x ) x || s-2 ≤ C 2 C h 1 + 1 2µ(t -τ ) 1/2 ||u -v|| s . We deduce sup t∈[0,T ] ||φ(u)(t) -φ(v)(t)|| s ≤ C 1 C f t 0 1 + 1 2µ(t -τ ) 1/2 1/2 dτ sup t∈[0,T ] ||u -v|| s +δC 3 C g t 0 1 + 1 2µ(t -τ ) 3/2 1/2 dτ sup t∈[0,T ] ||u -v|| s +εC 2 C h t 0 1 + 1 2µ(t -τ ) 1/2 dτ sup t∈[0,T ] ||u -v|| s ≤ C(µ, T ) sup t∈[0,T ] ||u -v|| s ,
and we choose T > 0, proportional to µ, such that C(µ, T ) is small enough to ensure the contraction mapping of φ in B(T µ ).

In the same manner, it comes for u ∈ B(T µ )

sup

t∈[0,T ] ||φ(u)(t) -u 0 || s = sup t∈[0,T ] ||(φ(u)(t) -S t u 0 ) + (S t u 0 -u 0 )|| s ≤ 2||u 0 || s + C f C 1 ||u 0 || s t 0 1 + 1 2µ(t -τ ) 1/2 1/2 dτ + δC g C 3 ||u 0 || s t 0 1 + 1 2µ(t -τ ) 3/2 1/2 dτ + εC h C 2 ||u 0 || s t 0 1 + 1 2µ(t -τ ) 1/2 dτ ≤ C(µ, T )||u 0 || s , we choose T > 0 such that C(µ, T ) ≤ 3 to obtain φ(u) ∈ B(T µ ).
It remains to prove the continuity with respect to the initial data. Let u and v in B(T µ ), with u 0 and v 0 as initial datum respectively. From (2.3), it comes

u(t)-v(t) = S t (u 0 -v 0 )- t 0 S t-τ ((f (u) x -f (v) x )-δ(g(u xx ) x -g(v xx ) x )-ε(h(u x ) x -h(v x ) x ))(τ )dτ, thus sup t∈[0,T ] ||u(t) -v(t)|| s ≤ ||u 0 -v 0 || s + C(µ, T ) sup t∈[0,T ] ||u(t) -v(t)|| s .

And as soon as

c = 1/(1 -C(µ, T )) > 0, we have sup t∈[0,T ] ||u(t) -v(t)|| s ≤ c||u 0 -v 0 || s .
Remark 2.3 If f, g, h are polynomial functions, the Sobolev embedding, with s > 1/2, 3/2, 5/2 respectively, implies that f, h, g are locally Lipschitz in H s (R) respectively. Indeed, suppose f (u) = u α f +1 , we have [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF] 

||f (u) -f (v)|| s = (u -v) α f i=0 u i v α-i s ≤ C s ||u -v|| s α f i=0 ||u i v α-i || ∞ + ||u -v|| ∞ α f i=0 ||u i v α-i || s ,
and the Sobolev embedding with s > 1/2 gives

||f (u) -f (v)|| s ≤ C s α f i=0 ||u|| i s ||v|| α-i s ||u -v|| s .

Regularization limit

We wish to determine if the limit as µ goes to 0 exists. We first show that the time T µ can be fixed independent of µ.

Proposition 2.4 Assume that there exists

C 0 , C f , C g , C h > 0 such that |f (i) (u)| ≤ C f |u| α f +1-i for 0 ≤ i ≤ 2 |g (j) (u)| ≤ C g |u| αg+1-j for 0 ≤ j ≤ 7 |h (k) (u)| ≤ C h |u| α h +1-k for 0 ≤ k ≤ 6, with h (u) ≥ C 0 > 0. Define α := min(α f , α g , α h ) if ||u|| 4 < 1 max(α f , α g , α h ) if ||u|| 4 ≥ 1 with α g ≥ 1.
Then there exists a constant K > 0 such that for u 0 ∈ H 4 (R) satisfying

||u 0 || αg 4 ≤ K ε δ , (2.4) 
the time T of well-posedness in the preceding lemma can be chosen independent of µ. Moreover, for all t ∈ [-T, T ], we have

||u(t)|| 4 ≤ 2 1/α ||u 0 || 4 . (2.5)
Proof. Multiplying the equation (2.1) by

4 i=0 (-1) i ∂ 2i
x u and integrating over space give 1 2

d dt ||u(t)|| 2 4 + µ 6 i=2 +∞ -∞ (∂ i x u) 2 dx = 4 i=0 +∞ -∞ (-1) i+1 (∂ 2i x u)f (u) x dx + 4 i=0 +∞ -∞ δ(-1) i (∂ 2i x u)g(u xx ) x + ε(-1) i (∂ 2i x u)h(u x ) x dx =: I + II. Lemma 2.5 There exist C 1 , C 2 > 0 such that II ≤ C 2 ||u|| αg+2 4 + ||u|| α h +2 4 + +∞ -∞ u 2 5x -εh (u x ) + C 1 δ||u|| αg 4 dx.
Proof. On the one hand,

