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Introduction

The Kadomtsev-Petviashvili equations (KP) in three-dimensional space

ut + ux + uux + uxxx + a∂−1
x uyy + b∂−1

x uzz = 0 (1)

is used to describe the Bose-Einstein condensation [5], or electromagnetic waves in a ferromagnetic

medium [14]. Here ∂−1
x denotes the anti-derivative, defined such that ∂̂−1

x u (ξ1, ξ2, ξ3) := û(ξ1, ξ2, ξ3)/(i ξ1),
and û represents the Fourier transform of u, the constants a, b are normalized to ±1.
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Using the Benjamin-Bona-Mahony trick [3] (the change of variables ε−1u(ε−1/2x, ε−1y, ε−1z, ε−1/2t)
is applied, with ε small), we can replace ux by −ut + O(ε) in (1) to find the so-called regularized KP
equations (or the BBM equation)

ut + ux + uux − uxxt + a∂−1
x uyy + b∂−1

x uzz = O(ε). (2)

In this paper, we are concerned with the regularized generalized KP equations in three-dimensional
space

ut + ux + upux − uxxt + a∂−1
x uyy + b∂−1

x uzz = 0 , (3)

where p ≥ 1.
Recall that the mass ∫

R3

u2(x, y, z, t) + u2
x(x, y, z, t) dx dy dz ,

is conserved by the flow associated with (3). Some theoretical results concerning the behavior of solutions
of (1) have been recently established, in particular the existence of solitary waves [6, 7] and the blow-up
in finite time [15, 16, 24]. Many theoritical and numerical works related with Kadomtsev-Petviashvili
equations and its regularized version in dimension two can be found in the literature ([4, 8, 11, 13, 24, 25,
27, 28] and references therein). Few literatures are concerning the dimension three, therefore numerical
simulations are of interest [12, 17, 26, 30, 32]. We recently studied the numerical behavior of the solutions
of (1), and observed three phenomenons : the blow-up in finite time, the dispersion and the solitonic
behavior [10].

The aim of this paper consists in inspecting numerically the behavior of the solution of (3). We
observe the regularizing effect of (3): the blow-up in finite time of solutions does no longer occur.

This paper is subdivided into four sections. In Section 1, we discretize the Cauchy problem associated
with (3), by combining a spectral method for the space discretization and a predictor-corrector scheme
for the time discretization. Sections 2, 3 and 4 systematically deal with numerical simulations.

We study in Section 2 the propagation, based on (3), of localized initial data. The numerical inspec-
tions show in the contexts where p ≥ 1, a = b = −1, and p ≥ 3, a = b = 1 or ab = −1, the l∞−norm
of the discrete solution of (3) is first perturbed and then is stabilized. This is defined as the solitonic
behavior. This state, for which the amplitude of the wave remains constant, is a intermediary between
the dispersion due to the linearity (the amplitude of the wave decreases and the wave is broken down) and
the blow-up in finite time due to the non-linearity. Furthermore, soliton is a particular solution which is
translated at a constant velocity without loss of shape. Concerning (1), the numerical solutions blow up
in finite time in the same contexts [10].

In the two next sections, we are concerned with the numerical investigation of the transverse insta-
bilities, we aim to characterize the unstable modes [1, 2, 19, 20, 21, 22, 23, 29]. The unstable modes are
obtained from the linearized equation around Φc, a solitary wave, as

u(x, y, t) = Φc(x− ct) + εe
σt+i 2πyλy ũ(x),

with λy > 0,Re(σ) > 0, ũ ∈ L2(R). The line-soliton

Φc(x) =

(
(p+ 1)(p+ 2)

2
c

)1/p

sech2/p
(p

2
x
)
,

is considered in Section 3 and we study the solution of (3) with the initial datum:

u0(x, y, z) := Φc(y,z)(x),

where c(y, z) := c(1 + ε cos(2πy/λy + 2πz/λz)) is a perturbation of the velocity of the line-soliton, in an
infinitesimal way in the y and z−directions, λy, λz > 0, and ε > 0 is a fixed small value.
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When p ≥ 2, a = b = −1, or ab = −1, there exist two critical transverse wavelengths 0 < λ1
c � λ2

c ,
depending only on c, such that the discrete solution of (3) with such an initial datum u0 is unstable under
the flow of (3) if λ1

c < λy < λ2
c or λ1

c < λz < λ2
c .

