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Abstract. We compare the solution of the generalized Boussinesq systems, for various values of a,b,c,d,

ηt + ux + ε((ηu)x + auxxx − bηxxt) = 0

ut + ηx + ε(uux + cηxxx − duxxt) = 0.

These systems describe the two-way propagation of small amplitude long waves in shallow water. We prove,

using an energy method introduced by Bona, Pritchard and Scott [7], that respective solutions of Boussinesq

systems, starting from the same initial datum, remain close on a time interval inversely proportional to the wave

amplitude.
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Introduction

In this paper, we are interested in the two-way propagation of small amplitude long waves in
shallow water. This phenomenon is described by the amplitude η and the velocity u of the waves,
which satisfy the following generalized Boussinesq systems [4, 5], for (x, t) ∈ R× R,

ηt + ux + ε((ηu)x + auxxx − bηxxt) = 0

ut + ηx + ε(uux + cηxxx − duxxt) = 0.

Here 0 < ε < 1 denotes the quotient between the amplitude and the depth of water, and ε is
assumed to be small. This coefficient is also proportional to the square of the quotient between
the depth of water and the wavelength.

If we focus on the one-way propagation, the Boussinesq systems are reduced to the Korteweg-de
Vries equation (KdV) [9]

ηt + ηx + ε(αηηx + β ηxxx) = 0,

or the Benjamin-Bona-Mahony equation (BBM) [3]

ηx + ηt + ε(αηηx − β ηxxt) = 0.
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Recall that Bona, Pritchard and Scott [7] proved the following result.

Theorem 0.1 Let m ≥ 0 and f ∈ Hm+5(R). Let ε > 0 and η, ζ respectively the unique solution
of KdV and BBM in C([0,∞[;Hm+5(R)), starting from the same initial datum η|t=0 = ζ|t=0 = f .
Then, there exists a constant Mi > 0 with 0 ≤ i ≤ m such that for |t| ≤ ε−1T , we have

||∂ixη(., t)− ∂ixζ(., t)||L2(R) ≤Mi ε
2 |t|,

with T := Cm+5

‖f‖m+5
.

Concerning the Boussinesq systems, our result reads as follows.

Theorem 0.2 Let m ≥ 0 and (f, g) ∈ Hm+5(R) ×Hm+5(R). Let (η1, u1), (η2, u2) be solution in
C([−ε−1/2T, ε−1/2T ];Hm+5(R))2 of Boussinesq system with (a1, b1, c1, d1), respectively (a2, b2, c2, d2),
starting from the same initial datum (f, g) with

T :=
Cm+5

‖(f, g)‖m+5
.

Then, for all 0 ≤ i ≤ m, there exists a constant Mi > 0, depending only on ‖(f, g)‖m+5, such that
for |t| ≤ ε−1/2T , we have ∥∥∥∥∂ix(η1(·, t)

u1(·, t)

)
− ∂ix

(
η2(·, t)
u2(·, t)

)∥∥∥∥
L2

≤Miε|t|.

This result reflects the fact that the solutions of Boussinesq systems with various coefficients
are close with a maximum deviation of the order of ε1/2. This is not as good as the order of
the neglected terms in the asymptotic expansion of the Euler equation. On the other hand, the
obtained time of comparison is of order ε−1/2, although the effects of dispersion and the effects of
the nonlinearity have an order 1 influence. One can certainly hope that the solutions remain close
longer, and improve the result, for example by choosing a suitable velocity, or a good combination
of KdV solutions. In this way, Alazman et al. [1] recently obtained a similar result and showed
that the solution of the Boussinesq system with one-way propagation is well approximated by
the solution of the KdV or BBM. Related papers concern the comparison of the solution of two-
dimensional Euler systems with the solution of Boussinesq systems or KdV equation [6, 8, 10, 11].

Our paper is organised as follows. In the first section, the local well-posedness of the Boussinesq
systems is summed up. The second section deals with the comparison of the solution of the systems.
Finally, we present some numerical illustrations.

1 Summary of existence theory

We consider the initial value problem, for (x, t) ∈ R× R,

ηt + ux + ε ((ηu)x + auxxx − bηxxt) = 0 (1.1)

ut + ηx + ε (uux + cηxxx − duxxt) = 0 (1.2)

η(x, 0) = f(x), u(x, 0) = g(x). (1.3)

The coefficients a, b, c, d satisfy one of these two conditions:

• b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0

• b ≥ 0, d ≥ 0, a = c > 0.

Recall that the Cauchy problem is locally well-posed [4, 5]. In this work, we only need smooth
data, and we refer to these papers for more precise assumptions on the regularity.
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Theorem 1.1 Let m > 3/2 and (f, g) ∈ Hm(R)×Hm(R). Then there exists Cm > 0, depending
only on m, such that for

T :=
Cm

‖(f, g)‖m
,

there exists a unique solution (η, u) ∈ C([−ε−3/2T, ε−3/2T ];Hm(R))×C([−ε−3/2T, ε−3/2T ];Hm(R))
of the Cauchy problem (1.1)-(1.2)-(1.3).

Moreover, let (f̃ , g̃) ∈ Hm(R)×Hm(R) be the initial datum of the unique solution (η̃, ũ) and M > 0
such that

‖(f, g)‖m ≤M and ‖(f̃ , g̃)‖m ≤M.

Then there exists cm > 0 such that for |t| ≤ ε−3/2Cm/M ,∥∥∥∥(η(·, t)
u(·, t)

)
−
(
η̃(·, t)
ũ(·, t)

)∥∥∥∥
m

≤ cm
∥∥∥∥(fg

)
−
(
f̃
g̃

)∥∥∥∥
m

.