+∞ -∞ uh(u x ) x dx = - +∞ -∞ u x h(u x )dx ≤ 0 +∞ -∞ u xx h(u x ) x dx = +∞ -∞ u 2 xx h (u x )dx +∞ -∞ u 4x h(u x ) x dx = +∞ -∞ -u 2 xxx h (u x ) + 1 3 u 4 xx h (u x )dx +∞ -∞ u 6x h(u x ) x dx = +∞ -∞ u 2 4x h (u x ) - 3 2 u 3 xxx h (u x ) - 9 2 u 2 xxx u 2 xx h (u x ) + 1 5 u 6 xx h (5) (u x )dx +∞ -∞ u 8x h(u x ) x dx = +∞ -∞ -u 2 5x h (u x ) + 8u 2 4x u xxx h (u x ) + 8u 2 4x u 2 xx h (u x ) -5u 4 xxx h (u x ) -20u 3 xxx u 2 xx h (4) (u x ) -10u 2 xxx u 4 xx h (5) (u x ) + 1 7 u 8 xx h (7) (u x )dx.
And on the other hand,

+∞ -∞ ug(u xx ) x dx = - +∞ -∞ u x g(u xx )dx +∞ -∞ u xx g(u xx ) x dx = - +∞ -∞ u xxx g(u xx )dx = [G(u xx ] +∞ -∞ = 0 +∞ -∞ u 4x g(u xx ) x dx = - +∞ -∞ 1 2 u 3 xxx g (u xx )dx +∞ -∞ u 6x g(u xx ) x dx = +∞ -∞ 5 2 u 2 4x u xxx g (u xx ) - 1 4 u 5 xxx g (4) (u xx )dx +∞ -∞ u 8x g(u xx ) x dx = +∞ -∞ - 7 2 u 2 5x u xxx g (u xx ) + u 3 4x u xxx g (u xx ) + 10u 2 4x u 3 xxx g (4) (u xx ) + 1 6 u 7 xxx g (6) (u xx )dx.
Let us remind the Gagliardo-Nirenberg inequality [START_REF] Friedman | Partial Differential Equations[END_REF]. Let 1 ≤ p, q ≤ ∞, 0 ≤ j < m, then there exists C = C(p, q, j, m) > 0 such that

||∂ j x v|| L r ≤ C||∂ m x v|| a L p ||v|| 1-a L q , where 1 r = j + a 1 p -m + 1 -a q and j m ≤ a < 1.
In particular, we have with

p = 2, q = ∞, r = 3, j = 2, m = 3, a = 2/3 ||∂ 2 x v|| 3 L 3 ≤ C||∂ 3 x v|| 2 L 2 ||v|| ∞ . (2.6) We deduce +∞ -∞ u 2 5x u xxx g (u xx )dx ≤ ||u xxx g (u xx )|| ∞ +∞ -∞ u 2 5x dx ≤ C||u|| αg 4 +∞ -∞ u 2 5x dx +∞ -∞ u 3 4x u xxx g (u xx )dx ≤ ||u xxx g (u xx )|| ∞ ||∂ 2 x u xx || 3 L 3 ≤ C(||u xxx || ∞ ||u xx || αg-1 ∞ )||∂ 3 x u xx || 2 L 2 ≤ C||u|| αg 4 +∞ -∞ u 2 5x dx.
Other terms can be bounded by the Sobolev norm H 4 (R) thanks to the Sobolev embedding.