The study of the transverse instability in the z−direction is done in Section 4, by considering as initial
datum the profile of the Zaitsev traveling waves [31], which exists for p = 1 and a = −1:

u0(x, y, z) := ψc(z)(x, y),

ψc(x, y) = 12α2c
1− β cosh(αx) cos(δy)

(cosh(αx)− β cos(δy))2
, β =

√
1− 3cα4

δ2
, 3cα4 < δ2 , α2 +

δ2

cα2
= 1.

The velocity is here perturbed in the z−direction; c(z) := c(1 + ε cos(2πz/λz)), λz > 0, and ε > 0 a fixed
small value. The wavelength λz translates the instability by transverse perturbations in the sense that,
when b = −1, there exist two critical transverse wavelengths 0 < λ1

c � λ2
c , depending only on c, such

that the solution of (3) with u0 as initial datum behaves like a soliton, not close to the initial datum if
λ1
c < λz < λ2

c . The solution is hence unstable.

1 Numerical discretizations

Recall that the initial value problem is globally in time well-posed in dimension two [4, 25]:

Theorem 1.1 [25] There exists a functional space continuously X embedded in C(R;H), with H ⊂
L2(R2) equipped with the norm

||u||H = (||u||2L2 + ||ux||2L2)1/2,

such that for any u0 ∈ H, there exists a unique global in time solution u ∈ X with u0 as initial datum.

In [4], the global well-posedness is provided in the space{
u, ux, uy, uxx, ∂

−1
x uy ∈ L2(R2)

}
.

Let us consider the Cauchy problem based on (3), where u0 denotes the initial datum:

u(x, y, z, 0) := u0(x, y, z),

with the following functional settings:{
u, ux, uy, uz, uxx, uyy, uzz, ∂

−1
x uy, ∂

−1
x uz, ∂

−2
x uyy, ∂

−2
x uzz ∈ L2(R3)

}
.

By combining a spectral approach with a predictor-corrector scheme, we discretize here the Cauchy
problem based on (3).

1.1 Spectral approach

Spectral methods are very suitable to the discretization of equations such as (3), the non-linearity and
the anti-derivative appearing in (3) being easily treated.

For (ξ1, ξ2, ξ3) ∈ R3, and t ≥ 0, we use the notation

û(ξ1, ξ2, ξ3, t) :=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

u(x, y, z, t)e−i(ξ1x+ξ2y+ξ3z) dxdydz .
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By applying this Fourier transform to the considered Cauchy problem, it follows that the singularity
for ξ1 = 0 needs to be overcame. Looking moreover for solutions of (3) such that u, up+1 and ut ∈
L1(R3) ∩ L2(R3), we notice that ∀ (ξ2, ξ3) ∈ R2, ∀ t > 0,

lim
ξ1−→0

û(ξ1, ξ2, ξ3, t) = 0 , lim
ξ1−→0

û(ξ1, ξ2, ξ3, t)

ξ1
= 0 ,

provided that

û0(0, ξ2, ξ3) = 0 , lim
ξ1−→0

û0(ξ1, ξ2, ξ3)

ξ1
= 0 . (4)

Indeed, by integrating over R with respect to x, we have∫ +∞

−∞
uyy(x, y, z, t) + uzz(x, y, z, t) dx = 0.

Since u vanishes at infinity, we obtain for all time t ∈ R∫ +∞

−∞
u(x, y, z, t) dx = 0 =

∫ +∞

−∞
u0(x, y, z) dx.

Therefore, integrate over R with respect to x provides∫ +∞

−∞
∂−1
x uyy(x, y, z, t) + ∂−1

x uzz(x, y, z, t) dx = 0, and

∫ +∞

−∞
∂−1
x u(x, y, z, t) dx = 0.

