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A Carleman estimates is established to prove a unique continuation property of the solution of the Boussinesq system. We can prove that if the solution of the Boussinesq systems vanishes in an open subset, then this solution is identically equal to zero in the horizontal component of the open subset.

Introduction

The two-way propagation of small amplitude, long wavelength, gravity waves in shallow water, described by its surface η and its velocity u, was first derived by Boussinesq [START_REF] Boussinesq | Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal[END_REF] as a system of the form η t + u x + (ηu) x = 0

u t + η x + uu x -u xxt = 0.
In this paper, we consider the following generalized regularized Boussinesq system, proposed in [START_REF] Bona | Boussinesq equations and other systems for small amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for small amplitude long waves in nonlinear dispersive media. II. The nonlinear theory[END_REF], for ρ ≥ 1 an integer,

η t + u x + (η ρ u) x + au xxx -bη xxt = 0 u t + η x + u ρ u x + cη xxx -du xxt = 0.
The purpose of this work is to prove a unique continuation property. More precisely, we show that if (η, u) = (η(x, t), u(x, t)) is solution of the system and (η, u) vanishes on an open subset Ω of R × R, then u vanishes identically on the horizontal component Ω h := {(x, t) ∈ R × R; ∃ x 1 with (x 1 , t) ∈ Ω} of Ω. Carleman estimates can be used. These estimates are based on exponential weight for the solution of the equation. More precisely, if v is solution of Lv = V v, with L a linear operator, V a well-defined potential, the Carleman estimates is written for Ψ a convex function and τ > 0 to choose ||e τ Ψ(x) v|| ≤ C||e τ Ψ(x) Lv||. [START_REF] Saut | Unique continuation for some evolution equations[END_REF] proved such a result for a general class of dispersive equations, including the Korteweg-de Vries one. An alternative approach was suggested by Bourgain [START_REF] Bourgain | On the compactness of the support of solutions of dispersive equations[END_REF]. The method here is 1 based on an analytic continuation of the Fourier transform using the theorem of Paley-Wiener. We proved therefore a unique continuation property of the solution of the Boussinesq systems with b = d = 0 [START_REF] Mammeri | Unique continuation property for Boussinesq-type systems[END_REF]. The method of Bourgain depends on the dispersion relation σ which has to satisfy the following growth property:

Saut and Scheurer

∀ R > 0, ∃ |k| > R such that σ (k) ≥ f (k) with lim |k|→∞ f (k) = +∞.
In the case of the Boussinesq systems, we obtain

σ(k) = k (1 -ak 2 )(1 -ck 2 ) (1 + bk 2 )(1 + dk 2 ) ,
and the property holds if b = d = 0.

We propose here to prove a unique continuation property using a Carleman estimate. We are inspired by a work of Davila and Menzala [START_REF] Davilla | Unique continuation for the Benjamin-Bona-Mahony and Boussinesq's equations[END_REF] who proved a unique continuation property of the scalar one-dimensional Benjamin-Bona-Mahony equation. The first section is devoted to the local well-posedness of solution of the generalized Boussinesq system. We establish a Carleman estimates in the second section. The third section deals with the unique continuation property.

Initial value problem

We consider the initial value problem, for x ∈ R, t ∈ R, ρ ≥ 1 an integer,

η t + u x + (η ρ u) x + au xxx -bη xxt = 0 u t + η x + u ρ u x + cη xxx -dη xxt = 0 η(x, 0) = η 0 (x), u(x, 0) = u 0 (x).
If ρ = 1, it has been proved the existence and uniqueness of local in time solution [START_REF] Bona | Boussinesq equations and other systems for small amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for small amplitude long waves in nonlinear dispersive media. II. The nonlinear theory[END_REF]. We denote H s (R) the Sobolev space of order s equipped with the norm ||u|| s .