Proof. The proof in [5] is actually done with ε = 1. The change of variables

x = ε−1/2x̃, t = ε−1/2t̃, η = ε−1η̃, u = ε−1ũ

provides the following initial value problem

η̃t̃ + ũx̃ + (η̃ũ)x̃ + aũx̃x̃x̃ − bη̃x̃x̃t̃ = 0

ũt̃ + η̃x̃ + ũũx̃ + cη̃x̃x̃x̃ − dũx̃x̃t̃ = 0

η̃(x̃, 0) = εf(x̃), ũ(x̃, 0) = εg(x̃).

�

2 Comparison of solutions

2.1 The linear case

We consider the linearized problem around (0, 0)

ηt + ux + ε(auxxx − bηxxt) = 0

ut + ηx + ε(cηxxx − duxxt) = 0

η(x, 0) = f(x), u(x, 0) = g(x).

Let us compare the solution of the KdV-KdV system (a = c = 1, b = d = 0) and the solution of
the BBM-BBM system (a = c = 0, b = d = 1).

Assume that f, g ∈ S(R). The solution of KdV-KdV is given by the Fourier transform in space(
η̂
û

)
(k, t) = e−ikA1(k)t

(
f̂
ĝ

)
(k),

with

A1(k) =

(
0 1− εk2

1− εk2 0

)
.

And the solution of BBM-BBM is(
ζ̂
v̂

)
(k, t) = e−ikA2(k)t

(
f̂
ĝ

)
(k),
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with

A2(k) =

(
0 1

1+εk2
1

1+εk2 0

)
.

Since A1(k)A2(k) = A2(k)A1(k), it provides(
η̂
û

)
(k, t)−

(
ζ̂
v̂

)
(k, t) =

(
e−ikA1(k)t − e−ikA2(k)t

)(
f̂
ĝ

)
(k)

= e−ikA2(k)t
(
e−ik(A1(k)−A2(k))t − 1

)(
f̂
ĝ

)
(k).

Thus ∣∣∣∣(η̂û
)

(k, t)−
(
ζ̂
v̂

)
(k, t)

∣∣∣∣ =

∣∣∣∣e−ikA2(k)t
(
e−ik(A1(k)−A2(k))t − 1

)(
f̂
ĝ

)
(k)

∣∣∣∣
≤

∣∣∣∣(e−ik(A1(k)−A2(k))t − 1
)(

f̂
ĝ

)
(k)

∣∣∣∣ .
However | exp(ix)− 1| ≤ |x|, and we find∣∣∣∣(η̂û

)
(k, t)−

(
ζ̂
v̂

)
(k, t)

∣∣∣∣ ≤ ∣∣∣∣−k(A1(k)−A2(k))t

(
f̂
ĝ

)
(k)

∣∣∣∣ .
Then, using 1 + εk2 ≥ 1,∣∣∣∣(η̂û

)
(., t)−

(
ζ̂
v̂

)
(., t)

∣∣∣∣ ≤ ∣∣∣∣ ε2k5t

1 + εk2

∣∣∣∣ ∣∣∣∣(ĝf̂
)

(k)

∣∣∣∣ ≤ ε2|k|5|t|
∣∣∣∣(ĝf̂

)
(k)

∣∣∣∣ ,
and ∣∣∣∣∣∣∣∣(ηu

)
(., t)−

(
ζ
v

)
(., t)

∣∣∣∣∣∣∣∣
L∞
≤ 1

2π

∣∣∣∣∣∣∣∣(η̂û
)

(., t)−
(
ζ̂
v̂

)
(., t)

∣∣∣∣∣∣∣∣
L1

≤ ε2|t|
∫
R
|k|5

∣∣∣∣(ĝf̂
)

(k)

∣∣∣∣ dk.
The result can be written as follows.

Theorem 2.1 Let f and g be real valued functions with ∂̂5
xf and ∂̂5

xg integrables on R. Let (η, u)
and (ζ, v) be solutions of the linear Cauchy problem associated with KdV-KdV and BBM-BBM
respectively, starting from the same initial datum(

η(·, 0)
u(·, 0)

)
=

(
ζ(·, 0)
v(·, 0)

)
=

(
f
g

)
.

Then there exists a constant C > 0, depending only on (f, g), such that, for all time t ∈ R,∥∥∥∥(η(·, t)
u(·, t)

)
−
(
ζ(·, t)
v(·, t)

)∥∥∥∥
L∞
≤ Cε2|t|.

2.2 The main result

To simplify the reading, we only prove the result for the KdV-KdV and BBM-BBM system. The
proof of the theorem 0.2 can be done in a similar way.
We now consider the following nonlinear Cauchy problems. The first one associated with KdV-
KdV:

ηt + ux + ε ((ηu)x + uxxx) = 0 (2.1)

ut + ηx + ε(uux + ηxxx) = 0 (2.2)

η(x, 0) = f(x), u(x, 0) = g(x).
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And the second one is called BBM-BBM:

ζt + vx + ε((ζv)x − ζxxt) = 0 (2.3)

vt + ζx + ε(vvx − vxxt) = 0 (2.4)

ζ(x, 0) = f(x), v(x, 0) = g(x).

We prove that the respective solutions remain close as follows.

Theorem 2.2 Let m ≥ 5 and (f, g) ∈ Hm(R) × Hm(R). Let (η, u) and (ζ, v) be solution in
C([−ε−1/2T, ε−1/2T ];Hm(R))×C([−ε−1/2T, ε−1/2T ];Hm(R)) of KdV-KdV and BBM-BBM respec-
tively, where

T :=
Cm

‖(f, g)‖m
.

