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We extend a multi-state physics model (MSPM) framework for component reliability assessment by including semi-Markov and random shockprocesses. Two mutually exclusivetypes of random shocks are considered: extreme, and cumulative.Extreme shockslead the component to immediate failure, whereascumulative shockssimplyaffect the componentdegradation rates. General dependences between the degradation and the two types of random shocks are considered. A Monte Carlo simulation algorithmis implemented to compute component state probabilities. An illustrative example is presented,and a sensitivity analysis is conducted on themodel parameters.The resultsshowthat our extended model is able to characterize the influences of different types of random shocks onto the component state probabilities and the reliability estimates.

Abbreviation

MSPM

Multi-state physics model

Notations

𝑺

The states set of component degradation processes 𝜏 𝑖

The residence time of component being in the state i since the last transition 𝜽

The external influencing factors 𝜆 𝑖,𝑗 𝜏 𝑖 , 𝜽

The transition rate between state i and state j 𝑡 Time (𝑡, 𝑡 + ∆𝑡) Infinitesimal time interval 𝑋 𝑘

The state of the component after k transitions 𝑇 𝑘

The time of arrival at 𝑋 𝑘 of component 𝑃(𝑡)

The state probability vector 𝑝 𝑖 (𝑡)

The probabilityof component being in state i at time t 𝑅 𝑡

The component reliability 𝑁 𝑡

The number of random shocks that occurredbefore and up tot μ

The constant arrival rate of random shocks 𝜏 𝑖,𝑚

′

The residence time of the component in the current degradation state i afterm cumulative shocks 𝑝 𝑖,𝑚 ( The maximum number of replications 𝑷 (𝑡) = {𝑝 𝑀 (𝑡), 𝑝 𝑀-1 (𝑡), … , 𝑝 0 (𝑡)}

The estimation of the state probability vector 𝑣𝑎𝑟 𝑝 𝑖 (𝑡) The sample variance of estimated state probability 𝑝 𝑖 (𝑡) 𝛿

The predetermined constantwhich controls the influence of the degradation onto the probability 𝑝 𝑖,𝑚 𝜏 𝑖,𝑚 INTRODUCTION Failures of components generally occur in two modes: degradation failures due to physical deterioration in the form of wear, erosion, fatigue, etc.; and catastrophic failures due to damages caused by sudden shocks in the form of jolts, blows, etc.

[1]- [START_REF] Wang | An approach to reliability assessment under degradation and shock process[END_REF].

In the past decades, a number of degradation models have been proposed in the fieldof reliability engineering [START_REF] Gebraeel | Residual life predictions in the absence of prior degradation knowledge[END_REF]- [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF]. They can be grouped into several categories [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF]: statistical distributions (e.g. Bernstein distribution [START_REF] Gebraeel | Residual life predictions in the absence of prior degradation knowledge[END_REF]),stochastic processes (e.g.

Gamma process, and Wiener process) [START_REF] Lawless | Covariates and random effects in a gamma process model with application to degradation and failure[END_REF]- [START_REF] Guo | A Maintenance optimization model for mission-oriented systems based on wiener degradation[END_REF], andmulti-state models [START_REF] Lisnianski | Multi-state system reliability: assessment, optimization and applications[END_REF]- [START_REF] Kim | Optimal maintenance policy for a multi-state deteriorating system with two types of failures under general repair[END_REF].

Most of the existingmodelsare typically built on degradation datafromhistorical collections [START_REF] Gebraeel | Residual life predictions in the absence of prior degradation knowledge[END_REF], [START_REF] Guo | A Maintenance optimization model for mission-oriented systems based on wiener degradation[END_REF]- [START_REF] Giorgio | An age-and state-dependent Markov model for degradation processes[END_REF], ordegradation tests [START_REF] Lawless | Covariates and random effects in a gamma process model with application to degradation and failure[END_REF],which however are suited for components ofrelatively low cost or/andhigh failure rate(s) (e.g. electronic devices, and vehicle components) [START_REF] Yang | Life cycle reliability engineering[END_REF]- [START_REF] Park | Direct prediction methods on lifetime distribution of organic light-emitting diodes from accelerated degradation tests[END_REF].In industrial systems, there are a number of critical components (e.g. valves and pumps in nuclear power plantsor aircraft [START_REF] Daigle | A model-based prognostics approach applied to pneumatic valves[END_REF]- [START_REF] Daigle | Multiple damage progression paths in model-based prognostics[END_REF],

engines of airplanes, etc.) designed to be highly reliable to ensure system operation and safety, but for which degradation experiments arecostly. In practice, it is thenoften difficult to collectsufficient degradation or failuresamples to calibrate the degradation models mentioned above.