Theorem 2.1 Let a, b, c, d > 0, s > 1/2 and (η 0 , u 0 ) ∈ H s (R) × H s (R). There exists a constant C 0 > 0, depending only on s, such that for

T = C 0 (||η 0 || s + ||u 0 || s ) ρ ,
there exists a unique solution (η, u) ∈ C([-T, T ]; H s (R)) × C([-T, T ]; H s (R)) of the Boussinesq system with (η 0 , u 0 ) as initial datum. Moreover, for all M > 0 with ||η 0 || s + ||u 0 || s ≤ M and ||µ 0 || s + ||v 0 || s ≤ M , there exists C 1 > 0 such that solutions (η, u) and (µ, v), of initial data (η 0 , u 0 ) and (µ 0 , v 0 ) respectively, satisfy for t ∈ [-T, T ], with

T = C 0 /M ρ , ||η(t) -µ(t)|| s + ||u(t) -v(t)|| s ≤ C 1 (||η 0 -µ 0 || s + ||u 0 -v 0 || s ).
Proof. Let T > 0. The Duhamel's formula implies that (η, u) is the solution of the initial value problem if and only if (η, u) is the solution of the following equation, for t ∈ [0, T ],

(η, u)(t) = Φ(η, u)(t) := S t (η 0 , u 0 ) - t 0 S t-τ ∂ x (η ρ u) 1 -b∂ 2 x , ∂ x (u ρ+1 )/(ρ + 1) 1 -d∂ 2 x (τ ) dτ, (2.1) 
with

S t (η, u) := +∞ -∞ e -ikA(k)t (η, u)dk and A(k) = 0 1-ak 2 1+bk 2 1-ck 2 1+dk 2 0 . (2.
2)

The eigenvalues of A(k) are

σ(k) = ± (1 -ak 2 ) (1 + bk 2 ) (1 -ck 2 ) (1 + dk 2 ) ,
and the matrix e -ikA(k)t is uniformly bounded. We aim at applying the fixed point theorem. We deduce, for t ∈ [0, T ],

||Φ(η, u)(t)|| s ≤ C(||η 0 || s + ||u 0 || s ) + C t 0 ∂ x (η ρ u) 1 -b∂ 2 x s + ∂ x (u ρ+1 ) 1 -d∂ 2 x ) s (τ ) dτ.
For b > 0, the definition of the Sobolev norm provides

∂ x f 1 -b∂ 2 x s = +∞ -∞ (1 + k 2 ) s ik 1 + bk 2 f (k) 2 1/2 ≤ C||f || s .
Since s > 1/2, the Sobolev space being an algebra, the Sobolev embedding implies that there exists a constant C s > 0, depending only on s, such that

||Φ(η, u)(t)|| s ≤ C(||η 0 || s + ||u 0 || s ) + C s T sup t∈[0,T ] (||u|| s ||η|| ρ s + ||u(t)|| ρ+1 s ) . (2.3) 
Then there exists

C 0 > 0 such that for T = C 0 /(||η 0 || s + ||u 0 || s ) ρ , the closed ball B T defined by sup t∈[0,T ] ||η(t)|| s ≤ 2C(||η 0 || s + ||u 0 || s ) sup t∈[0,T ] ||u(t)|| s ≤ 2C(||η 0 || s + ||u 0 || s ) satisfies Φ(B T ) ⊆ B T . Indeed, let (η, u) ∈ B T , the inequality (2.3) becomes ||Φ(η, u)(t)|| s ≤ (||η 0 || s + ||u 0 || s )C(1 + 2 ρ+2 C ρ C s C 0 ),
and

C(||η 0 || s + ||u 0 || s )C(1 + 2 ρ+2 C ρ C s C 0 ) ≤ 2C(||η 0 || s + ||u 0 || s ) if C 0 ≤ 1/(2 ρ+2 C ρ C s ). Let (η, u) and (µ, v) be in B T . The Duhamel's formula (2.1) provides, for t ∈ [0, T ], ||Φ(η, u)(t) -Φ(µ, v)(t)|| s ≤ C t 0 ∂ x 1 -b∂ 2 x (η ρ u -µ ρ v) s + ∂ x 1 -d∂ 2 x (u ρ+1 -v ρ+1 ) s (τ ) dτ.
We can note that