Then there exists a constant M > 0, depending only on ‖(f, g)‖m, such that for |t| ≤ ε−1/2T , we
have ∥∥∥∥(η(·, t)

u(·, t)

)
−
(
ζ(·, t)
v(·, t)

)∥∥∥∥
L2

≤Mε|t|.

Proof. To simplify the writings, we denote the L2−norm as ||.||. We assume that t > 0, negative
time being dealt with similarly. Let us define

λ = η − ζ
w = u− v.

Then (λ,w) satisfies:

λt + wx − ελxxt = −ε ((λw)x + (λu+ ζw)x + uxxx + ηxxt) (2.5)

wt + λx − εwxxt = −ε (wwx + (vw)x + ηxxx + uxxt) (2.6)

λ(x, 0) = 0, w(x, 0) = 0.

Equations (2.5) and (2.6) are multiplied by λ and w respectively, and are integrated over space.∫ +∞

−∞
λ(λt + wx − ελxxt) + w(wt + λx − εwxxt) dx = −ε

∫ +∞

−∞
λ(uxxx + ηxxt) + w(ηxxx + uxxt)

− ε
∫ +∞

−∞
λ((λw)x + (λu+ ζw)x) + w(wwx + (vw)x) dx.

(2.7)
We first simplify the left-hand side of (2.7). Since λ,w ∈ Hm(R), we know that, for 0 ≤ i ≤ m,
∂ixλ and ∂ixw go to zero at infinity. Thus∫ +∞

−∞
(λwx + wλx)dx =

∫ +∞

−∞
(λw)x dx = [λw]

+∞
−∞ = 0,

and an integration by parts gives∫ +∞

−∞
λ(λt − ελxxt) + w(wt − εwxxt)dx =

1

2

d

dt

∫ +∞

−∞
λ2 + w2 + ελ2

x + εw2
x dx.

Integration by parts are applied to the right-hand side of (2.7), and it gets:∫ +∞

−∞
λ((λw)x + (λu+ ζw)x)dx = −

∫ +∞

−∞
λx(λw + λu+ ζw) dx

= −
∫ +∞

−∞

(
λ2

2

)
x

(w + u) dx−
∫ +∞

−∞
λxζw dx

=

∫ +∞

−∞

λ2

2
(wx + ux) dx−

∫ +∞

−∞
λxζw dx.
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Similarly ∫ +∞

−∞
w(vw)x dx = −

∫ +∞

−∞
wxvw dx = −

∫ +∞

−∞

(
w2

2

)
x

v dx =

∫ +∞

−∞

w2

2
vx dx,

and ∫ +∞

−∞
w2wxdx =

∫ +∞

−∞

(
w3

3

)
x

dx =

[
w3

3

]+∞

−∞
= 0.

Finally, the equality (2.7) becomes

1

2

d

dt

∫ +∞

−∞
(λ2 + w2 + ελ2

x + εw2
x) dx = −ε

∫ +∞

−∞

λ2

2
(wx + ux) +

w2

2
vx + λxζw dx

− ε
∫ +∞

−∞
λuxxx + ληxxt + wηxxx + wuxxt dx.

However λ(x, 0) = 0 and w(x, 0) = 0, we deduce∫ +∞

−∞
(λ2 + w2 + ελ2

x + εw2
x) dx ≤ 2ε

∫ t

0

∫ +∞

−∞

∣∣∣∣λ2

2
(wx + ux)

∣∣∣∣+

∣∣∣∣w2

2
vx

∣∣∣∣+ |λxζw|

+ 2ε

∫ t

0

∫ +∞

−∞
|λuxxx|+ |ληxxτ |+ |wηxxx|+ |wuxxτ |dxdτ.

(2.8)

According to theorem 1.1, we have for t ∈ [0, ε−1/2T ], h = η, u, ζ, or v, and 0 ≤ i ≤ m,

‖∂ixh‖ ≤ ‖h‖m ≤ C0 = C0(f, g),

moreover, for 0 ≤ i ≤ m− 1 and t ∈ [0, ε−1/2T ],

‖∂ixh‖∞ ≤
√

2(‖∂ixh‖‖∂i+1
x h‖) 1

2 ≤
√

2C0.

Let us find an upper bound of the inequality (2.8). On one hand, we have∫ t

0

∫ +∞

−∞

∣∣∣∣λ2

2
(wx + ux)

∣∣∣∣ dxdτ ≤ 1

2
sup

τ∈[0,ε−1/2T ]

(‖ux(τ)‖∞ + ‖wx(τ)‖∞)

≤ 1

2
sup

τ∈[0,ε−1/2T ]

(2‖ux(τ)‖∞ + ‖vx(τ)‖∞)

∫ t

0

‖λ‖2dτ

≤ 3
√

2

2
C0

∫ t

0

‖λ‖2dτ,

∫ t

0

∫ +∞

−∞

∣∣∣∣w2

2
vx

∣∣∣∣ dxdτ ≤ 1

2
sup

τ∈[0,ε−1/2T ]

‖vx(τ)‖∞
∫ t

0

‖w‖2dτ ≤
√

2

2
C0

∫ t

0

‖w‖2dτ,

and, using the Cauchy-Schwarz inequality,∫ t

0

∫ +∞

−∞
|λxζw|dxdτ ≤ sup

τ∈[0,ε−1/2T ]

‖ζx‖∞
∫ t

0

‖λx‖‖w‖dτ ≤
√

2C0

∫ t

0

‖λx‖‖w‖dτ.