An alternative isto resort to failure physics and structural reliability, to incorporate knowledgeon thephysics of failure of the particular component (passive and active) [START_REF] Daigle | A model-based prognostics approach applied to pneumatic valves[END_REF]- [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF]. Recently, Unwin et al. [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF] have proposed a multi-state physics model (MSPM) for modeling nuclear component degradation,also accounting for the effects of environmental factors (e.g. temperature and stress) within certain predetermined ranges [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF].In a previous work by the authors [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF], the modelhas been formulated under the framework of inhomogeneous continuous time Markov chains,and solved by Monte Carlo simulation.

Random shocks need to be accounted foron top of the underlying degradation processes because they can bring variations to influencing environmental factors, even outside their predetermined boundaries [START_REF] Nakagawa | Shock and damage models in reliability theory[END_REF], that can accelerate the degradation processes.For example,thermal, and mechanical shocks (e.g.internal thermal shocks and water hammers) [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF], [START_REF] Lydell | Pipe failure probability-the Thomas paper revisited[END_REF]- [START_REF] Salonen | Experience on in-service damage in power plant components[END_REF]onto power plant componentscan lead to intense increases intemperatures, and stresses, respectively;under theseextreme conditions, the original physics functions in MSPM might be insufficient to characterize the influences of random shocks onto the degradation processes, and must, therefore, be modified.In the literature, random shocks are typically modeled by Poisson processes [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF], [START_REF] Nakagawa | Shock and damage models in reliability theory[END_REF], [START_REF] Bai | Generalized shock models based on a cluster point process[END_REF]- [START_REF] Esary | Shock models and wear processes[END_REF],distinguishing two main types, extreme shock and cumulative shock processes [START_REF] Bai | Generalized shock models based on a cluster point process[END_REF], according to the severity of the damage. The former could directly lead the component to immediate failure [START_REF] Gut | Extreme shock models[END_REF]- [START_REF] Anderson | Limit theorems for general shock models with infinite mean intershock times[END_REF],whereas the latter increasesthe degree of damagein a cumulative way [START_REF] Agrafiotis | On excess-time correlated cumulative processes[END_REF]- [START_REF] Nakagawa | Replacement policies for a cumulative damage model with minimal repair at failure[END_REF].

Random shockshave been intensively studied [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF]- [START_REF] Wang | An approach to reliability assessment under degradation and shock process[END_REF], [START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF]- [START_REF] Esary | Shock models and wear processes[END_REF], [START_REF] Ye | A distribution-based systems reliability model under extreme shocks and natural degradation[END_REF]- [START_REF] Yang | Maintenance of multi-state production systems deteriorated by random shocks and production[END_REF]. Esaryet al. [START_REF] Esary | Shock models and wear processes[END_REF] haveconsideredextreme shocksin a component reliability model, whereas Wanget al. [START_REF] Wang | An approach to reliability assessment under degradation and shock process[END_REF], Klutke and Yang [START_REF] Klutke | The availability of inspected systems subject to shocks and graceful degradation[END_REF], and Wortmanetal. [START_REF] Wortman | A maintenance strategy for systems subjected to deterioration governed by random shocks[END_REF] have modeledthe influences of cumulative shocks ontoa degradation process.Both extreme and cumulative random shocks have been considered by Li and Pham [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF], and Wang and Pham [START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF]. Additionally, Ye et al. [START_REF] Ye | A distribution-based systems reliability model under extreme shocks and natural degradation[END_REF],and Fan et al. [START_REF] Fan | Multicomponent lifetime distributions in the presence of ageing[END_REF] have considered that a high severity of degradation can lead to a high probability thata random shock causes extreme damage.However, the fact that theeffects of cumulative shocks can vary according to the severity of degradationhas alsoto be considered.

Among the models mixing the multi-state degradation models and random shocks, Li and Pham [START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF] divided the underlining continuous and monotonically increasing degradation processes into a finite number of states, and combined them with s-independent random shocks. Wang and Pham [START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF] further considered the dependences among the continuous and monotone (increasing or decreasing) degradation processes, and between degradation processes and random shocks. Yang et al. [START_REF] Yang | Maintenance of multi-state production systems deteriorated by random shocks and production[END_REF] integrated random shocks into a Markov degradation model. Becker et al.