η ρ u -µ ρ v = η ρ (u -v) + v(η -µ) ρ-1 i=0 η ρ-1-i µ i , and u ρ+1 -v ρ+1 = (u -v) ρ i=0 u ρ-i v i .
This provides, thanks to the Sobolev embedding, 

||Φ(η, u)(t) -Φ(µ, v)(t)|| s ≤ 2 ρ C ρ C s T (||η 0 || s + ||u 0 || s ) ρ sup t∈[-T,T ] (||η -µ|| s (t) + ||u -v|| s (t)) = 2 ρ C ρ C s C 0 sup t∈[-T,T ] (||η -µ|| s (t) + ||u -v|| s (t)) . For C 0 < 1/(2 ρ C ρ C s ),
T = C 0 /M ρ , with C 0 1, ||(η, u)(t) -(µ, v)(t)|| s ≤ C(||η 0 -µ 0 || s + ||u 0 -v 0 || s ) + C t 0 ∂ x 1 -b∂ 2 x (η ρ u -µ ρ v) s + ∂ x 1 -d∂ 2 x (u ρ+1 -v ρ+1 ) s (τ ) dτ ≤ C(||η 0 -µ 0 || s + ||u 0 -v 0 || s ) + 1 2 sup t∈[0,T ] ||η -µ|| s (t) + sup t∈[0,T ] ||u -v|| s (t) , thus sup t∈[0,T ] (||η -µ|| s + ||u -v|| s ) ≤ 2C(||η 0 -µ 0 || s + ||u 0 -v 0 || s ).

Carleman estimates

The aim of this section is to find a Carleman estimates for the Boussinesq system. First we recall the Treves'inequality [START_REF] Treves | Linear Partial Differential Equations with Constant Coefficients[END_REF].

Theorem 3.1 Let P = P (∂ x , ∂ t ) be a differential operator of order m with constant coefficients. Then for all α = (α

1 , α 2 ) ∈ N 2 , δ > 0, τ > 0, Φ ∈ C ∞ 0 (R 2 ) and Ψ(x, t) = (x -δ) 2 + δ 2 t 2 , 2 2|α| τ |α| δ 2α2 α! R 2 |P (α) (D)Φ| 2 e 2τ Ψ dxdt ≤ C(m, α) R 2 |P (D)Φ| 2 e 2τ Ψ dxdt. with |α| = n j=1 α j , α! = α 1 ! . . . α n ! and C(m, α) =    sup |r+α|≤m r + α α if |α| ≤ m 0 if |α| > m
This inequality is used to prove Carleman estimates of the Boussinesq system.

Theorem 3.2

We define

L := ∂ t -c 1 ∂ xxt + c 2 ∂ xxx + f 1,1 (x, t)∂ x a∂ xxx + f 1,2 (x, t)∂ x c∂ xxx + f 2,1 (x, t)∂ x ∂ t -c 3 ∂ xxt + c 4 ∂ xxx + f 2,2 (x, t)∂ x , where c 1 , c 2 , c 3 , c 4 are constant in R, f i,j ∈ L ∞ (R 2 ), 1 ≤ i, j ≤ 2. Let δ > 0 and B δ := {(x, t) ∈ R 2 ; x 2 + t 2 < δ 2 }. Then, there exists C > 0 such that for all Φ = (Φ 1 , Φ 2 ) ∈ C ∞ 0 (B δ ) × C ∞ 0 (B δ ), Ψ(x, t) = (x -δ) 2 + δ 2 t 2 and τ > 0 with ||f 1,1 || 2 ∞ c 1 τ 2 δ 2 ≤ 1 4 , ||f 2,2 || 2 ∞ c 3 τ 2 δ 2 ≤ 1 4 , ||f 2,1 || 2 ∞ c 2 τ 2 ≤ 1 4 , ||f 1,2 || 2 ∞ a 2 τ 2 ≤ 1 4 ,
we have