On the other hand, the Cauchy-Schwarz inequality provides∫ t

0

∫ +∞

−∞
|λuxxx|dxdτ ≤

∫ t

0

‖λ‖‖uxxx‖dτ ≤ C0

∫ t

0

‖λ‖dτ∫ t

0

∫ +∞

−∞
|wηxxx|dxdτ ≤

∫ t

0

‖w‖‖ηxxx‖dτ ≤ C0

∫ t

0

‖w‖dτ.

6



However,
ηxxt = −∂2

x(ux + ε((ηu)x + uxxx))

= −(uxxx + 3εηxxux + 3εηxuxx + εηuxxx + εηxxxu+ εuxxxxx),

thus, for t ∈ [0, ε−1/2T ],

‖ηxxt‖ ≤ ‖uxxx‖+ 3ε‖ηxx‖‖ux‖∞ + 3ε‖ηx‖∞‖uxx‖+ ε‖η‖∞‖uxxx‖+ ε‖ηxxx‖‖u‖∞ + ε‖uxxxxx‖

≤ (1 + ε)C0 + ε8
√

2C2
0 .

Thanks to the Cauchy-Schwarz inequality, we obtain∫ t

0

∫ +∞

−∞
|ληxxτ |dxdτ ≤

∫ t

0

‖λ‖‖ηxxτ‖dτ ≤
(

(1 + ε)C0 + ε8
√

2C2
0

)∫ t

0

‖λ‖dτ.

In the same way, we find for t ∈ [0, ε−1/2T ],

‖uxxt‖ = ‖ − ∂2
x(ηx + ε(uux + ηxxx))‖

≤ (‖ηxxx‖+ 3ε‖ux‖∞‖uxx‖+ ε‖u‖∞‖uxxx‖+ ε‖ηxxxxx‖)

≤ (1 + ε)C0 + ε4
√

2C2
0 ,

and then ∫ t

0

∫ +∞

−∞
|wuxxτ |dxdτ ≤

∫ t

0

‖w‖‖uxxτ‖dτ ≤
(

(1 + ε)C0 + ε4
√

2C2
0

)∫ t

0

‖w‖dτ.

The inequality (2.8) is finally rewritten∫ +∞

−∞
(λ2 + w2 + ελ2

x + εw2
x) dx ≤ 2ε

(
3
√

2

2
C0

∫ t

0

‖λ‖2dτ +

√
2

2
C0

∫ t

0

‖w‖2dτ +
√

2C0

∫ t

0

‖λx‖‖w‖dτ

)

+ 2ε

((
(2 + ε)C0 + ε8

√
2C2

0

)∫ t

0

‖λ‖dτ +
(

(2 + ε)C0 + ε4
√

2C2
0

)∫ t

0

‖w‖dτ
)
.

We define

A(t) :=

[∫ +∞

−∞
(λ2 + w2 + ελ2

x + εw2
x)dx

]1/2

,

thus
‖λ‖2 + ‖w‖2 ≤ A2 and ‖λx‖2 + ‖wx‖2 ≤ ε−1A2,

and the inequality (2.8) becomes, using 2ab ≤ a2 + b2,

A2(t) ≤ 2C1ε

∫ t

0

A(τ)dτ + C1ε
1/2

∫ t

0

A2(τ)dτ ≤ 3C1ε

∫ t

0

A(τ)dτ + C1

∫ t

0

A3(τ)dτ

The following Gronwall’s lemma is used [2].

Lemma 2.3
Let α, β > 0 and ρ > 1. Define

T̃ := β−1/ρα(1−ρ)/ρ
∫ +∞

0

(1 + zρ)−1dz

Then there exists a constant C = C(ρ) > 0, independent of α and β such that if A is a non-negative,

continuous function defined on [0, T̃ ] with A(0) = 0 and for all t ∈ [0, T̃ ]

A2(t) ≤
∫ t

0

αA(τ) + βAρ+1(τ)dτ,

then for all t ∈ [0, T̃ ],
A(t) ≤ Cαt.
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Even if we choose T smaller, we conclude that, for 0 ≤ t ≤ ε−1/2T ,∥∥∥∥(η(·, t)
u(·, t)

)
−
(
ζ(·, t)
v(·, t)

)∥∥∥∥
L2

≤ Cεt.

�

We can generalize this result to the space derivatives as follows.

Theorem 2.4 Let m ≥ 0 and (f, g) ∈ Hm+5(R) ×Hm+5(R). Let (η, u) and (ζ, v) be solution in
C([−ε−1/2T, ε−1/2T ];Hm+5(R)) × C([−ε−1/2T, ε−1/2T ];Hm+5(R)) of KdV-KdV and BBM-BBM
respectively, where

T :=
Cm+5

‖(f, g)‖m+5
.

Then, for all 0 ≤ i ≤ m, there exists a constant Mi > 0, depending only on ‖(f, g)‖m+5, such that
for |t| ≤ ε−1/2T , we have ∥∥∥∥∂ix(η(·, t)

u(·, t)

)
− ∂ix

(
ζ(·, t)
v(·, t)

)∥∥∥∥
L2

≤Miε|t|.

Proof. The proof is done by induction on the derivative order. The preceding theorem gives
the first step i = 0, and we assume that, for 0 ≤ i ≤ n − 1 and 0 ≤ t ≤ ε−1/2T , there exists
Mi = Mi(‖(f, g)‖(m+5)×(m+5)) > 0 such that

‖∂ixλ‖L2 + ‖∂ixw‖L2 =

∥∥∥∥∂ix(η(·, t)
u(·, t)

)
− ∂ix

(
ζ(·, t)
v(·, t)

)∥∥∥∥
L2

≤Mi εt.