Lemma 2.6 Let s > 3/2. There exists C 3 > 0, depending only on s, such that

< u, f (u) x > s ≤ C 3 ||u|| α f +2 s , (2.7) 
where the scalar product is defined as

< u, v > s = +∞ -∞ (1 + ξ 2 ) s û(ξ)v(ξ)dξ.
Proof. We define

J s (v) := 1 2π +∞ -∞ e ixξ (1 + ξ 2 ) s/2 v(ξ)dξ.
We remind that Kato and Ponce [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF] show that there exists C s > 0, depending only on s, such that

||[J s , u](v)|| L 2 ≤ C s ||u|| ∞ ||J s-1 (v)|| L 2 + ||J s (u)|| L 2 ||v|| ∞ , (2.8) 
where [J s , u](v) = J s (uv) -uJ s (v). We deduce, since u is real valued,

J s (u) = 1 2π +∞ -∞ e -ixξ (1 + ξ 2 ) s/2 û(ξ)dξ = 1 2π +∞ -∞ e -ixξ (1 + ξ 2 ) s/2 +∞ -∞ e i xξ u( x)d x ,
and the change of variables ξ → -ξ implies J s (u) = J s (u). Thus

< u, f (u) x > s = +∞ -∞ J s (u)J s (f (u) x ) dx = +∞ -∞ J s (u)J s (f (u) x ) dx. However, f (u) x = u x f (u) and J s (f (u) x ) = J s (u x f (u)) = f (u)J s (u x ) + [J s , f (u)](u x ), thus < u, f (u) x > s = +∞ -∞ f (u)J s (u x )J s (u) dx + +∞ -∞ [J s , f (u)](u x )J s (u) dx =: I + II.
On one hand, we obtain from the Sobolev embedding and using

J(u x ) = J(u) x | I| = +∞ -∞ f (u) J s (u) 2 2 x dx = 1 2 +∞ -∞ u x f (u)J s (u) 2 dx ≤ 1 2 ||u x f (u)|| ∞ ||J s u|| 2 L 2 ≤ C s ||u|| α f +2 s .
On the other hand, the Cauchy-Schwarz inequality provides

| II| ≤ +∞ -∞ [J s , f (u)](u x )J s (u) dx ≤ ||[J s , f (u)](u x )|| L 2 ||J s (u)|| L 2 ,
and the Kato-Ponce inequality (2.8) and the Sobolev embedding yield

| II| ≤ C s ||f (u)|| ∞ ||J s-1 (u x )|| L 2 + ||J s (f (u))|| L 2 ||u x || ∞ ||J s (u)|| L 2 ≤ C s ||u|| α f +2 s .
We deduce from the preceding lemmata that

d dt ||u(t)|| 2 4 + µ 6 i=2 ||∂ i x u|| 2 L 2 ≤ C 3 ||u|| α f +2 4 + C 2 (||u|| αg+2 4 + ||u|| α h +2 4 ) + +∞ -∞ u 2 5x -εh (u x ) + C 1 δ||u|| αg 4 dx ≤ C||u|| α+2 4 + +∞ -∞ u 2 5x -εh (u x ) + C 1 δ||u|| αg 4 dx, (2.9) 
where

C = 3 max(C 2 , C 3 ) and α = min(α f , α g , α h ) if ||u|| 4 < 1 max(α f , α g , α h ) if ||u|| 4 ≥ 1 .
We notice that, since h (u)

≥ C 0 > 0, +∞ -∞ u 2 0,5x -εh (u 0,x ) + C 1 δ||u 0 || αg 4 dx ≤ +∞ -∞ u 2 0,5x εh (u 0,x ) -1 + C 1 δ C 0 ε ||u 0 || αg 4 dx.
From (2.4), it gets for

K ≤ C 0 /C 1 , C 1 δ C 0 ε ||u 0 || αg 4 ≤ C 1 K C 0 ≤ 1, thus +∞ -∞ u 2 0,5x -εh (u 0,x ) + C 1 δ||u 0 || αg 4 dx ≤ 0.
Then we can choose K > 0 and T > 0 such for all

t ≤ T +∞ -∞ u 2 5x -εh (u x ) + C 1 δ||u|| αg 4 dx ≤ 0.
Indeed, from (2.9), we deduce that ||u(t)|| 4 ≤ m(t) 1/2 where m is solution of

m (t) = 2Cm(t) (α+2)/2 m(0) = ||u 0 || 2 4 .
The solution of this ordinary differential equation is explicitly given by

m(t) α/2 = ||u 0 || α 4 1 -αC||u 0 || α 4 t and ||u(t)|| 4 ≤ m(t) 1/2 ≤ 2 1/α ||u 0 || 4 if t ≤ T = 1 2αC||u 0 || α 4 .
Then, it is enough to choose K ≤ C 0 /(2 αg/α C 1 ) to obtain