τ 3 B δ (|Φ 1 | 2 + |Φ 2 | 2 )e 2τ Ψ dxdt + τ 2 δ 2 B δ (|Φ 1,x | 2 + |Φ 2,x | 2 )e 2τ Ψ dxdt ≤ C B δ |LΦ| 2 e 2τ Ψ dxdt. (3.1)
Proof. We define the differential operator

P := ∂ t -c 1 ∂ xxt + c 2 ∂ xxx a∂ xxx c∂ xxx ∂ t -c 3 ∂ xxt + c 4 ∂ xxx .
The Fourier transform gives for (ξ 1 , ξ 2 , τ

) ∈ R 3 P (ξ, τ ) = i τ + c 1 ξ 2 τ -c 2 ξ 3 -aξ 3 -cξ 3 τ + c 3 ξ 2 τ -c 4 ξ 3 . Lemma 3.3 For all Φ = (Φ 1 , Φ 2 ) ∈ C ∞ 0 (B δ ) × C ∞ 0 (B δ ), Ψ(x, t) = (x -δ) 2 + δ 2 t 2
and τ > 0, we have

τ 3 (c 2 2 + c 2 ) B δ |Φ 1 | 2 e 2τ Ψ dxdt + τ 2 (c 2 1 δ 2 + c 2 ) B δ |Φ 1,x | 2 e 2τ Ψ dxdt + τ 3 (c 2 4 + a 2 ) B δ |Φ 2 | 2 e 2τ Ψ dxdt + τ 2 (c 2 3 δ 2 + a 2 ) B δ |Φ 2,x | 2 e 2τ Ψ dxdt ≤ B δ |P Φ| 2 e 2τ Ψ dxdt.
Proof. With the same notations of Treves'inequality, we have for α = (3, 0)

P 1,1 |α| (ξ, τ ) ∂ξ 3 = -i6c 2 , P |α| 1,1 Φ 1 = -i6c 2 Φ 1 , C(3, (3, 0)) = sup |r+α|≤3 r + α α = 1.
Applying the preceding corollary with P 1,1 and α gives

2 6 τ 3 6 R 2 | -i6c 2 Φ 1 | 2 e 2τ Ψ dxdt ≤ R 2 |P 1,1 Φ 1 | 2 e 2τ Ψ dxdt, what implies τ 3 c 2 2 R 2 |Φ 1 | 2 e 2τ Ψ dxdt ≤ R 2 |P 1,1 Φ 1 | 2 e 2τ Ψ dxdt.
In the same way, we obtain for α = (1, 1)

P 1,1 |α| (ξ, τ ) ∂ξ 2 ∂τ = i2c 1 ξ, P |α| Φ 1 = 2c 1 Φ 1,x , C(3, (1, 1)) = 2,
and the Treves'inequality provides

2 4 τ 2 δ 2 1 R 3 |2c 1 Φ 1,x | 2 e 2τ Ψ dxdt ≤ 2 R 3 |P 1,1 Φ 1 | 2 e 2τ Ψ dxdt, thus τ 2 c 2 1 R 2 |Φ 1,x | 2 e 2τ Ψ dxdt ≤ R 2 |P 1,1 Φ 1 | 2 e 2τ Ψ dxdt.
On the other hand, we have for α = (3, 0), respectively α = (2, 0),

P 2,1 |α| (ξ, τ ) ∂ξ 3 = -i6c, P |α| 2,1 Φ 1 = -i6cΦ 1 , C(3, (3, 0)) = 1 P 2,1 |α| (ξ, τ ) ∂ξ 2 = -i6cξ, P |α| 2,1 Φ 1 = 6cΦ 1,x , C(3, (2, 0)) = 1.
The Treves'inequality given by the preceding corollary with P 2,1 and α gives

τ 3 c 2 R 2 |Φ 1 | 2 e 2τ Ψ dxdt ≤ R 2 |P 2,1 Φ 1 | 2 e 2τ Ψ dxdt τ 2 c 2 1 R 2 |Φ 1,x | 2 e 2τ Ψ dxdt ≤ R 2 |P 2,1 Φ 1 | 2 e 2τ Ψ dxdt.
We obtain similar inequalities for P 1,2 and P 2,2 in the same way.