The result is now shown for the step n. Multiplying equations (2.5) and (2.6) by ∂2n
x λ and ∂2n

x w
respectively, and integrating over space:∫ +∞

−∞
∂2n
x λ(λt + wx − ελxxt) + ∂2n

x w(wt + λx − εwxxt) dx = −ε
∫ +∞

−∞
∂2n
x λ(uxxx + ηxxt) + ∂2n

x w(ηxxx + uxxt)

− ε
∫ +∞

−∞
∂2n
x λ((λw)x + (λu+ ζw)x) + ∂2n

x w(wwx + (vw)x) dx.

(2.9)
Concerning the left-hand side of (2.9), integration by parts provides∫ +∞

−∞
(∂2n
x λwx + ∂2n

x wλx)dx = (−1)n
∫ +∞

−∞
(∂nxλ∂

n
xw)x dx = 0,

and∫ +∞

−∞
∂2n
x λ(λt−ελxxt)+∂2n

x w(wt−εwxxt)dx =
(−1)n

2

d

dt

∫ +∞

−∞
(∂nxλ)2+(∂nxw)2+ε(∂n+1

x λ)2+ε(∂n+1
x w2)dx.

The right-hand side of (2.9) is rewritten as follows.

−(−1)nε

∫ +∞

−∞
∂nxλ∂

n+1
x (λw + λu+ ζw) + ∂nxw ∂

n
x (wwx) + ∂nxw ∂

n+1
x (vw) dx

− (−1)nε

∫ +∞

−∞
∂nxλ∂

n+3
x u+ ∂nxλ∂

n+2
x ηt + ∂nxw ∂

n+3
x η + ∂nxw ∂

n+2
x ut dx.

Let us define

B2(t) :=

∫ +∞

−∞
(∂nxλ)2 + (∂nxw)2 + ε(∂n+1

x λ)2 + ε(∂n+1
x w)2 dx.
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Since λ(·, 0) = 0 and w(·, 0) = 0, the equation (2.9) becomes

B2(t) =− 2ε

∫ t

0

∫ +∞

−∞
∂nxλ∂

n+1
x (λw + λu+ ζw) + ∂nxw ∂

n
x (wwx) + ∂nxw ∂

n+1
x (vw) dxdτ

− 2ε

∫ t

0

∫ +∞

−∞
∂nxλ∂

n+3
x u+ ∂nxλ∂

n+2
x ητ + ∂nxw ∂

n+3
x η + ∂nxw ∂

n+2
x uτ dxdτ.

Thanks to the Leibniz formula, we find∫ t

0

∫ +∞

−∞
∂nxλ∂

n+1
x (λu)dxdτ =

∫ t

0

∫ +∞

−∞
∂nxλ

(
n+1∑
i=0

(
n+ 1
i

)
∂n+1−i
x λ∂ixu

)
dxdτ

=

∫ t

0

∫ +∞

−∞
∂nxλ∂

n+1
x λu+ (n+ 1)(∂nxλ)2uxdxdτ

+

∫ t

0

∫ +∞

−∞

n+1∑
i=2

(
n+ 1
i

)
∂nxλ∂

n+1−i
x λ∂ixudxdτ.

However∫ t

0

∫
R
∂nxλ∂

n+1
x λudxdτ =

∫ t

0

∫
R

1

2
∂x(∂nxλ)2 udxdτ = −

∫ t

0

∫
R

1

2
(∂nxλ)2 uxdxdτ,

then we have∫ t

0

∫
R
∂nxλ∂

n+1
x (λu)dxdτ =

∫ t

0

∫
R

(n+
1

2
)(∂nxλ)2 ux +

n+1∑
i=2

(
n+ 1
i

)
∂nxλ∂

n+1−i
x λ∂ixu dxdτ.

In the same manner, it gets∫ t

0

∫
R
∂nxw ∂

n+1
x (vw)dxdτ =

∫ t

0

∫
R

(n+
1

2
)(∂nxw)2 vx +

n+1∑
i=2

(
n+ 1
i

)
∂nxw ∂

n+1−i
x w ∂ixv dxdτ,

and ∫ t

0

∫
R
∂nxw ∂

n
x (wwx)dxdτ =

∫ t

0

∫
R

(2n− 1

2
)(∂nxw)2 wx +

n−1∑
i=2

(
n
i

)
∂nxw ∂

i
xw ∂

n+1−i
x w dxdτ.

Thus,

B2(t) =− 2ε

∫ t

0

∫
R

[
(n+

1

2
)(∂nxλ)2 (wx + ux) + (n+

1

2
)(∂nxw)2vx + (2n− 1

2
)(∂nxw)2 wx

+ ∂nxλ∂
n+1
x ζ∂nxw + ∂nxλ∂

n+1
x w∂nx ζ +

n−1∑
i=2

(
n
i

)
∂nxw ∂

i
xw ∂

n+1−i
x w

+

n+1∑
i=2

(
n+ 1
i

)
(∂nxλ∂

n+1−i
x λ (∂ix w + ∂ix u) + ∂nxw∂

n+1−i
x w ∂ixv + ∂nxλ∂

n+1−i
x w ∂ixζ)

+∂nx λ∂
n+3
x u+ ∂nxλ∂

n+2
x ητ + ∂nxw ∂

n+3
x η + ∂nxw ∂

n+2
x uτ

]
dxdτ.