C 1 δ C 0 ε ||u|| αg 4 ≤ C 1 δ C 0 ε 2 αg/α ||u 0 || αg 4 ≤ 2 αg/α C 1 K C 0 ≤ 1. Theorem 2.7 Let u 0 ∈ H 4 (R) with ||u 0 || αg 4 ≤ K ε δ .
There exists T > 0, inversely proportional to ||u 0 || 4 , such that there exists a unique solution u ∈ C([-T, T ], H 4 (R)) of the initial value problem

u t + f (u) x -δg(u xx ) x -εh(u x ) x = 0 u(x, 0) = u 0 (x).
Proof. We show that the solution (u µ (t)) µ is a Cauchy sequence for t ∈ [0, T ]. Let µ, ν ≥ 0, and u µ , v ν be the respective solution of (2.1)-(2.2). We have, for t ∈ [0, T ],

∂ t ||u µ -v ν || 2 = 2 < u -v, u t -v t > = -2 < u -v, f (u) x -f (v) x > +2δ < u -v, g(u xx ) x -g(v xx ) x > + 2ε < u -v, h(u x ) x -h(v x ) x > -< u -v, µu xxxx -νv xxxx > .
We notice that

< u -v, µu xxxx -νv xxxx > = µ < u -v, u xxxx -v xxxx > +(µ -ν) < u -v, v xxxx > < u -v, u xxxx -v xxxx > = < (u -v) xx , (u -v) xx >≥ 0,
and

< u -v, f (u) x -f (v) x > = +∞ -∞ -(u -v) x (f (u) -f (v))dx = +∞ -∞ -(u -v) x (u -v) 1 0 f (z λ )dλ dx = +∞ -∞ - (u -v) 2 2 x 1 0 f (z λ )dλ dx = +∞ -∞ (u -v) 2 2 1 0 f (z λ )dλ x dx,
where z λ := (1 -λ)u + λv. In the same way, we find

ε < u -v, h(u x ) x -h(v x ) x > +δ < u -v, g(u xx ) x -g(v xx ) x > = ((u -v) x ) 2 1 0 -εh (z λ,x ) + δ 2 z λ,xxx g (z λ,xx )dλ dx ≤ 0, because h (z λ,x ) ≥ C 0 > 0 implies 1 0 -εh (z λ,x ) + δ 2 z λ,xxx g (z λ,xx )dλ ≤ 1 0 εh (z λ,x )(-1 + δ 2C 0 ε ||z λ,xxx g (z λ,xx )|| ∞ dλ
and, from (2.5), as soon as

K ≤ C 0 /(2 αg+αg/α C 1 ), δ 2C 0 ε ||z λ,xxx g (z λ,xx )|| ∞ ≤ C 1 δ C 0 ε ||z λ || αg 4 ≤ C 1 δ C 0 ε (||u|| 4 + ||v|| 4 ) αg ≤ 2 αg+αg/α C 1 K C 0 ≤ 1.
Finally, it comes

∂ t ||u µ -v ν || 2 = -2 +∞ -∞ (u -v) 2 2 1 0 z λ,x f (z λ )dλ dx -2 +∞ -∞ ((u -v) x ) 2 1 0 -εh (z λ,x ) + δ 2 z λ,xxx g (z λ,xx )dλ dx -µ +∞ -∞ ((u -v) xx ) 2 dx + (µ -ν) +∞ -∞ (u -v) xx v xx dx ≤ +∞ -∞ (u -v) 2 1 0 z λ,x f (z λ )dλ dx + |µ -ν| +∞ -∞ (u -v) xx v xx dx .
Denoting M = sup t∈[0,T ] m(t), we have from the preceding proposition ||u µ (t)|| 4 ≤ M 1/2 and ||v ν (t)|| 4 ≤ M 1/2 . We deduce that there exists a constant C M > 0, depending only on M , such that

∂ t ||u µ -v ν || 2 ≤ C M ||u µ -v ν || 2 + C M |µ -ν|.
The Gronwall lemma implies that (u µ (t)) µ is a Cauchy sequence in the complete space L 2 (R) and then it converges to a limit u(t). Moreover, since u µ (t) is continuous with respect to time and uniformly bounded by M 1/2 , the sequence (u µ (t)) µ is also weakly convergent in H 4 (R) to the limit u(t).

Remark 2.8 We can easily improve the assumptions by setting only

|f (2) (u) -f (2) (0)| ≤ C f |u| α f -1 |g (7) (u) -g (7) (0)| ≤ C g |u| αg-6 |h (6) (u) -h (6) (0)| ≤ C h |u| α h -5 .
The inequality (2.9) becoming

d dt ||u(t)|| 2 4 + µ 6 i=2 ||∂ i x u|| 2 L 2 ≤ C(1 + ||u|| α+2 4 ) + +∞ -∞ u 2 5x -εh (u x ) + C 1 ||u|| αg 4
dx, the rest of the proof is dealt with similarly. 