In view of numerical computations in a bounded and periodised domain Ω, we now consider (3) in
[−K,K] × [−L,L] × [−M,M ] =: Ω, where K, L, M > 0 are fixed values allowing us to express the
relations (4) as below

∫ M

−M

∫ L

−L
e−i(ξ2y+ξ3z)

(∫ K

−K
u0(x, y, z) dx

)
dy dz = 0 ,∫ M

−M

∫ L

−L
e−i(ξ2y+ξ3z)

(∫ K

−K

∫ x

−K
u0(x1, y, z) dx1dx

)
dy dz = 0 .

(5)

Let us consider now the discrete Fourier basis consisting of trigonometric polynomial functions

eik πK xeil πLyeim π
M z ; i2 = −1 , −Nx

2
≤ k ≤ Nx

2
− 1 , −Ny

2
≤ l ≤ Ny

2
− 1 , −Nz

2
≤ m ≤ Nz

2
− 1 ,

where Nx, Ny, Nz ∈ 2N? represent the numbers of modes. Let us set Nx = 2K/∆x, Ny = 2L/∆y and
Nz = 2M/∆z, where ∆x, ∆y, ∆z > 0. For any non periodic scalar function u, locally summable, we
denote by uK,L,M the function equal to u in Ω and extended outside of Ω as a periodic function of period
equal to 2K in the x−direction, 2L in the y−direction, 2M in the z−direction. The expression of uK,L,M
in the considered discrete basis is as follows,

uK,L,M (x, y, z) =

Nx
2 −1,

Ny
2 −1,Nz2 −1∑

k=−Nx2 ,l=−Ny2 ,m=−Nz2

û(k πK , l
π
L ,m

π
M )eik πK xeil πLyeim π

M z ,

with

û(k πK , l
π
L ,m

π
M ) = 1

(2K)(2L)(2M)

∫ K

−K

∫ L

−L

∫ M

−M
u(x, y, z)e−ik πK xe−il πLye−im π

M z dxdydz .
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We are then concerned with a system of Nx×Ny ×Nz ordinary differential equations and Nx×Ny ×Nz
unknowns: for each triplet (ξ1, ξ2, ξ3), find û(ξ1, ξ2, ξ3, t) satisfying

(1 + ξ2
1)ût(ξ1, ξ2, ξ3, t) + iξ1

ûp+1

p+ 1(ξ1, ξ2, ξ3, t) + i(ξ1 + aξ2
2/ξ1 + bξ2

3/ξ1)û(ξ1, ξ2, ξ3, t) = 0 , ∀ t > 0,

û(0, ξ2, ξ3, t) = û0(0, ξ2, ξ3) , ∀ t > 0,

û(ξ1, ξ2, ξ3, 0) = û0(ξ1, ξ2, ξ3) ,
(6)

where  ξ1 = k πK , ξ2 = l πL , ξ3 = m π
M ,

−Nx2 ≤ k ≤
Nx
2 − 1 , −Ny2 ≤ l ≤

Ny
2 − 1 , −Nz2 ≤ m ≤

Nz
2 − 1 ,

(7)

and the datum u0 is subject to (5).

1.2 Time discretization

In view of efficient numerical computations on long time intervals, we consider predictor-corrector method
[18]. Also, in view of flexible numerical implementations, we restrict ourselves to one-step schemes.

Let ∆t > 0 be the step of the time discretization, and set tn = n∆t. For n ∈ N, we denote by ûn an
approximation of û(ξ1, ξ2, ξ3, tn) and by un an approximation of u(x, y, z, tn), where (x, y, z) ∈ Ω. The
method we consider for solving (6) - (7) consists of combining the explicit Euler method for the predictor
and the Crank-Nicolson method for the corrector. The resulting scheme is a predictor-corrector method
and is of order two with respect to the time step [18] under suitable regularities of the solution of (6) -
(7).

By denoting by m ≥ 1 a maximal number of iterations, the algorithm considered for solving (6) - (7)
is described as follows:

• Set û0,m := ... := û0,1 := û0,0 := û0.