(2.10)
Recall that, for t ∈ [0, ε−1/2T ], h = η, u, ζ, v and 0 ≤ i ≤ m+ 4, we have

‖∂ixh‖∞ ≤
√

2(‖∂ixh‖‖∂i+1
x h‖) 1

2 ≤
√

2C0.
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We deduce∫ t

0

∫
R

∣∣∣∣(n+
1

2
)(∂nxλ)2(wx + ux)

∣∣∣∣ dxdτ ≤ (n+
1

2
)

∫ t

0

‖∂nxλ‖2(‖wx‖∞ + ‖ux‖∞)dτ

≤ (n+
1

2
)2
√

2C0

∫ t

0

‖∂nxλ‖2dτ,
(2.20− a)

similarly ∫ t

0

∫
R

∣∣∣∣(n+
1

2
)(∂nxw)2vx

∣∣∣∣ dxdτ ≤ (n+
1

2
)
√

2C0

∫ t

0

‖∂nxw‖2dτ, (2.20− b)∫ t

0

∫
R

∣∣∣∣(2n− 1

2
)(∂nxw)2wx

∣∣∣∣ dxdτ ≤ (2n− 1

2
)2
√

2C0

∫ t

0

‖∂nxw‖2dτ, (2.20− c)

and∫ t

0

∫
R
|∂nxλ∂n+1

x ζ∂nxw+∂nxλ∂
n+1
x w∂nx ζ|dxdτ ≤

√
2C0

(∫ t

0

‖∂nxλ‖‖∂nxw‖dτ +

∫ t

0

‖∂nxλ‖‖∂n+1
x w‖dτ

)
.

Using the Cauchy-Schwarz inequality, we obtain∫ t

0

∫
R

n+1∑
i=2

(
n+ 1
i

) ∣∣∂nxλ∂n+1−i
x λ∂ixu

∣∣ dxdτ ≤ n+1∑
i=2

(
n+ 1
i

)∫ t

0

‖∂nxλ‖‖∂n+1−i
x λ‖‖∂ixu‖∞dτ,

and the inductive assumption provides, for 0 ≤ t ≤ ε−1/2T ,∫ t

0

∫
R

n+1∑
i=2

(
n+ 1
i

) ∣∣∂nxλ∂n+1−i
x λ∂ixu

∣∣ dxdτ ≤

(
n+1∑
i=2

(
n+ 1
i

)
Mn+1−i

)∫ t

0

ετ‖∂nxλ‖dτ

≤

(
n+1∑
i=2

(
n+ 1
i

)
Mn+1−iε

1/2T 1/2

)∫ t

0

‖∂nxλ‖dτ.

Same computations give∫ t

0

∫
R

n+1∑
i=2

(
n+ 1
i

)
|(∂nxλ∂n+1−i

x λ (∂ix w + ∂ix u) + ∂nxw∂
n+1−i
x w ∂ixv + ∂nxλ∂

n+1−i
x w ∂ixζ)|

≤ 3

(
n+1∑
i=2

(
n+ 1
i

)
Mn+1−iε

1/2T 1/2

)∫ t

0

‖∂nxλ‖+ ‖∂nxw‖dτ.

and∫ t

0

∫
R

n−1∑
i=2

(
n
i

) ∣∣∂nxw∂ixw∂n+1−i
x w

∣∣ dxdτ ≤ (n−1∑
i=2

(
n
i

)
Miε

1/2T 1/2

)∫ t

0

‖∂nxw‖dτ, (2.20− f)

On the other hand, from the Cauchy-Schwarz inequality, it gets∫ t

0

∫
R

∣∣∂nxλ∂n+3
x u

∣∣ dxdτ ≤
∫ t

0

‖∂nxλ‖‖∂n+3
x u‖dτ ≤

√
2C0

∫ t

0

‖∂nxλ‖dτ,∫ t

0

∫
R

∣∣∂nxw∂n+3
x η

∣∣ dxdτ ≤
∫ t

0

‖∂nxw‖‖∂n+3
x η‖dτ ≤

√
2C0

∫ t

0

‖∂nxw‖dτ.

Since
∂n+2
x ηt = −∂n+2

x (ux + ε(ηu)x + εuxxx)

= −(∂n+3
x u+ ε

n+3∑
i=0

(
n+ 3
i

)
∂ixη ∂

n+3−i
x u+ ε∂n+5

x u),
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it implies∫ t

0

∫
R

∣∣∂nxλ∂n+2
x ηt

∣∣ dxdτ ≤ ∫ t

0

‖∂nxλ‖‖∂n+2
x ηt‖dτ ≤

(
(1 + ε)C0 +

√
2C2

0ε

n+3∑
i=0

(
n+ 3
i

))∫ t

0

‖∂nxλ‖dτ.

In the same way, we have∫ t

0

∫
R
ε|∂nxw∂n+2

x ut|dxdτ ≤
∫ t

0

ε‖∂nxw‖‖∂n+2
x ut‖dτ ≤

(
(1 + ε)C0 +

√
2C2

0ε

n+2∑
i=0

(
n+ 2
i

))∫ t

0

‖∂nxw‖dτ,

(2.20− k)
because

∂n+2
x ut = −∂n+2

x (ηx + εuux + εηxxx)

= −(∂n+3
x η + ε

n+2∑
i=0

(
n+ 2
i

)
∂ixu ∂

n+3−i
x u+ ε∂n+5

x η).

For t ∈ [0, ε−1/2T ], the function B(t) being such that

‖∂nxλ‖2 + ‖∂nxw‖2 ≤ B2(t), and ‖∂n+1
x λ‖2 + ‖∂n+1

x w‖2 ≤ ε−1B2(t),

the equation (2.10) finally becomes

B2(t) ≤ 2Cnε

∫ t

0

B(τ)dτ + Cnε
1/2

∫ t

0

B2(τ)dτ ≤ 3Cnε

∫ t

0

B(τ)dτ + Cn

∫ t

0

B3(τ)dτ.