Lemma 3.4

We have

B δ |f 1,1 (x, t)Φ 1,x | 2 e 2τ Ψ dxdt ≤ 2||f 1,1 || 2 ∞ c 2 1 τ 2 δ 2 B δ |L 1,1 Φ 1 | 2 e 2τ Ψ dxdt + B δ |f 1,1 (x, t)Φ 1,x | 2 e 2τ Ψ dxdt B δ |f 2,2 (x, t)Φ 2,x | 2 e 2τ Ψ dxdt ≤ 2||f 2,2 || 2 ∞ c 2 3 τ 2 δ 2 B δ |L 2,2 Φ 2 | 2 e 2τ Ψ dxdt + B δ |f 2,2 (x, t)Φ 2,x | 2 e 2τ Ψ dxdt B δ |f 2,1 (x, t)Φ 1,x | 2 e 2τ Ψ dxdt ≤ 2||f 2,1 || 2 ∞ c 2 τ 2 B δ |L 2,1 Φ 1 | 2 e 2τ Ψ dxdt + B δ |f 2,1 (x, t)Φ 1,x | 2 e 2τ Ψ dxdt B δ |f 1,2 (x, t)Φ 2,x | 2 e 2τ Ψ dxdt ≤ ||2f 1,2 || 2 ∞ a 2 τ 2 B δ |L 1,2 Φ 1 | 2 e 2τ Ψ dxdt + B δ |f 1,2 (x, t)Φ 2,x | 2 e 2τ Ψ dxdt .
Proof. We have thanks to the above lemma

B δ |f 1,1 (x, t)Φ 1,x | 2 e 2τ Ψ dxdt ≤ ||f 1,1 || 2 ∞ B δ |Φ 1,x | 2 e 2τ Ψ dxdt ≤ ||f 1,1 || 2 ∞ c 2 1 τ 2 δ 2 B δ |P 1,1 Φ 1 | 2 e 2τ Ψ dxdt ≤ 2||f 1 || 2 ∞ c 2 1 τ 2 δ 2 B δ |L 1,1 Φ 1 | 2 + |f 1,1 (x, t)Φ 1,x | 2 e 2τ Ψ dxdt.
In the same manner, it gets

B δ |f 2,1 (x, t)Φ 1,x | 2 e 2τ Ψ dxdt ≤ ||f 2,1 || 2 ∞ B δ |Φ 1,x | 2 e 2τ Ψ dxdt ≤ ||f 2,1 || 2 ∞ c 2 τ 2 B δ |P 2,1 Φ 1 | 2 e 2τ Ψ dxdt ≤ 2||f 2,1 || 2 ∞ c 2 τ 2 B δ |L 2,1 Φ 1 | 2 + |f 2,1 (x, t)Φ 1,x | 2 e 2τ Ψ dxdt.
We obtain similar inequalities for f 1,2 and f 2,2 in the same way.

To conclude, it is enough to choose τ > 0 large enough with

2||f 1,1 || 2 ∞ c 1 τ 2 δ 2 ≤ 1 2 , 2||f 2,2 || 2 ∞ c 3 τ 2 δ 2 ≤ 1 2 , 2||f 2,1 || 2 ∞ c 2 τ 2 ≤ 1 2 , 2||f 1,2 || 2 ∞ a 2 τ 2 ≤ 1 2 . Corollary 3.5 Let T > 0. If Φ ∈ C 1 ([-T, T ]; H 3 (R)) 2 , Φ t ∈ C 1 ([-T, T ]; H 2 (R))
2 and supp Φ ⊆ B δ × B δ , the inequality (3.1) remains true.

Proof. The proof is done by regularization.