• For n = 0, 1, ..., compute:

ûn+1,0 := ûn,m −
i∆t

1 + ξ2
1

ξ1 ûp+1
n,m

p+ 1
+ (ξ1 + aξ2

2/ξ1 + bξ2
3/ξ1)ûn,m

 ,

• For r = 0, 1, ..., m− 1,

ûn+1,r+1 := ûn,m − i∆t
2(1 + ξ2

1)

ξ1 ûp+1
n+1,r

p+ 1 + (ξ1 + aξ2
2/ξ1 + bξ2

3/ξ1)ûn+1,r + ξ1
ûp+1
n,m

p+ 1

+(ξ1 + aξ2
2/ξ1 + bξ2

3/ξ1)ûn,m).
(8)

The iterations are stopped in one of the two following cases:

• when ‖un+1,r+1 − un+1,r‖l2(Ω)/‖un+1,0‖l2(Ω) ≤ τ , with τ > 0 a fixed tolerance. We then set
un+1 := un+1,r+1;

• or when r = m− 1. Here, we set un+1 := un+1,m. We mention that the step ∆t can be reduced in
this case, in order to improve the previous relative error.

5



This algorithm provides the solution ûn(ξ1, ξ2, ξ3), where ξ1 6= 0, ξ2, ξ3 are defined as in (7), and where
we consider:

• For n = 1, 2, ...,
ûn(0, ξ2, ξ3) := û0(0, ξ2, ξ3).

Remark 1.1 A practical way to choose a suitable (initial) step ∆t in the previous algorithm is the one
involving the parameters ∆y, ∆z as follows: for Ω = [−K,K]× [−L,L]× [−M,M ],

∆t <
4

1 + (K/∆y)2 + (K/∆z)2 + ‖un‖pL∞(Ω)

. (9)

Indeed, since from (8),

ûn+1,r+1 − ûn+1 ≈ i
∆t

2(1 + ξ2
1)

(ξ1 + aξ2
2/ξ1 + bξ2

3/ξ1)(ûn+1,r − ûn+1)

+ iξ1
∆t

2(1 + ξ2
1)

 ûp+1
n+1,r

p+ 1
−
ûp+1
n+1

p+ 1

 ,

it follows in the case where p ∈ N∗ that,

ûn+1,r+1 − ûn+1 ≈ i
∆t

2(1 + ξ2
1)

(ξ1 + aξ2
2/ξ1 + bξ2

3/ξ1)(ûn+1,r − ûn+1)

+ iξ1
∆t

2(1 + ξ2
1)(p+ 1)

p∑
j=0

̂(un+1,r − un+1)ujn+1,ru
p−j
n+1,

and a linearization (near un) in the right-hand side of this relation leads to the approximation:

ûn+1,r+1 − ûn+1 ≈ i
∆t

2(1 + ξ2
1)

(ξ1 + aξ2
2/ξ1 + bξ2

3/ξ1)(ûn+1,r − ûn+1) + iξ1
∆t

2(1 + ξ2
1)

̂(un+1,r − un+1)upn.

Then, since ξ1/(1 + ξ2
1) ≤ 1/2, ξ2 ≤ π/∆y, ξ3 ≤ π/∆z, it follows that for k 6= 0, and making use of the

Parseval formula,

‖un+1,r+1 − un+1‖L2(Ω) <∼
∆t

4

(
1 + (K/∆y)2 + (K/∆z)2 + ‖un‖pL∞(Ω)

)
‖un+1,r − un+1‖L2(Ω).

2 Long time behavior for localized initial data

We are interested here in numerical simulations concerning the Cauchy problem. In a general way, two
sets of parameters will be considered for these simulations based on the algorithm described previously.
The first set is made up of the parameters a, b = ±1, p ≥ 1, that intervene in (3), and the second one
concerns the parameters K, L, M , ∆t, Nx, Ny, Nz used in the algorithm. Here, we focus on integer
values of p, the numerical scheme proposed here works also for real and very large non-linearities.