We conclude using the Gronwall’s lemma as for the initial step. �

Corollary 2.5 Let m ≥ 1 and (f, g) ∈ Hm+5(R)×Hm+5(R). Let (η, u) and (ζ, v) be solution in
C([−ε−1/2T, ε−1/2T ];Hm+5(R)) × C([−ε−1/2T, ε−1/2T ];Hm+5(R)) of KdV-KdV and BBM-BBM
respectively, where

T :=
Cm+5

‖(f, g)‖m+5
.

Then, for all 0 ≤ i ≤ m− 1, there exists a constant Ni > 0, depending only on ‖(f, g)‖m+5, such
that for |t| ≤ ε−1/2T , we have∥∥∥∥∂ix(η(·, t)

u(·, t)

)
− ∂ix

(
ζ(·, t)
v(·, t)

)∥∥∥∥
L∞
≤ Niε|t|.

Proof. Using
‖∂ix(η − ζ)‖∞ ≤

√
2(‖∂ix(η − ζ)‖‖∂i+1

x (η − ζ)‖)1/2,

the preceding theorem is applied with 0 ≤ i ≤ m and |t| ≤ ε−1/2T , to give

‖∂ix(η − ζ)‖∞ ≤
√

2(Miε|t|Mi+1ε|t|)1/2 =
√

2MiMi+1ε|t|,

and
‖∂ix(u− v)‖∞ ≤

√
2MiMi+1ε|t|.

It is enough to choose Ni = 2
√

2MiMi+1. �

Remark 2.6 Concerning the generalized Boussinesq systems, the difference between the respective
solutions can be written as follows:

λt + wx + ε (a2wxxx − b2λxxt) = −ε ((λw)x + (λu+ ζw)x + (a1 − a2)uxxx + (b2 − b1)ηxxt)

wt + λx + ε (c2λxxx − d2wxxt) = −ε (wwx + (vw)x + (c2 − c1)ηxxx + (d2 − d1)uxxt)

λ(x, 0) = 0, w(x, 0) = 0,

where λ = η1 − η2, w = u1 − u2. The rest of the proof is similar to the previous cases.
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3 Numerical comparison

The aim of this section is not to perform a complete numerical study, but rather to present some
relevant simulations and to explore if the result is optimal and if the time comparison is longer
than the theoretical one. Therefore we have an overview of the way in which solutions of each
system evolve and differ.
To simulate the system, a Crank-Nicolson scheme is used to discretize the time-derivative, and
the fast Fourier transform is applied for the space derivatives. The obtained non-linear problem is
solved using fixed point iterations.
We consider a bounded domain [−L,L], L > 0 a large fixed value. We denote Nx > 0 the number
of Fourier modes, ∆t > 0 the time step, and for n ∈ N, η̂n, resp. ûn, is the approximation of η̂,
resp. û, at time n∆t .

Algorithm: By denoting by m ≥ 1 a maximal number of the Picard iterations, the algorithm is
described as follows:

• Set η̂0,m := ... := η̂0,1 := η̂0,0 := η̂0 and û0,m := ... := û0,1 := û0,0 := û0.

• For n = 0, 1, ..., compute:

• For r = 0, 1, ..., m− 1,(
I +

∆t

2
A(ξ)

)(
η̂n+1,r+1

ûn+1,r+1

)
=

(
I − ∆t

2
A(ξ)

)(
η̂n
ûn

)
(3.1)

− iεξ∆t
4

(
1

1+εbξ2
̂(ηn+1,r + ηn)(un+1,r + un)

1
2(1+εdξ2)

̂(un+1,r + un)2

)
,

where, ξ = k πL ,−
Nx

2 ≤ k ≤
Nx

2 − 1,

I =

(
1 0
0 1

)
; A(ξ) = iξ

(
0 1−εaξ2)

1+εdξ2

1−εcξ2
1+εdξ2 0

)
.

The iterations are stopped in one of the two following cases:

• when
(
‖ηn+1,r+1−ηn+1,r‖l2

‖ηn+1,0‖l2
+
‖un+1,r+1−un+1,r‖l2

‖un+1,0‖l2

)
≤ τ , with τ > 0 a fixed tolerance.

• or when r = m− 1. We mention that the step ∆t can be reduced in this case, in order
to improve the previous relative error.

We then set ηn+1 := ηn+1,r+1 and un+1 := un+1,r+1.

Remark 3.1 We choose a suitable step ∆t > 0 as follows:

∆t <
∆x

πε(2 + ε(a+ c)(π/∆x)2)(‖ηn‖l∞ + ‖un‖l∞)
. (3.2)

Indeed, from (3.1),(
I +

∆t

2
A(ξ)

)(
η̂n+1 − η̂n+1,r+1

ûn+1 − ûn+1,r+1

)

= − iεξ∆t
4

 1
1+εbξ2

(
̂(ηn+1 + ηn)(un+1 + un)− ̂(ηn+1,r + ηn)(un+1,r)

)
1

2(1+εdξ2)

(
̂(un+1 + un)2 − ̂(un+1,r + un)2

)  .
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The nonlinear term can be written as(
̂(ηn+1−ηn+1,r)(un+1+un+1,r)

2 +
(ηn+1+ηn+1,r)(un+1−un+1,r)

2 + un(ηn+1 − ηn+1,r) + ηn(un+1 − un+1,r)
̂(un+1 − un+1,r)(un+1 + 2un + un+1,r)

)

and a linearization, near (ηn, un), in the right-hand side of this relation leads to the approximation:

(
I +

∆t

2
A(ξ)

)(
η̂n+1 − η̂n+1,r+1

ûn+1 − ûn+1,r+1

)
≈ − iεξ∆t

4

 1
1+εbξ2

(
̂un(ηn+1 − ηn+1,r) + ηn(un+1 − un+1,r)

)
1

2(1+εdξ2)

(
̂un(un+1 − un+1,r)

)  .