[32] combined a semi-Markov degradation model, which is more general than Markov model, with random shocks in a dynamic reliability formulation, where the influence of random shocks is characterized by the change of continuous degradation variables (e.g. structure strength). To ourknowledge, this is the first work of semi-Markov degradation modeling that represents the influence of random shocks by changing the transition rates, which might also be physics functions.

The contribution of the paper is that it generalizes the MSPM framework to handle both degradation and random shocks, which have not been previously considered by the existing MSPMs. First, we extend our previous MSPM framework [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF] to semi-Markov modeling, which more generallydescribes the fact that the time of transition to a state can dependon the residence time in the current state, and hence is more suitable for including maintenance [START_REF] Huzurbazar | Flowgraph models for complex multistate system reliability[END_REF]. 

A MSPM OF COMPONENT DEGRADATION PROCESSES

A continuous-time stochastic process is called a semi-Markov processif the embedded jump chainis a Markov Chain and the times between transitionsmay berandom variables with any distribution [START_REF] Schuss | Theory and applications of stochastic processes[END_REF].The following assumptions are madefor the extended MSPM framework [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF] based on semi-Markov processes.

 The degradation process hasa finite number of states 𝑺 = {0, 

= 𝜆 𝑖,𝑗 𝜏 𝑖 = 𝑡 -𝑇 𝑛 , 𝜽 ∆𝑡, ∀ 𝑖, 𝑗 ∈ 𝑺, 𝑖 ≠ 𝑗.( 1 
)
where𝑋 𝑘 denotes the state of the component after ktransitions. The degradation transition rates can be obtained from the structural reliability analysisofthe degradation processes (e.g. the crack propagation process [START_REF] Kostandyan | Physics of failure as a basis for solder elements reliability assessment in wind turbines[END_REF], [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF],whereas the transition rates related to maintenance tasks can be estimated from the frequencies of maintenance activities).For example, the authors of [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF] divided the degradation process of the alloy metal weld into six states dependent on the underlying physics

M M-1 0 1
phenomenon, and some degradation transition rates are represented by corresponding physics equations.

The solution tothe semi-Markov process model is the state probability vector𝑃(𝑡) = {𝑝 𝑀 (𝑡), 𝑝 𝑀-1 (𝑡), … , 𝑝 0 (𝑡)}.Because no maintenance is carried out from the component failure state, and the component is regarded as functioning in all other intermediate alternative states, its reliability can be expressed as

𝑅 𝑡 = 1 -𝑝 0 (𝑡).
(

) 2 
Analyticallysolving the continuous time semi-Markov model with state residence time-dependent transition rates is a difficult or sometimes impossible task, andthe Monte Carlo simulation method is usuallyapplied to obtain 𝑃(𝑡) [START_REF] Gillespie | Monte Carlo simulation of random walks with residence time dependent transition probability rates[END_REF]- [START_REF] Rachelson | A simulation-based approach for solving generalized semi-markov decision processes[END_REF].

RANDOM SHOCKS

The followingassumptions are madeon the random shock process.

 The arrivals of random shocks follow a homogeneous Poisson process {𝑁 𝑡 , 𝑡 ≥ 0} [START_REF] Bai | Generalized shock models based on a cluster point process[END_REF] with constant arrival rate𝜇.The random shocks are s-independent of the degradation process, but they can influence the degradation process (see Fig. 2).

 The damages of random shocks aredivided into two types: extreme, and cumulative.

 Extreme shock and cumulative shock are mutually exclusive.

 The component failsimmediately upon occurrence of extreme shocks.

 The probability of a random shock resulting in extreme or cumulative damageiss-dependent on the current component degradation.

 The damageof cumulative shockscan only influence the degradation transition departing from the current state, and its impact on the degradation process is s-dependent on the current component degradation. from shock tests [START_REF] Chan | Accelerated stress testing handbook[END_REF].These quantities will be used as the key linking elements in the integration work of the next section.

INTEGRATION OF RANDOM SHOCKS IN THE MSPM

Based on the first and second assumptions on random shocks, the new model that Suppose that the component is in a non-failure state (i,m);then,we have three types of outgoing transition rates:

𝜆 𝑖,𝑚 , 0,0 𝜏 𝑖,𝑚 ′ , 𝜽 = 𝜇 • (𝑝 𝑖,𝑚 𝜏 𝑖,𝑚 ′ ), (3) 
the rate of occurrence of an extreme shock which will cause the component to go to state (0,0);

𝜆 𝑖,𝑚 , 𝑖,𝑚 +1 𝜏 𝑖,𝑚 ′ , 𝜽 = 𝜇 • (1 -𝑝 𝑖,𝑚 𝜏 𝑖,𝑚 ′ ), (4) 
the rate of occurrence of a cumulative shock which will cause the component to go to state (i,m+1); and

𝜆 𝑖,𝑚 , 𝑗 ,0 𝜏 𝑖,𝑚 ′ , 𝜽 = 𝜆 𝑖,𝑗 𝑚 𝜏 𝑖,𝑗 ′ , 𝜽 , (5) 
therate of transition (i.e. degradation or maintenance) which will cause the component to make the transition to state (j,0).