To study the behavior in long time of the discrete solution of (3), associated with a localized initial
datum, two phenomena will systematically be inspected: the dispersion (context where the L∞−norm
of the solution decreases) and the solitonic behavior (phenomenon where the L∞−norm of the solution
is constant). Let us remind that no theoretical result concerning the Cauchy problem based on (3) is
established. The two-dimensional case of the numerical investigation regarding (3) is treated in [9].

6



Our numerical inspections will be based on the choice: for α, s ∈ R?+,

u0(x, y, z) = α(1− 2sx2) e−s(x
2+y2+z2) , (10)

and on various considerations of parameters mentioned above. Let us indicate that the choices of values
of K will be such that u0 satisfies (5) numerically.

In the presentation of our results, we distinguish the case p = 1 and the generalized case where p > 1.

2.1 Non-generalized case: p = 1

In this subsection, we describe the results obtained from numerical simulations by fixing p = 1. In each
of the contexts where a = ±1 with b = ±1, we perform experiments by setting here: s = 1, K = 50,
L = M = 4, Ny = Nz = 16. We already mention that for all our experiments, here and in the next
sections, the step ∆t will always be chosen in accordance with (9). We observe the same evolutions of
these norms when a = −1, b = 1 as well as when a = 1, b = −1. This was foreseeable according to the
symmetry of u0 and to the one of (3) related to the y and z−directions. In this order of ideas, we restrict
in this section the presentation of our results to the contexts where ab = 1, and a = −1, b = 1.

The results represented in Figure 1 concern the evolutions with respect to time of the l∞ and h1−norms
of the discrete solution obtained by considering Nx = 256, ∆t = 10−3, α = 5.
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Figure 1: Evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time, for p = 1, α =
5, s = 1,K = 50, L = M = 4, Nx = 256, Ny = Nz = 16,∆t = 10−3.

Let us notice that for these choices of α, the results obtained from simulations with other values of
parameters, namely with K = 32, L = M = 6, 12, Nx = 128, Ny = Nz = 32, 64, do not qualitatively
differ from those represented in this section. We observe that the h1−norm is conserved by the flow of
(3), and the l∞−norm decreases with time. Put another words, the dispersive effect prevails over the
non-linearity. The evolutions of the norms in the different contexts where ab = ±1 look similar.

Figure 2 presents the evolutions of the l∞ and h1−norms of the discrete solution when a larger
amplitude of the initial datum is considered. Here α = 50, Nx = 512 and ∆t = 10−4.
In each of the contexts where a = b = 1, ab = −1, we observe, as with α = 5, that the dispersive
effect prevails over the non-linearity (similar to Figure 1). But for a = b = −1, the discrete solution,
associated with the initial datum of larger amplitude, has a tendency to blow up at the beginning of the
evolution and after that, the dispersive effect prevents the solution from blowing up. The fact that the
non-linearity and the dispersive effect are neutralized, and that the L∞−norm is stabilized, is called the
solitonic behavior. This means that the velocity of the limit profile has a periodic-like behavior in time.
We mention that when we take larger values of L,M,Ny, Nz (e.g. L = M = 6, Ny = Nz = 32), we do
not obtain, from the simulations, results that are qualitatively different from those presented here.
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Figure 2: At left, evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time. At center,
the projection on the x−axis of the localized initial datum. At right, the projection at time T = 10. Here
p = 1, a = b = −1, α = 50, s = 1,K = 50, L = M = 4, Nx = 512, Ny = Nz = 16,∆t = 10−4.

2.2 Generalized case: p > 1

In this subsection, we are concerned with numerical experiments when p = 2, 3.
Let us fix in this part p = 2. The experiments associated with Figure 3 is performed by setting: s = 1,

K = 50, L = M = 4, Nx = 512, Ny = Nz = 16 and ∆t = 10−4. In Figure 3, we represent the evolutions
with respect to time of the l∞ and h1−norms of the discrete solution obtained by considering α = 10.
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Figure 3: Evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time, for p = 2, α =
10, s = 1,K = 50, L = M = 4, Nx = 512, Ny = Nz = 16,∆t = 10−4.