Nonlinearity of type g(u x ) xx

To improve the assumptions concerning the dissipation, we now focus on nonlinear dispersion of type g(u x ) xx . It allows us to regard more generalized dissipation. As for the preceding section, we consider the regularized Cauchy problem

u t + f (u) x -δg(u x ) xx -εh(u x ) x + µu xxxx = 0 (3.1) u(x, 0) = u 0 (x). (3.2) Proposition 3.1 Assume that |f (i) (u)| ≤ C f |u| α f +1-i for 0 ≤ i ≤ 2 |g (j) (u)| ≤ C g |u| αg+1-j for 0 ≤ j ≤ 8 |h (k) (u)| ≤ C h |u| α h +1-k for 0 ≤ k ≤ 7, and 
h (u) ≥ c h |u| α h .
Suppose that α g ≥ α h + 1. Then there exists K > 0 such that for u 0 ∈ H 4 (R) with

||u 0 || αg-α h 4 ≤ K ε δ ,
there exists T > 0, depending only on ||u 0 || 4 and independent on µ, such that there exists a unique solution u ∈ C([-T, T ], H 4 (R)) of the initial value problem (3.1)-(3.2). Moreover, there exists C > 0 such that the solutions u and v, with u 0 and v 0 as initial datum respectively, satisfy for |t| ≤ T,

||u(t) -v(t)|| 4 ≤ C||u 0 -v 0 || 4 .
Proof. In the exact same way that we prove Lemma (2.2), we first show there exists a unique

solution u ∈ C([-T µ , T µ ], H 4 (R)) of the initial value problem (3.1)-(3.
2) where T µ depends on µ using Duhamel's formula. It remains to prove that this time can be chosen independently on µ.

The equation (3.1) is multiplied by

4 i=0 (-1) i ∂ 2i
x u and the result is integrated over space to supply 1 2

d dt ||u(t)|| 2 4 + µ 6 i=2 +∞ -∞ (∂ i x u) 2 dx = 4 i=0 +∞ -∞ (-1) i+1 (∂ 2i x u)f (u) x dx + 4 i=0 +∞ -∞ δ(-1) i (∂ 2i x u)g(u x ) xx dx + ε(-1) i (∂ 2i x u)h(u x ) x dx =: I + II. Lemma 3.2 There exist C 1 , C 2 > 0 such that II ≤ +∞ -∞ εh (u x )u 2 5x -1 + C 1 δ ε ||u|| αg-α h 4 dx + C 2 (||u|| αg+2 4 + ||u|| α h +2 4 
).

Proof. We note, on the one hand,

+∞ -∞ uh(u x ) x dx = - +∞ -∞ u x h(u x )dx ≤ 0 +∞ -∞ u xx h(u x ) x dx = +∞ -∞ u 2 xx h (u x )dx +∞ -∞ u 4x h(u x ) x dx = +∞ -∞ -u 2 xxx h (u x ) + 1 3 u 4 xx h (u x )dx +∞ -∞ u 6x h(u x ) x dx = +∞ -∞ u 2 4x h (u x ) - 3 2 u 3 xxx h (u x ) - 9 2 u 2 xxx u 2 xx h (u x ) + 1 5 u 6 xx h (5) (u x )dx +∞ -∞ u 8x h(u x ) x dx = +∞ -∞ -u 2 5x h (u x ) + 8u 2 4x u xxx h (u x ) + 8u 2 4x u 2 xx h (u x ) -5u 4 xxx h (u x ) -20u 3 xxx u 2 xx h (4) (u x ) -10u 2 xxx u 4 xx h (5) (u x ) + 1 7 u 8 xx h (7) (u x )dx,
and on the other hand

+∞ -∞ ug(u x ) xx dx = +∞ -∞ u xx g(u x )dx = [G(u x ] +∞ -∞ = 0 +∞ -∞ u xx g(u x ) xx dx = +∞ -∞ 1 2 u 3 xx g (u x )dx +∞ -∞ u 4x g(u x ) xx dx = +∞ -∞ - 5 2 u 2 xxx u xx g (u x ) + 1 4 u 5 xx g (4) (u x )dx +∞ -∞ u 6x g(u x ) xx dx = +∞ -∞ 7 2 u 2 4x u xx g (u x ) -7u 3 xxx u xx g (u x ) -7u 2 xxx u 3 xx g (4) (u x ) + 1 6 u 7 xx g (6) (u x )dx +∞ -∞ u 8x g(u x ) xx dx = +∞ -∞ - 9 2 u 2 5x u xx g (u x ) + u 5x u 4x u xxx g (u x ) + 40u 2 4x u xxx u xx g (u x ) + 15u 2 4x u 3 xx g (4) (u x )dx - 145 4 u 4 xxx u xx g (4) (u x ) -45u 3 xxx u 3 xx g (5) (u x ) - 15 2 u 2 xxx u 5 xx g (6) (u x ) -6u 2 xxx u 5 xx g (6) (u x ) + 1 8 u 9 xx g (8) (u x ).
Finally, according to the Sobolev embedding,