The effect of random shocks on the degradation processes is shown in (5) by using i j Under this general structure, as explained in the paragraph above, the physics lies in the transition rates of the semi-Markov process. We refer to it as a physics model because the stressors (e.g. the crack in the case study) that cause the component degradation are explicitly modeled, differently from the conventional way of estimating the transition rates from historical failure and degradation data, which are relatively rare for the critical components. More information aboutMSPM can be found in [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF]. In addition, the random shocks are integrated into the MSPM in a way that they may change the physics functions of the transition rates, within a general formulation.

𝜆 𝜏 𝜽 𝜆 𝜏 𝜽 0 1 . . . M μ• ( -𝑝 𝜏 ) 0 0 . . . . . . 𝜆 𝜏 𝜽 𝜆 𝜏 𝜽 μ• ( -𝑝 𝜏 ) 0 1 . . . μ• ( -𝑝 𝜏 ) μ• ( -𝑝 𝜏 ) 0 1 . . . μ• ( -𝑝 𝜏 ) μ• ( -𝑝 𝜏 ) μ• (𝑝 𝜏 ) μ• (𝑝 𝜏 ) 𝜆 𝜏
Similarly to what was said for the semi-Markov process presented in Section 2, the state probabilities of the new integrated model can be obtained by Monte Carlo simulation, and the expression of component reliability is

𝑅 𝑡 = 1 -𝑝 0,0 (𝑡). (6) 

RELIABILITY ESTIMATION

Basics of Monte Carlo simulation

The key theoretical construct upon which Monte Carlo simulation is based is the transition probability density function𝑓 

is regarded as the conditional probability that, for the transition out of state 𝑖, 𝑚 after holding time 𝜏 𝑖,𝑚 ′ ,with the physical factors 𝜽, the transition arrival state will be 𝑗, 𝑛 .

In the Monte Carlo simulation, for the component arriving atany non-failurestate 𝑖, 𝑚 at any time t, the process at first samples the holding time at state 𝑖, 𝑚 corresponding to [START_REF] Daigle | Multiple damage progression paths in model-based prognostics[END_REF], and then determines the transition arrival state 𝑗, 𝑛 from state 𝑖, 𝑚 according to [START_REF] Kostandyan | Physics of failure as a basis for solder elements reliability assessment in wind turbines[END_REF]. This procedure is repeated until the accumulated holding time reaches the predefined time horizon,or the component reaches the failurestate 0,0 .

The simulation procedure

To Set 𝑁 𝑚𝑎𝑥 (the maximum number of replications),and𝑘 = 0.

While𝑘 < 𝑁 𝑚𝑎𝑥 , do the following.

Initialize the system by setting 𝑠 = (𝑀, 0) (initial state of perfect performance),setting the time 𝑡 = 0 (initial time).

Set𝑡 ′ = 0 (state holding time).

While𝑡 < 𝑡 𝑚𝑎𝑥 , do the following.

Calculate [START_REF] Yang | Life cycle reliability engineering[END_REF].

Sample a𝑡'by using [START_REF] Unwin | Multi-state physics models of aging passive components in probabilistic risk assessment[END_REF].

Sample anarrival state 𝑗, 𝑛 by using [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF].

Set 𝑡 = 𝑡 + 𝑡′.

Set 𝑠 = (𝑗, 𝑛).

If 𝑠 = (0,0), thenbreak.

End if.

End While. Set𝑘 = 𝑘 + 1.