It appears that the l∞−norm has a tendency to blow up and then the evolution of the norm is
stabilized, the solitonic behavior is observed. As for the case p = 1, we observe that the dispersive effect
prevails over the non-linearity in the contexts where a = b = 1, ab = −1.
The numerical results known from [10] concerning the equation (1), for p = 2, in the context where
a = b = −1, report that the non-linearity is stronger than the dispersive effect and the solution blows
up. The behavior of the solution is here completely different, the solitonic behavior is observed. When
a = b = 1 and ab = −1, the dispersion is also observed for solutions of (1).
The observations are confirmed when we use larger values of Nx, Ny, Nz (e.g. with Nx = 1024, Ny =
Nz = 32).

We can already predict that, since the non-linearity was persistent with p = 2, the solitonic behavior
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will be at least observed in the case p = 3 because of a stronger non-linearity.
Let us now fix p = 3. In our first experiments, associated with Figure 4, we considered s = 1,

L = M = 6, Nx = 512, Ny = Nz = 32 and ∆t = 10−4. Figure 4 shows the evolutions (with respect to
time) of the l∞ and h1−norms of the discrete solution obtained when K = 50, α = 5.
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Figure 4: Evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time, for p = 3, α =
5, s = 1,K = 50, L = M = 6, Nx = 512, Ny = Nz = 32,∆t = 10−4.

These experiments confirm that the non-linearity effect is effectively as strong as the dispersive effect.
When a = b = −1, the solution has a tendency to blow-up at the begining and then is stabilized. In the
other hand, the solution slowly decreases, then the L∞−norm is also stabilized (in Figure 4, l∞−norm
remains close to 2 at left and right).

Let us now summarize our results. The effect of dispersion are less important for two negative
transverse directions than for two positive or opposite transverse directions. Indeed, the solitonic behavior
of the discrete solution, in the context where a = b = −1, is observed when p ≥ 1, whereas the one involved
in each of the contexts where a = b = 1, and ab = −1 when p = 3. Moreover, comparing to the result
observed for the solutions of (1), instead of the blow-up in finite time [10], the solitonic behavior takes
place.

Let us notice that the solitonic behavior observed in this paper is not in contradiction with the non-
existence results of solitary waves in [6]. In every cases, we obtain a destabilized solitonic behavior in
the sense that the amplitude of the solution varies not much but the solution do not remain close to the
initial datum. In other words, there exists T > 0 such that for t ≥ T

||u(T )− u(t)||∞ ≤ ε, and ||u0(.− ct)− u(t)||∞ ≥ C.

3 Transverse instabilities in the y and z−directions

The generalized equation (3) admits as solution the line-soliton

Φc(x, t) =

(
(p+ 1)(p+ 2)

2
c

)1/p

sech2/p
(p

2
(x− ct)

)
,

which is a solution of the generalized BBM equation. This represents a solitary wave, moving from left
to right in the x−direction, at velocity c, without deformation. In this section, we study the evolution in
time of this line-soliton perturbed in an infinitesimal way in the two transverse y and z−directions. We
consider then the Cauchy problem by defining the initial datum u0 as follows,

u0(x, y, z) := Φc(y,z)(x, 0),
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where c(y, z) := c(1 + ε cos(2πy/λy + 2πz/λz)), with ε > 0 a fixed small value; this perturbed velocity is
not uniform in the transverse directions, λy and λz are the wavelengths.

3.1 Non-generalized case: p = 1

We fix p = 1 in this subsection. In addition to the two previous sets of parameters, our numerical
experiments will be performed with respect to diverse considerations of c, λy and λz.

In each of the contexts where ab = ±1, we perform simulations by fixing K = 50, L = M = 4,
Nx = 256, Ny = Nz = 16, ∆t = 10−3, ε = 10−2. Results are not influenced by the choice of smaller
steps, and of smaller values of ε.

We start by considering the context where a = b = −1. In Figure 5, we represent the evolutions of
the l∞ and h1−norms of the discrete solution obtained respectively with λy = λz = 50, for c = 4.
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Figure 5: At left, evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time, for
p = 1, a = b = −1, c = 4,K = 50, L = M = 4, Nx = 256, Ny = Nz = 16,∆t = 10−3. Here, λy = λz = 50
and ε = 10−2. At center, the projection on the x−axis of the initial line-soliton. At right, the projection
at time T = 40.