II ≤ +∞ -∞ -εh (u x )u 2 5x - 9δ 2 u 2 5x u xx g (u x ) + δu 5x u 4x u xxx g (u x )dx + C 2 (||u|| αg+2 4 + ||u|| α h +2 4 
).

We have, since

α g ≥ α h + 1, +∞ -∞ u 2 5x u xx g (u x )dx ≤ u xx g (u x ) h (u x ) ∞ +∞ -∞ h (u x )u 2 5x dx ≤ C||u|| αg-α h 4 +∞ -∞ h (u x )u 2 5x dx and from the Young inequality 2ab ≤ a 2 + b 2 +∞ -∞ u 5x u 4x u xxx g (u x )dx ≤ +∞ -∞ u 2 5x |u xxx g (u x )|dx + +∞ -∞ u 2 4x |u xxx g (u x )|dx ≤ u xxx g (u x ) h (u x ) ∞ +∞ -∞ h (u x )u 2 5x dx + +∞ -∞ u 2 4x |u xxx g (u x )|dx ≤ C||u|| αg-α h 4 +∞ -∞ h (u x )u 2 5x dx + C||u|| αg+2 4
.

Lemma 2.6 provides the following inequality.

Lemma 3.3 There exists a constant C 4 > 0 such that

|I| ≤ C 4 ||u|| α f +2 4
.

We deduce from Lemmata 3.2 and 3.3

d dt ||u(t)|| 2 4 + µ 6 i=2 ||∂ i x u|| 2 L 2 ≤ C||u|| α+2 4 + +∞ -∞ εh (u x )u 2 5x -1 + C 1 δ ε ||u|| αg-α h 4
dx.

Then we can choose

T = 1/(2αC||u 0 || α 4 ) > 0 such that for all t ≤ T +∞ -∞ εh (u x )u 2 4x -1 + C 1 δ ε ||u|| αg-α h 4
dx ≤ 0 as soon as

C 1 δ ε ||u(t)|| αg-α h 4 ≤ C 1 δ ε 2 (αg-α h )/α ||u 0 || αg-α h 4 ≤ C 1 2 (αg-α h )/α K ε ≤ 1. Theorem 3.4 Let u 0 ∈ H 4 (R) with ||u 0 || αg-α h 4 ≤ K ε δ .
There exists T > 0, inversely proportional to ||u 0 || 4 , such that there exists a unique solution u ∈ C([-T, T ], H 4 (R)) of the initial value problem

u t + f (u) x -δg(u x ) xx -εh(u x ) x = 0 u(x, 0) = u 0 (x).
Proof. Once again, we show that the solution (u µ (t)) µ is a Cauchy sequence for t ∈ [0, T ]. Let µ, ν ≥ 0, and u µ , v ν be the respective solution of (2.1)-(2.2). We have, for t ∈ [0, T ],

∂ t ||u µ -v ν || 2 = 2 < u -v, u t -v t > = -2 < u -v, f (u) x -f (v) x > +2δ < u -v, g(u x ) xx -g(v x ) xx > + 2ε < u -v, h(u x ) x -h(v x ) x > -< u -v, µu xxxx -νv xxxx > .
We see that

< u -v, µu xxxx -νv xxxx > = µ < u -v, u xxxx -v xxxx > +(µ -ν) < u -v, v xxxx > < u -v, u xxxx -v xxxx > = < (u -v) xx , (u -v) xx >≥ 0,
and, setting

z λ = (1 -λ)u + λv < u -v, f (u) x -f (v) x > = - +∞ -∞ (u -v) x (f (u) -f (v))dx = +∞ -∞ (u -v) 2 2 1 0 z λ,x f (z λ )dλ dx.
In the same way, we find

ε < u -v, h(u x ) x -h(v x ) x > +δ < u -v, g(u x ) xx -g(v x ) xx > = -((u -v) x ) 2 1 0 εh (z λ,x ) + δ 2 z λ,xx g (z λ,x )dλ ≤ 0, because δ 2ε z λ,xx g (z λ,x ) h (z λ,x ) ∞ ≤ C 1 δ ε ||z λ || αg-α h 3 ≤ 2 (αg-α h )+(αg-α h )/α C 1 K ε ≤ 1.
Finally, we obtain