End While. □

The estimation of thestate probability vector 𝑷 (𝑡) = {𝑝 𝑀 (𝑡), 𝑝 𝑀-1 (𝑡), … , 𝑝 0 (𝑡)}at

time 𝑡is 𝑷 (𝑡) = 1 𝑁 𝑚𝑎𝑥 {𝑛 𝑀 (𝑡), 𝑛 𝑀-1 (𝑡), … , 𝑛 0 (𝑡)} (18)
where{𝑛 𝑖 𝑡 |𝑖 = 𝑀, … ,0, 𝑡 ≤ 𝑡 𝑚𝑎𝑥 } is the total number of visits to state i at time t,with sample variance [START_REF] Lewis | Monte Carlo simulation of Markov unreliability models[END_REF]defined as 𝑣𝑎𝑟 𝑝 𝑖 (𝑡) = 𝑝 𝑖 (𝑡)(1 -𝑝 𝑖 (𝑡))/(𝑁 𝑚𝑎𝑥 -1) .( 19)

CASE STUDY AND RESULTS

Case study

We illustrate the proposed modeling framework on a case study slightly modified from an Alloy 82/182 dissimilar metal weld in a primary coolant system of a nuclear power plant in [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF]. The MSPM of the original crack growth is shown in Fig. 4. where 𝜑 𝑖 ,and 𝜔 𝑖 represent the degradation transition rate, and maintenance transition rate, respectively.Except for 𝜑 5 ,𝜑 4 ,𝜑 4′ and𝜑 3 ,all the other transition rates are assumed to be constant. The expressions of the variabletransition rates are

𝜑 5 = 𝑏 𝜏 • 𝜏 5 𝜏 𝑏-1 ; ( 20 
)
𝜑 4 = 𝑎 𝐶 𝑃 𝐶 𝑎 𝑀 𝜏 4 2 (1-𝑃 𝐶 1-𝑎 𝐶 /(𝑢𝑎 𝑀 ) )
, 𝑖𝑓 𝜏 4 > 𝑎 𝐶 /𝑎 𝑀 0, 𝑒𝑙𝑠𝑒;

(21)

𝜑 4 ′ = 𝑎 𝐷 𝑃 𝐷 𝑎 𝑀 𝜏 4 2 (1-𝑃 𝐷 1-𝑎 𝐷 /(𝑢𝑎 𝑀 ) )
, 𝑖𝑓 𝜏 4 > 𝑎 𝐷 /𝑎 𝑀 0, 𝑒𝑙𝑠𝑒;

(22)

𝜑 3 = 1 𝜏 3 , 𝑖𝑓 𝜏 3 > (𝑎 𝐿 -𝑎 𝐷 )/𝑎 𝑀 0, 𝑒𝑙𝑠𝑒. (23) 
The other transition rates andthe parametersvalues are presented in Table I. The random shockscorrespond to the thermal and mechanical shocks(e.g.internal thermal shocks and water hammers) [START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF], [START_REF] Lydell | Pipe failure probability-the Thomas paper revisited[END_REF]- [START_REF] Salonen | Experience on in-service damage in power plant components[END_REF] applied to the dissimilar metal welds. The damage of random shocks can accelerate the degradation processes, and hence increase the rate of component degradation. Note that Yang et al [START_REF] Yang | Maintenance of multi-state production systems deteriorated by random shocks and production[END_REF]have related random shocks to the degradation rates in their work.To assess the degree of impact of shocks, we may use 1) physics functions for the influence of random shocks through material science knowledge; and 2) transition times, speed of cracking development, and other related information obtained from shock tests [START_REF] Chan | Accelerated stress testing handbook[END_REF].We setthe . In this study, we set𝛿 = 0.0001.The value of 𝛿 was set considering the balance between showing the impact of extreme shocks and reflecting the high reliability of the critical component.In addition, we assume the corresponding degradation transition rates after m cumulative shocksto be 𝜆 𝑖,𝑗 𝑚 𝜏 𝑖,𝑚 ′ , 𝜽 = (1 + 𝜀) 𝑚 𝜆 𝑖,𝑗 𝜏 𝑖,𝑚 ′ , 𝜽 , where 𝜀 = 0.3 is the relative increment of transition rates after one cumulative shock happens, and the formulation (1 + 𝜀) 𝑚 is used to characterize the accumulated effect of such shocks.To characterize the increase of the transition rates, in the case study we have used the parameter 𝜀 to represent the relative increment of degradation transition rate after one cumulative shock occurs.For the sake of simplicity, but without loss of generality in the framework for integration, we assume that the values of 𝜀 for each cumulative shock are equal. But the model can handle different 𝜀 for different stages of the crack process.

Results and analysis

The Monte Carlo simulation over a time horizon of 𝑡 𝑚𝑎𝑥 = 80 years is run 𝑁 𝑚𝑎𝑥 = 10 6 times. The results are collected and analyzed in the following sections.