Unique continuation property

The unique continuation property is now proven. The proof is similar to the scalar case of the paper of Davila and Menzala [START_REF] Davilla | Unique continuation for the Benjamin-Bona-Mahony and Boussinesq's equations[END_REF]. Therefore we only write sketch of the proof for easy to read.

Lemma 4.1 Let s ≥ 5, T > 0, f i,j ∈ L ∞ (R × [-T, T ]), 1 ≤ i, j ≤ 2, and c 1 , c 2 , c 3 , c 4 be real constants. Let w ∈ C 1 ([-T, T ]; H s (R))
2 be the solution of Lw = 0. Assume that w ≡ 0 when x < |t| in a neighborhood of (0, 0). Then there exists a neighborhood of (0, 0) in which w ≡ 0. We deduce thanks to the preceding corollary, for τ > 0 large enough,

Remark 4.2 If (η, u) ∈ C 1 ([-T, T ]; H s (R)) 2 is solution of L(η, u) = 0, since (1 -c 1 ∂ 2 x )η t = -(au xxx + c 2 η xxx + f 1,1 η x + f 1,2 u x ) (1 -c 3 ∂ 2 x )u t = -(cη xxx + c 4 u xxx + f 2,1 η x + f 2,2 u x ), then (η t , u t ) ∈ (C([-T, T ]; H r (R))) 2 with r = s if (a = c = c 2 = c 4 = 0), r = s -3 if b = d = 0 and r = s -1 if not. Therefore the Carleman estimate (3.1) holds if s ≥ 2, s ≥ 5 and s ≥ 3 respectively. Proof. Let 0 < δ < 1, choose χ ∈ C ∞ 0 (B δ ) × C ∞ 0 (B δ ) such that χ = 1 in O 1 a neighborhood of (0,
τ 3 B δ (|Φ 1 | 2 + |Φ 2 | 2 )e 2τ Ψ dxdt + τ 2 δ 2 B δ (|Φ 1,x | 2 + |Φ 2,x | 2 )e 2τ Ψ dxdt ≤ C B δ
|LΦ| 2 e 2τ Ψ dxdt.

(4.1)

The right hand side integral holds on B δ \O 1 , since LΦ = 0 in O 1 . For (x, t) = 0 in supp Φ, we have Ψ(x, t) = (x -δ) 2 + δ 2 t 2 < δ 2 and Ψ(0, 0) = δ 2 .

Then for (x, t) ∈ supp LΦ ⊆ B δ × B δ , there exists 0 < ε < δ 2 such that Ψ(x, t) ≤ δ 2 -ε. On the other hand, we can choose O 2 a neighborhood of (0, 0) with Ψ(x, t) > δ 2 -ε. in O 2 . The inequality (4.1) is then written for all τ > 0

Cτ 3 e 2τ (δ 2 -ε) O2 |Φ 1 | 2 + |Φ 2 | 2 dxdt ≤ e 2τ (δ 2 -ε) B δ \O1 |LΦ| 2 dxdt. Tending τ to infinity implies Φ vanishes in O 2 . However w = Φ in O 2 ⊆ O 1 and w ≡ 0 in O 2 . Corollary 4.3 Let s ≥ 5, T > 0, A, B, C ∈ L ∞ (R × [-T, T ]), and c 1 , c 2 , c 3 , c 4 be real constants. Let w = (η, u) ∈ C 1 ([-T, T ]; H s (R))
2 be the solution of

∂ t -b∂ xxt + A(x, t)∂ x a∂ xxx + ∂ x + B(x, t)∂ x c∂ xxx + ∂ x ∂ t -d∂ xxt + C(x, t)∂ x w = 0.
We consider the curve x = µ(t), µ(0) = 0, µ a continuously differential function in a neighborhood of (0, 0). Assume that w ≡ 0 when x < µ(t) in a neighborhood of (0, 0). Then there exists a neighborhood of (0, 0) in which w ≡ 0.

Proof. We consider the change of variables (x, t) -→ (X, T ) with

X = x -µ(t) + |t| T = t.
This change of variables provides W = W (X, T ) satisfying W ≡ 0 when X < |T | in a neighborhood of (0, 0) and LW = 0 with Proof.