∂ t ||u µ -v ν || 2 = -2 +∞ -∞ (u -v) 2 2 1 0 z λ,x f (z λ )dλ dx -2 +∞ -∞ ((u -v) x ) 2 1 0 εh (z λ,x ) + δ 2 z λ,xx g (z λ,x )dλ dx -µ +∞ -∞ ((u -v) xx ) 2 dx + (µ -ν) +∞ -∞ (u -v) xx v xx dx ≤ +∞ -∞ (u -v) 2 1 0 z λ,x f (z λ )dλ dx + |µ -ν| +∞ -∞ (u -v) xx v xx dx .
We have ||u µ (t)|| 4 ≤ M 1/2 and ||v ν (t)|| 4 ≤ M 1/2 . Then we deduce that there exists a constant C M > 0, depending only on M , such that

∂ t ||u µ -v ν || 2 ≤ C M ||u µ -v ν || 2 + C M |µ -ν|.
The Gronwall lemma implies that (u µ (t)) µ is a Cauchy sequence in the complete space L 2 (R) and then it converges to a limit u(t). Moreover, since u µ (t) is continuous with respect to time and uniformly bounded by M 1/2 , the sequence (u µ (t)) µ is also weakly convergent in H 4 (R) to the limit u(t).

Remark 3.5 When h (u) ≥ C 0 > 0, the H 3 -regularity is enough to obtain the well-posedness with the nonlinear dispersion g(u x ) xx .

4 Nonlinearities of type g(u xxx ) and g(u) xxx

In a similar manner, we can study nonlinear dispersions g(u xxx ) and g(u) xxx . The proofs are sketched.

Theorem 4.1 Assume that there exists

C 0 , C f , C g , C h > 0 such that |f (i) (u)| ≤ C f |u| α f +1-i for 0 ≤ i ≤ 2 |g (j) (u)| ≤ C g |u| αg+1-j for 0 ≤ j ≤ 6 |h (k) (u)| ≤ C h |u| α h +1-j for 0 ≤ k ≤ 6, with h (u) ≥ C 0 > 0,
and α g ≥ 1. Then there exists K > 0 such that for u 0 ∈ H 7 (R) satisfying

||u 0 || αg 7 ≤ K ε δ ,
there exists T > 0, inversely proportional to ||u 0 || 7 , such that there exists a unique solution u ∈ C([-T, T ], H 7 (R)) of the initial value problem

u t + f (u) x -δg(u xxx ) -εh(u x ) x = 0 u(x, 0) = u 0 (x).
Moreover, for all t ∈ [-T, T ], we have

||u(t)|| 7 ≤ C||u 0 || 7 .
Proof. Let n ∈ N * . Multiplying the equation

u t + f (u) x -δg(u xxx ) -εh(u x ) x + µu xxxx = 0 by n i=0 (-1) i ∂ 2i
x u and integrating over space give 1 2

d dt ||u(t)|| 2 n + µ n+2 i=2 +∞ -∞ (∂ i x u) 2 dx = n i=0 +∞ -∞ (-1) i+1 (∂ 2i x u)f (u) x dx + n i=0 +∞ -∞ δ(-1) i (∂ 2i x u)g(u xxx ) + ε(-1) i (∂ 2i x u)h(u x ) x dx.
The Leibniz rule points to

+∞ -∞ (-1) n (∂ 2n x u)g(u xxx )dx = - +∞ -∞ (∂ n+1 x u)∂ n-1 x g(u xxx )dx = - +∞ -∞ (∂ n+1 x u)∂ n-2 x (u 4x g (u xxx ))dx = - +∞ -∞ (∂ n+1 x u) n-2 j=0 n -2 j (∂ n-2-j x u 4x )(∂ j x g (u xxx ))dx = - +∞ -∞ (∂ n+1 x u) n-2 j=0 n -2 j (∂ n+2-j x u)(∂ j x g (u xxx ))dx.
We focus on the high order space derivatives. The other derivatives can be included in the Sobolev norm H n (R) using the Gagliardo-Nirenberg inequality and the Sobolev embedding. Then, we obtain from j = 0, 1, 2 dx, and the rest of the proof is dealt with similarly as the previous theorems. As before, to control the norm of the derivatives with the Sobolev norm H n (R), we need n ≥ 4, the greatest orders being such that dx.