Results of state probabilities

The estimated state probabilitieswithout,and with random shocksthroughout the time horizon are shown in Figs. 5, and6, respectively. Comparing the above two figures, it can be observed that as expected the random shocks drive the component to higher degradation statesthan the micro-crack state.The numerical comparisons on the state probabilitieswith/without random shocks at year 80 are reported in Table II.It is seen that, except for the micro-crack state probability, all the other state probabilities at year 80 have increased due to the random shocks, with the increase inleak probability being the most significant. The fact that the probability of the initial state (compared with no random shocks) at 80 years has increased is attributed to the maintenance tasks. All the maintenance tasks lead the component to the initial state, and the repair rates from radial macro-crack state, circumferential macro-crack state, and leak state are higher than that from the micro-crack state. The shocks generally increase the component degradation speed, i.e. render the component step to further degradation states (other than micro-crack state) faster than the case without shocks.The transitions to initial state occur more frequentlyfrom further degradation states (other than from the micro-crack state) due to their higher maintenance rates. In summary, this phenomenon is due to the combined effects of shocks.

Results of component reliability

The estimated component reliabilitieswith and without random shocks throughout the time horizon are shown in Fig. 7.At year 80, the estimated component reliability with random shocks is 0.9930,with sample varianceequal to 6.95e-9.Compared with thecase without random shocks(reliability equals to 0.9998, with sample variance2.00e-10), thecomponent reliabilityhas decreased by 0.68%. Fig. 7.Component reliability estimation with/without random shocks. The influence of the number of cumulative shocks that occurredper trialon the probability of the next random shock being extreme is shown in Fig. 8.As expected, thelargerthe number of cumulative shocks the higher the probability of extreme shock. The influence of the degradation state on the probability of the next random shock being extreme is shown in Fig. 9.As expected, thelikelihood of extreme shocksis higher whenthe component degradation state is closer to the failure state. 

Analysisofthe extreme shocks

Influence of cumulative shocks on degradation

To characterize the influence of cumulative shocks on the degradation processes, we set to 0the probability of a random shock being extreme, so that all random shocks will be cumulative. The estimated state probabilities are shown in Fig. 10. Fig. 10.State probabilities obtained with cumulative shocks only.

The state probabilities with cumulative shocks exhibit similar patterns as those in Fig. 6;only the rupture state probability has decreased due to the lack of extreme shocks.

The numerical comparisons on the state probabilities without random shocks and with cumulative shocks at year 80 are reported in Table V. the two parameters.In general,the component reliability decreases when any of theparameters increases.In fact,a higher 𝛿in 𝑝 i,m 𝜏 i,m ′ leads to a higher probability ofthe random shock being extreme, which is more critical to the component,anda higher relative increment 𝜀 in 𝜆 𝑖,𝑗 𝑚 𝜏 𝑖,𝑚 ′ , 𝜽 results in larger degradation transition rates. We can also see from the figure that,in this situation, when the same percentage of variation applies to the two parameters, 𝜀 is more influential than 𝛿 on the component reliability. The corresponding variances of the estimated component reliabilitycomputedusing [START_REF] Lydell | Pipe failure probability-the Thomas paper revisited[END_REF] are shown in Fig. 13,where it is seen that the high reliabilityestimates have low variance levels. 

CONCLUSIONS

An original, general model of a degradation process dependent on random shocks has been proposed and integrated into a MSPM framework with semi-Markov processes, which also considers two types of random shocks: extreme, and cumulative.

General dependences between the degradation and the effects of shocks can be considered.

A literature case study has been illustrated to show the effectiveness and modeling capabilities of the proposal, and a crude sensitivity analysis has been applied to a pair of characteristic parameters newly introduced.The significance of the findings in the case study considered isthat our extended model is able to characterize the influences of different types of random shocks onto the component state probabilities and the reliability estimates. 
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 11 Fig. 1 presents the diagram of the semi-Markov component degradation process.
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 23 Fig. 2. Degradation andrandom shock processes.

  integrates random shocks into MSPM is shown inFig 3. In the model, the states of the component are represented by pair (i,m),where i is the degradation state, and m is the number of cumulative shocks that occurred during the residence time in the current state. For all the degradation states of the component except for state 0, the number of cumulative shocks could range from 0 to positive infinity. If the transition to a new degradation state occurs, the number of cumulative shocks is set to 0, coherently with the last assumption on random shocks. The state space of the new integrated model is denoted by 𝑺′ = { 𝑀, 0 , 𝑀, 1 , 𝑀, 2 , … , (𝑀 -1,0), (𝑀 -1,1), … , (0,0)} .The component is failed whenever the model reaches (0,0). The transition ratedenoted by 𝜆 𝑖,𝑚 , 𝑗 ,𝑛 𝜏 𝑖,𝑚 ′ , 𝜽 is residence time-dependent, thus rendering the process a continuous time semi-Markov process.