Similar results derive also from simulations by using larger values for K,L,M,Nx, Ny, Nz, and by con-
sidering distinct values for λy and λz.

Let us now consider the contexts where ab = −1, by using again c = 4 in the experiments. Figure 6
shows the results obtained respectively for a = −1, b = 1, when λy = 0.01, λz = 50.
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Figure 6: At left, evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time. At center,
the projection on the x−axis of the initial line-soliton. At right, the projection at time T = 40. Here
p = 1, a = 1, b = −1, c = 4,K = 50, L = M = 4, Nx = 256, Ny = Nz = 16,∆t = 10−3, λy = 0.01, λz = 50
and ε = 10−2.
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We observe from simulations the same evolutions of the norms in the contexts where ab = ±1. The
profile of the discrete solution is slightly perturbed during time, and the amplitude of wave remains close
to the one of the initial datum. Some dispersive tail appears and the number of waves is increasing with
respect to time.

3.2 Generalized case: p > 1

We aim here to study the transverse instabilities in the case where p = 2.
Our experiments are performed in each of the contexts where ab = ±1, by fixing K = 50, L = M = 4,

Nx = 256, Ny = Nz = 16 and ∆t = 5×10−4, ε = 10−2. Figures 7 and 8 present, for c = 4, the evolutions
of the h1 and l∞−norms of the discrete solution obtained respectively with λy = 0.01, 50, λz = 50.
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Figure 7: Evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time for p = 2, a =
b = −1, ab = −1, c = 4,K = 50, L = M = 4, Nx = 256, Ny = Nz = 16,∆t = 5× 10−4, λy = λz = 50 and
ε = 10−2.
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Figure 8: Evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time. Here p = 2, a =
b = −1, ab = −1, c = 4,K = 50, L = M = 4, Nx = 256, Ny = Nz = 16,∆t = 5× 10−4, λy = 0.01, λz = 50
and ε = 10−2.

In the contexts a = b = −1 and ab = −1, the solitonic behavior is observed. When a = b = 1, we obtain
similar results as in Figure 5.

We can inspect the influence of the velocity. Due to the non-homogeneous dependence of the velocity,
it is difficult to determine a precise critical value. Independently of the small values of ε, we notice that
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the larger is the velocity, the smaller is this critical value. For c > 0, there exists a critical transverse
wavelength λ1

c = λ1/c such that if λy and λz is larger than λ1
c , the perturbed line-soliton is unstable.

We extend our experiments to very large wavelengths. We can notice that the formal limit of the
perturbed line-soliton, when λy and λz tend to infinity, gives Φc(1+ε), which does not depend on the
transverse variables. In particular, the solution of (3) with Φc(1+ε) as initial datum is stable [29].
We thus deduce, in the context where a = b = −1, that there exists another critical transverse wavelength
λ2
c such that if λy or λz > λ2

c , the perturbed line-soliton is no longer unstable (similar to Figure 5).
The results are confirmed by the case p = 3. Even in the context a = b = −1 and ab = −1, the

discrete solution is unstable.
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Figure 9: Evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time. Here p = 3, c =
4,K = 50, L = M = 6, Nx = 512, Ny = Nz = 32,∆t = 10−4, λy = λz = 50 and ε = 10−2.

Let us now summarize the numerical observations of this section. When p = 1 and a = b = −1, ab =
−1 or p ≥ 1, a = b = 1, the profile of the discrete solution remains close to the initial datum and some
dispersive tail appears and increases with respect to time. This does not allow to conclude on the stability
of the line-soliton, the range of perturbations being not sufficiently exhaustive.
The experiments for p = 2, 3 show that when the line-soliton is perturbed in the two transverse directions
by neither very small nor very large wavelengths, the associated discrete solution is unstable in the sense
that the solution does not remain close to the initial datum but behaves like a soliton. Concerning the
KP equations (1), the solution is also unstable, and moreover the solution blows up in finite time [10].