+∞ -∞ (∂ n+1 x u)(∂ n+2 x u)g (u xxx )dx = +∞ -∞ - (∂ n+1 x u) 2 2 u 4x g (u xxx )dx +∞ -∞ (∂ n+1 x u)(∂ n+1 x u)∂ x (g (u xxx ))dx = +∞ -∞ (∂ n+1 x u) 2 u 4x g (u xxx )dx +∞ -∞ (∂ n+1 x u)(∂ n x u)∂ 2 x (g (u xxx ))dx = +∞ -∞ - (∂ n x u) 2 2 ∂ 3 x (g (u xxx ))dx = +∞ -∞ - (∂ n x u) 2 2 u 6x g (u xxx ) + 3u 5x u 4x g (u xxx ) + u 3 4x g (4) (u xxx ) dx. We notice that, if n ≥ 7, +∞ -∞ (∂ n+1 x u) 2 u 4x g (u xxx )dx = ||u 4x g (u xxx )|| ∞ +∞ -∞ (∂ n+1 x u) 2 dx ≤ C||u|| αg n +∞ -∞ (∂ n+1 x u) 2 dx +∞ -∞ (∂ n x u) 2 2 
Remark 4.3 Regarding the nonlinear dispersions g(u xxx ) and g(u) xxx , it could be possible to reduce the regularity of the initial datum by writing more precisely the derivatives appearing the integrations by parts. For example, to apply the Leibniz rule with the nonlinear dispersion g(u xx ) x gives n = 6 whereas n = 4 is enough.

  -εh (u 0,x ) + C 1 δ||u 0 || αg 4 dx ≤ 0, (1.1) for a dispersion |g (u)| ≤ C g |u| αg .To keep a nonlinear dispersion, a superlinear condition h (u) ≥ C 0 > 0 is imposed. Then, as soon as ||u 0 || αg 4

Remark 2 . 9

 29 The time T , proportional to 1/||u 0 || 4 , is also the time well-posedness of the purely hyperbolic initial value problem. Remark 2.10 Concerning the fully nonlinear dispersive equation (i.e. ε = µ = 0), one can not control the sign of z xxx g (z xx ). Nevertheless, the regularized problem u t + f (u) x -δg(u xx ) x -µu xxx = 0 remains well-posed on a time-scale inversely proportional to ||u 0 || 4 if the initial datum satisfies ||u 0 || 4 ≤ Kµ/δ. Remark 2.11 Concerning the case of linear dispersion, same ideas provide the well-posedness of the initial value problem in H 2 (R) for a large range of dissipation.

Theorem 4 . 2

 42 Assume that there exists C 0 , C f , C g , C h > 0 such that|f (i) (u)| ≤ C f |u| α f +1-i for 0 ≤ i ≤ 2 |g (j) (u)| ≤ C g |u| αg+1-j for 0 ≤ j ≤ 3 |h (k) (u)| ≤ C h |u| α h +1-j for 0 ≤ k ≤ 6, with h (u) ≥ C 0 > 0,and α g ≥ 1. Then there exists K > 0 such that for u 0 ∈ H 4 (R) with exists T > 0, inversely proportional to ||u 0 || 4 , such that there exists a unique solution u ∈ C([-T, T ], H 4 (R)) of the initial value problemu t + f (u) x -δg(u) xxx -εh(u x ) x = 0 u(x, 0) = u 0 (x).Moreover, for all t ∈ [-T, T ], we have||u(t)|| 4 ≤ C||u 0 || 4 .Proof. Let n ∈ N * . The equationu t + f (u) x -δg(u) xxx -εh(u x ) x + µu xxxx = 0 is multiplied by n i=0 (-1) i ∂ 2ix u and by integrating over space, i (∂ 2i x u)g(u) xxx + ε(-1) i (∂ 2i x u)h(u x ) x dx.The Leibniz rule implies+∞ -∞ (-1) n (∂ 2n x u)g(u) xxx = -)(∂ j x g (u)) +3∂ n-1-j x (u xx u x )(∂ j x g (u)) + ∂ n-1-j x (u3x )(∂ j x g (u)).

2 u 2 u.Finally

 22 3x g (u)dx ≤ ||u 3x g (u)|| ∞ 3x g (u)dx ≤ C||u|| αg+2 n (u x ) + C 4 ||u|| αg 4

  u 6x g (u xxx ) + 3u 5x u 4x g (u xxx ) + u 3 4x g (4) (u xxx ) dx ≤ C||u|| αg+2

						9) is now
	written as	d dt	||u(t)|| 2 7 ≤ C||u|| α+2 7	+	+∞ -∞	u 2 8x -εh (u

n . Same equalities hold for j = n -1, n -2, n -3 and for h. Finally, the inequality (2.x ) + C 7 ||u|| αg 7