Fig. 3 .

 3 Fig. 3.Degradation and random shock processes.

  𝜽 𝜆 𝜏 𝜽 the superscript 𝑚 , where 𝑚 is the number of cumulative shocks occurring during the residence time in the current state. It means that the transition rate functions depend on the number of cumulative shocks. This is a general formulation. The first two types (3), (4) depend on the probability of a random shock resulting in extreme damage,and in cumulative damage, respectively; the last type of transition rates (5) depends on the cumulative damage of random shocks.In this model, we do not directly associate a failure threshold to the cumulative shocks, because the damage of cumulative shocks can only influence the degradation transition departing from the current state, and its impact on the degradation process is s-dependent on the current component degradation. The cumulative shocks can only aggravate the degradation condition of the component instead of leading it suddenly to failure (which is the role of extreme shocks). The effect of the cumulative shocks is reflected in the change of transition rates. The probability of a shock becoming an extreme one depends on the degradation condition of the component. The extreme shocks immediately lead the component to failure, whereas the damage of cumulative shocks accelerates the degradation processes of the component. The proposed model is based on a semi-Markov process and random shocks.

Fig. 4 .

 4 Fig.4.MSPM of crackdevelopment in Alloy 82/182 dissimilar metal welds.

occurrencerate 𝜇 = 1 = 1 -

 11 15 𝑦 -1 ,and the probability of a random shock becomingan extreme shock as 𝑝 𝑖,𝑚 𝜏 𝑖,𝑚 ′ 𝑒𝑥𝑝 -𝛿𝑚 6 -𝑖 2 -𝑒 -𝜏 𝑖,𝑚 ′ , taking the exponential formulationfromFan et al.'s work [29].In this formula, we use 𝑚 6 -𝑖 (2 -𝑒 -𝜏 𝑖,𝑚 ′ )to quantify the component degradation.It is noted that the quantity 2 -𝑒 -𝜏 𝑖,𝑚 ′ ranges from 1 to2,representing the relatively small effect of𝜏 𝑖,𝑚 ′ onto the degradation situation in comparison with theother two parameters𝑚 and i, and𝛿 is a predetermined constantwhich controls the influence of the degradation onto the probability 𝑝 𝑖,𝑚 𝜏 𝑖,𝑚 ′
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 56 Fig. 5.State probabilities obtained without random shocks.
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 8 Fig.8.The probability of the next random shock being extremeas a function of the number of cumulative shocks occurred per trial.
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 9 Fig. 9.The probability of the next random shock being extreme as a function of the degradation state of the component.

Fig. 11 . 6 . 3

 1163 Fig.11.Component reliability with/without random shocks, and with only cumulative shocks.
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 12 Fig. 12.Component reliability estimateas a function of𝜀 and 𝛿(at year 80).
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 13 Fig. 13.Variance of component reliability estimate as a function ofε and δ (at year 80).

  𝜏 𝑖,𝑚 ′ ) The probability that one shock results in extreme damage

	𝜆 𝑖,𝑗 𝑚 𝜏 𝑖,𝑚 ′ , 𝜽	The transition rates after m cumulative random shocks
	𝑺′	The state space of the integrated model
	′ , 𝜽 𝜆 𝑖,𝑚 , 𝑗 ,𝑛 𝜏 𝑖,𝑚 𝑓 𝑖,𝑚 , 𝑗 ,𝑛 (𝜏 𝑖,𝑚 ′ | 𝑡, 𝜽) The transition probability density function The transition rate between state 𝑖, 𝑚 and state 𝑗, 𝑛
	𝑁 𝑚𝑎𝑥	

  is determined by going through the ordered sequence of all possible outgoing states of state 𝑖, 𝑚 until (17) is satisfied.The algorithm ofMonte Carlo simulation for solving the integrated MSPMon a time horizon[0, 𝑡 𝑚𝑎𝑥 ]is presented as follows.