These observations lead us to formulate the following conjecture.

Conjecture 3.1
For ε > 0 sufficiently small, let u0 be the perturbed line-soliton of velocity c(y, z) := c(1 + ε cos(2πy/λy +
2πz/λz)), where λy, λz > 0. Let p ≥ 2, and a = b = −1 or ab = −1. There exist two critical transverse
wavelengths 0 < λ1

c � λ2
c, depending only on c, such that the solution u of (3), with u0 as initial datum,

is unstable under the flow of (3) if λ1
c < λy < λ2

c respectively or λ1
c < λz < λ2

c.

4 Transverse instability in the z−direction

We are concerned in this section with the perturbation of the profile of the Zaitsev traveling waves [31].
The function

ψc(x, y) = 12α2c
1− β cosh(αx) cos(δy)

(cosh(αx)− β cos(δy))2
,
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with

β =

√
1− 3cα4

δ2
, 3cα4 < δ2 , α2 +

δ2

cα2
= 1, p = 1, a = −1

which is localized in the x−direction and periodic in the y−direction, represents such a profile.
We want to study the evolution, subject to (3), of the Zaitsev wave when it is perturbed in the second

transverse direction. We then consider

u0(x, y, z) := ψc(z)(x, y, 0),

as the initial datum associated with (3). The velocity is here slightly perturbed in the z−direction;
namely, c(z) := c(1 + ε cos(2πz/λz)), with ε > 0 small and λz > 0 a wavelength.

Our numerical simulations will be performed in each of the contexts where b = ±1. In what follows,
we consider K = 50, L = 12, M = 4, Nx = 256, Ny = 32, Nz = 16, ∆t = 10−3, ε = 10−2. The value of
L is larger than in the previous sections in such a way that the present initial datum u0 also satisfies (5)
numerically.
The results represented in Figure 10 concern the context where b = −1, and show for c = 4 the evolutions
of the h1 and l∞−norms of the discrete solution obtained with λz = 50. Similar results derive from
simulations, even by using larger values of K,L,Nx, Ny and smaller values of ε.

Figure 10: At left, evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time. At center,
the projection on the x−axis of the initial Zaitsev soliton. At right, the projection at time T = 40. Here
b = −1, c = 4,K = 32, L = 12,M = 4, Nx = 256, Ny = 32, Nz = 16,∆t = 10−3, λz = 50 and ε = 10−2.

We notice that there exists a critical transverse wavelength λ1
c = λ1/c, such that if λz > λ1

c , the solution
has a tendency to blow up and then is stabilized. Moreover, there exists another critical transverse
wavelength λ2

c such that if λz > λ2
c , the perturbed Zaitsev wave is no more unstable.

In the last context where b = 1, the results of Figure 11 are obtained from experiments performed
in this context by setting c = 4. The solution is also unstable, but in this case, no solitonic behavior is
observed.
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Figure 11: At left, evolutions of the h1−norm (- - -) and the l∞−norm (—) with respect to time, for
b = 1, c = 4,K = 50, L = 12,M = 4, Nx = 256, Ny = 32, Nz = 16,∆t = 10−3. Here, λz = 50 and
ε = 10−2. At center, the projection on the x−axis of the initial Zaitsev soliton. At right, the projection
at time T = 40.

It follows that the wavelength λz characterizes the instability of the Zaitsev wave by transverse
perturbations in the z−direction. More precisely, when b = ±1, there exist two critical transverse
wavelengths 0 < λ1

c � λ2
c , depending only on c, such that the corresponding discrete solution is unstable

if λ1
c < λz < λ2

c .
Then, we can formulate the following conjecture.

Conjecture 4.1
For ε > 0 sufficiently small, let u0 be the perturbed Zaitsev wave of velocity c(z) := c(1 + ε cos(2πz/λz)),
where λz > 0. Let p = 1, and a = −1. There exist two critical transverse wavelengths 0 < λ1

c � λ2
c,

depending only on c, such that the solution of (3), with u0 as initial datum, is unstable if λ1
c < λz < λ2

c.
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