L := ∂ T + (-µ (T ) ± 1)∂ X -b∂ XXT -b(-µ (T ) ± 1)∂ XXX + A∂ X c∂ XXX + ∂ X a∂ XXX + ∂ X + B∂ X ∂ T + (-µ (T ) ± 1)∂ X -d∂ XXT -d(-µ (T ) ± 1)∂ XXX + C∂ X .
The proof follows [START_REF] Nirenberg | Uniqueness of Cauchy problems for differential equations with constant leading coefficient[END_REF][START_REF] Kozakevicius | On the unique continuation property for a nonlinear dispersive system[END_REF] or [START_REF] Davilla | Unique continuation for the Benjamin-Bona-Mahony and Boussinesq's equations[END_REF] applying the preceding corollary with A = ρη ρ-1 u, B = η ρ and C = u ρ . Since s > 1/2, the functions A, B, C belong to L ∞ (R × [-T, T ]) thanks to the Sobolev embedding.

Remark 4.5 These results can be generalized to higher dimensionnal Boussinesq systems: η t + ∇.U + ∇.(η ρ u) + a∆∇.U -b∆η t = 0

U t + ∇η + 1 ρ + 1 ∇|U | ρ+1 + c∆∇η -d∆U t = 0,
where η = η(x 1 , ..., x n , t), U = (U 1 , ..., U n )(x 1 , ..., x n , t). We obtain the following Carleman estimates. 

  0) and define Φ := χw. It follows that Φ ∈ C([-T, T ]; H s (R)) × C([-T, T ]; H s (R)) and supp Φ ⊆ B δ × B δ .

Theorem 4. 4

 4 Let s ≥ 5 and T > 0 and (η,u) ∈ C([-T, T ]; H s (R)) × C([-T, T ]; H s (R)) solution of the Boussinesq system. If (η, u) ≡ 0 in an open subset Ω ⊆ (R × [-T, T ]) 2 , then (η, u) ≡ 0 in the horizontal component of Ω.

  the map Φ is a contraction on B T . Finally, according to the fixed point theorem, there exists a unique solution (η, u) of Φ(η, u)(t) = (η, u)(t) in B T . It remains to prove the continuity with the initial datum. Let (η, u) and (µ, v) be solutions of the initial value problem with initial datum (η 0 , u 0 ) and (µ 0 , v 0 ) respectively, such that ||η 0 || s + ||u 0 || s ≤ M and ||µ 0 || s + ||v 0 || s ≤ M . The Duhamel's formula (2.1) gives for t ∈ [0, T ], with

  ∂ t -c 1 ∆∂ t + c 2 ∆∇. + f 1,1 (x, t)∇. a∆∇. + f 1,2 (x, t)∇. c∆∇ + f 2,1 (x, t)∇ ∂ t -c 3 ∆∂ t + c 4 ∆∇. + f 2,2 (x, t)∇. , where c 1 , c 2 , c 3 , c 4 are constant in R, f i,j ∈ L ∞ (R n+1 ), 1 ≤ i, j ≤ 2. Let δ > 0 and B δ := {(x, t) ∈ + t 2 < δ 2 }. Then, there exists C > 0 such that for all Φ = (Φ 1 , ..., Φ n+1 ) ∈ (C ∞ 0 (B δ )) n+1 , Ψ(x, t) = n i=1 (x i -δ) 2 /n + δ 2t 2 and τ > 0 with ||f i,j || 2

	Theorem 4.6	
	We define	
		L :=	
	R 2 ;	n i=1 x 2 i ∞ τ 2	1 for 1 ≤ i, j ≤ 2,
	we have	
			n+1
		τ 3	|Φ
		B δ	i=1

i | 2 e 2τ Ψ dxdt + τ 2 B δ n+1 i=1 |∇.Φ i | 2 e 2τ Ψ dxdt ≤ C B δ

|LΦ| 2 e 2τ Ψ dxdt.