	then,𝜏 𝑖,𝑚 ′ is chosen so that			
		′ 𝜏 𝑖,𝑚 0	𝜆 𝑖,𝑚 𝑠, 𝜽	𝑑𝑠 = ln (1/𝑢 1 ), (16)
	and 𝑗, 𝑛 = 𝑎 * that satisfies			
	𝑎 * -1 𝑘=0	𝜆 𝑖,𝑚 ,𝑘 𝜏 𝑖,𝑚 ′ , 𝜽 < 𝑢 2 𝜆 𝑖,𝑚 𝜏 𝑖,𝑚 ′ , 𝜽 ≤	𝑎 * 𝑘=0	𝜆 𝑖,𝑚 ,𝑘 𝜏 𝑖,𝑚 ′ , 𝜽	(17)
	where𝑎				

generate the holding time 𝜏 𝑖,𝑚 ′ and the next state 𝑗, 𝑛 for the component arriving in any non-failure state 𝑖, 𝑚 at any time t,oneproceeds as follows. Two uniformly distributed random numbers u 1 and u 2 are sampled in the interval [0, 1]; * represents one state in the ordered sequence of all possibleoutgoing states of state 𝑖, 𝑚 .The state𝑎 *

Table I

 I Parameters and constant transition rates[START_REF] Fleming | Treatment of Passive Component Reliability in Risk-Informed Safety Margin Characterization[END_REF] 

	b -Weibull shape parameter for crack initiation model	2.0
	τ -Weibull scale parameter for crack initiation model	4 years
	𝑎 𝐷 -Crack length threshold for radial macro-crack	10 mm
	𝑃 𝐷 -Probability that micro-crack evolves as radial crack	0.009
	𝑎 𝑀 -Maximum credible crack growth rate	9.46 mm/yr
	𝑎 𝐶 -Crack length threshold for circumferential macro-crack	10 mm
	𝑃 𝐶 -Probability that micro-crack evolves as circumferential crack	0.001
	𝑎 𝐿 -Crack length threshold for leak	20 mm
	ω 4 -Repair transition rate from micro-crack	1 x10-3 /yr
	𝜔 3 -Repair transition rate from radial macro-crack	2 x10-2 /yr
	𝜔 2 -Repair transition rate from circumferential macro-crack	2 x10-2 /yr
	𝜔 1 -Repair transition rate from leak	8 x10-1 /yr
	𝜑 1 -Leak to rupture transition rate	2x10-2 /yr
	𝜑 2 -Macro-crack to rupture transition rate	1x10-5 /yr

  Table IIIpresents the frequenciesof differentnumbers of random shocks that occurredper simulation trial.The most likely number is around 5, which is consistent with our assumption on the value of the occurrence rate (𝜇 = 1/15𝑦 -1 ) of random shocks. In total, 6973 trials ended in failure, among which 4531 trials (64.98%) are caused by extreme shocks. Table IVreportsthe number of trials ending with extreme shocks,fordifferentnumbers of cumulative shocks occurringper trial.

					Table III				
		Frequencyof the number of random shocks occurred per trial
					(mission time t=80 years)			
	Nb of random										
		0	1	2	3	4	5	6	7	8	9	>9
	shocks/trial										
	Percentage (%)	0.63 3.14 8.00 13.55 17.15 17.56 14.91 10.83 6.87 3.90	3.45
					Table IV				
	Number of trials that ended with extreme shocksfor different numbers of
		cumulative shocks (mission time t=80 years)		
	Nb of cumulative		Nb of trials		Nb of trials ending	
		shocks per trial					with extreme shock	
		0			6345			0			
		1			31739		367			
		2			80292		633			
		3			135676		812			
		4			171526		809			
		5			175569		743			
		6			148844		500			
		7			108101		332			
		8			68579		172			
		9			38964		90			
		10			19569		43			
		11			8998			19			
		>11			5798			11			

  In Fig. 11, we compare the estimated component reliabilitywith cumulative shockswiththe other two estimated probabilities of Fig. 7.At year 80, the estimated component reliability with cumulative shocks is 0.9973,andthe sample variance equals 2.69e-9. Considering cumulative shocks only, thecomponent reliability has decreased by 0.26%.

			Micro-crack		0.9959		0.9704		-2.56%
		Circumferential crack		3.05e-4		7.05e-3		2210.16%
			Radial crack		1.00e-4		7.52e-3		7419.00%
			Leak		1.30e-5		2.76e-3		21161.54%
			Rupture		2.06e-4		2.70e-3		1212.62%
	As for the case with random shocks, cumulative shocks have a similar influenceon the
	state probabilities.						
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		10 -2							
	Probability	10 -3							
		10 -4							initial
									microcrack
		10 -5							circumferential radial
									leak
		0 -6 10	10	20	30	40	50	60	70 rupture	80
						Time			
						Table V			
			Comparison of state probabilities without random shocks and with cumulative
						shocks			
					(at year 80)			
			State		Probability without	Probability with		Relative difference
					random shocks	cumulative shocks		
			Initial		3.52e-3		9.94e-3		184.11%