The matrix
(
I + ∆t

2 A(ξ)
)

is invertible if, for all ξ,

∆t <
2(1 + εbξ2)(1 + εdξ2)

|ξ(1− εaξ2)(1− εcξ2)|
,

and it follows according to the Parseval’s formula,

‖ηn+1,r+1 − ηn+1‖l2 + ‖un+1,r+1 − un+1‖l2

.
ε|ξ|∆t

4

[
1

1 + εbξ2

(
1 +
|1− εcξ2|
1 + εdξ2

)
(‖un‖l∞‖ηn+1,r+1 − ηn+1‖l2 + ‖ηn‖l∞‖un+1,r+1 − un+1‖l2)

+
1

1 + εdξ2

(
1 +
|1− εaξ2|
1 + εbξ2

)
(‖un‖l∞‖un+1,r+1 − un+1‖l2)

]
.

However ξ = k πL , with −Nx

2 ≤ k ≤
Nx

2 − 1, and Nx = 2L
∆x , it follows

‖ηn+1,r+1 − ηn+1‖l2 + ‖un+1,r+1 − un+1‖l2 .
επ∆t

4∆x

(
2 + ε(a+ c)(π/∆x)2

)
(‖ηn‖l∞ + ‖un‖l∞)

(‖ηn+1,r − ηn+1‖l2 + ‖un+1,r+1 − un+1‖l2).

Remark 3.2 When b, d > 0 and since |ξ|/(1 + ξ2) ≤ 1, a better choice for the time step ∆t > 0
can be done as follows:

∆t <
1

ε(‖ηn‖l∞ + ‖un‖l∞)
.

Simulations are performed with such a time step ∆t, and with L = 100, Nx = 210. Similar results
were obtained with smaller space steps. We start from the initial datum:

η0(x) =
15

4

(
−2 + cosh(3

√
2/5x)

)
sech4

(
3√
10
x

)
, u0(x) = 3wsech2

(
3√
10
x

)
,

with w = ±5/2. This initial datum provides a solitary wave solution of the BBM-BBM system
with ε = 1, a = c = 0, b = d = 1/6, given by η(x, t) = η0(x − wt) and u(x, t) = u0(x − wt). To
ensure the convergence of the scheme, the following conservation law is tested : ∀t ∈ R,∫ +∞

−∞
η2(x, t)+u2(x, t)+εb∂xη

2(x, t)+εd∂xu
2(x, t)dx =

∫ +∞

−∞
η2

0(x)+u2
0(x)+εb∂xη

2
0(x)+εd∂xu

2
0(x)dx.

Figure 1 shows the evolution over time of the solution, the L∞−norm, the conservation law above,
and the error between the approximate solution and the solitary wave.

13



−100 −50 0 50 100
−4

−3

−2

−1

0

1

2

x

 

 

η(t=0)

η(t=10)

η(t=50)

−100 −50 0 50 100
−2

0

2

4

6

8

x

 

 

u(t=0)

u(t=10)

u(t=50)

0 2 4 6 8 10
10

20

30

40

50

60

70

time

 

 

H
1
−norm (× 100)

L
∞

−norm

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

time

Figure 1: Result for ε = 1, a = c = 0, b = d = 1. On the top left, the approximated amplitude η
at time t = 0, 10, 50. On the top right, the approximated velocity u at time t = 0, 10, 50. On the
bottom left, the H1 and L∞−norms. On the bottom right, the error between the approximated
solution and the solitary wave.

Based on these results, the numerical scheme appears to be relevant for the simulations. The ap-
proximate solution remains close to the exact soliton, and the conservation laws are well preserved.

We represent in Figure 2 the evolution of the solution starting from a localized wave defined as
follows

η0(x) = u0(x) = α exp(−x2/22).
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Figure 2: Result for ε = 0.1, α = 1. On the top, the approximated amplitude η at time t =
1/
√
ε, 1/ε, 1/ε2. At the center, the approximated velocity u at time t = 1/

√
ε, 1/ε, 1/ε2. On the

bottom left, the conservation laws. On the bottom right, the difference between the approximated
solution of the Boussinesq system (a = b = c = d = 1), the KdV-KdV system (a = c = 1, b = d = 0)
and the BBM-BBM system (a = c = 0, b = d = 1).
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The solution of the KdV-KdV system disperses faster, the solution of the BBM-BBM system being
the slowest. The difference between the solutions increases rapidly, the slowdown is due to the
decay of solutions. Between t = 1/

√
ε, and t = 1/ε, the difference has doubled. We also noticed

that conservation laws are well preserved.
We inspect in Figure 3 the influence of the parameter ε and of the amplitude of initial data.
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Figure 3: Difference between the approximated solution of the Boussinesq system (a = b = c = d =
1), the KdV-KdV system (a = c = 1, b = d = 0) and the BBM-BBM system (a = c = 0, b = d = 1).
At left, result for ε = 0.5, 0.1, 0.01 and α = 1. At right, result for ε = 0.1 and α = 1, 2, 3.

We find that the difference between solution increases with ε. Nevertheless, the growth is quickly
done during the first iterations. On the other hand, the constants depending on the norm of the
initial data, it appears that the difference between the solutions is even greater than the amplitude
of the solution is great and the dispersion is slow.

To sum up, when α and ε are sufficiently small, the solutions behave like the linear case. It is
due to the dispersion, and thus the smallness of the solutions. Then the solutions remain close and
the result can be improved. If α and ε become large, the solutions differ quickly. Nevertheless, it is
possible to improve the result by selecting special solutions, e.g. by choosing one-way propagation
solution [1, 7].
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