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Abstract - We extend a multi-state physics model (MSPM) framework for component 

reliability assessment by including semi-Markov and random shockprocesses. Two 

mutually exclusivetypes of random shocks are considered: extreme, and 

cumulative.Extreme shockslead the component to immediate failure, 

whereascumulative shockssimplyaffect the componentdegradation rates. General 

dependences between the degradation and the two types of random shocks are 

considered. A Monte Carlo simulation algorithmis implemented to compute 

component state probabilities. An illustrative example is presented,and a sensitivity 

analysis is conducted on themodel parameters.The resultsshowthat our extended 

model is able to characterize the influences of different types of random shocks onto 

the component state probabilities and the reliability estimates. 
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Abbreviation 

MSPM  Multi-state physics model 

 

 

Notations 

𝑺   The states set of component degradation processes 

𝜏𝑖    The residence time of component being in the state i since the last 

   transition 

𝜽   The external influencing factors 

𝜆𝑖,𝑗  𝜏𝑖 , 𝜽  The transition rate between state i and state j 

𝑡   Time 

(𝑡, 𝑡 + ∆𝑡) Infinitesimal time interval   

𝑋𝑘    The state of the component after k transitions 

𝑇𝑘    The time of arrival at 𝑋𝑘  of component 

𝑃(𝑡)  The state probability vector 

𝑝𝑖(𝑡)  The probabilityof component being in state i at time t 

𝑅 𝑡   The component reliability 

𝑁 𝑡   The number of random shocks that occurredbefore and up tot 
μ   The constant arrival rate of random shocks 

𝜏𝑖,𝑚
′    The residence time of the component in the current degradation state i 

afterm cumulative shocks 

𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ ) The probability that one shock results in extreme damage 

𝜆𝑖,𝑗
 𝑚 

 𝜏𝑖,𝑚
′ , 𝜽   The transition rates after m cumulative random shocks 

𝑺′   The state space of the integrated model 

𝜆 𝑖,𝑚 , 𝑗 ,𝑛  𝜏𝑖,𝑚
′ , 𝜽  The transition rate between state  𝑖,𝑚  and state  𝑗, 𝑛  

𝑓 𝑖,𝑚 , 𝑗 ,𝑛 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽) The transition probability density function 

𝑁𝑚𝑎𝑥   The maximum number of replications 

𝑷 (𝑡) = {𝑝𝑀 (𝑡), 𝑝𝑀−1 (𝑡),… , 𝑝0 (𝑡)}  The estimation of the state probability  

vector 

𝑣𝑎𝑟𝑝𝑖 (𝑡)  The sample variance of estimated state probability 𝑝𝑖 (𝑡) 

𝛿   The predetermined constantwhich controls the influence of the  

degradation onto the probability 𝑝𝑖,𝑚 𝜏𝑖,𝑚
′   

𝜀   The relative increment of transition rates after one cumulative shock  

happens 

 

 

1. INTRODUCTION 

Failures of components generally occur in two modes: degradation failures due to 

physical deterioration in the form of wear, erosion, fatigue, etc.; and catastrophic 
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failures due to damages caused by sudden shocks in the form of jolts, blows, 

etc.[1]-[2]. 

In the past decades, a number of degradation models have been proposed in the 

fieldof reliability engineering[3]-[9]. They can be grouped into several categories [9]: 

statistical distributions (e.g. Bernstein distribution[3]),stochastic processes (e.g. 

Gamma process, and Wiener process) [4]-[5], andmulti-state models [6]-[8].  

Most of the existingmodelsare typically built on degradation datafromhistorical 

collections [3], [5]-[7], ordegradation tests [4],which however are suited for 

components ofrelatively low cost or/andhigh failure rate(s) (e.g. electronic devices, 

and vehicle components) [10]-[12].In industrial systems, there are a number of critical 

components (e.g. valves and pumps in nuclear power plantsor aircraft [13]-[14], 

engines of airplanes, etc.) designed to be highly reliable to ensure system operation 

and safety, but for which degradation experiments arecostly. In practice, it is thenoften 

difficult to collectsufficient degradation or failuresamples to calibrate the degradation 

models mentioned above. 

An alternative isto resort to failure physics and structural reliability, to 

incorporate knowledgeon thephysics of failure of the particular component (passive 

and active)[13]-[17]. Recently, Unwin et al. [16] have proposed a multi-state physics 

model (MSPM) for modeling nuclear component degradation,also accounting for the 

effects of environmental factors (e.g. temperature and stress) within certain 

predetermined ranges [17].In a previous work by the authors [9], the modelhas been 

formulated under the framework of inhomogeneous continuous time Markov 

chains,and solved by Monte Carlo simulation. 

Random shocks need to be accounted foron top of the underlying degradation 

processes because they can bring variations to influencing environmental factors, 

even outside their predetermined boundaries [18], that can accelerate the degradation 

processes.For example,thermal, and mechanical shocks (e.g.internal thermal shocks 

and water hammers)[17],[19]-[20]onto power plant componentscan lead to intense 

increases intemperatures, and stresses, respectively;under theseextreme conditions, 

the original physics functions in MSPM might be insufficient to characterize the 
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influences of random shocks onto the degradation processes, and must, therefore, be 

modified.In the literature, random shocks are typically modeled by Poisson 

processes[1], [18], [21]-[23],distinguishing two main types, extreme shock and 

cumulative shock processes [21], according to the severity of the damage. The former 

could directly lead the component to immediate failure[24]-[25],whereas the latter 

increasesthe degree of damagein a cumulative way [26]-[27]. 

Random shockshave been intensively studied [1]-[2], [22]-[23],[28]-[33]. Esaryet 

al. [23] haveconsideredextreme shocksin a component reliability model, whereas 

Wanget al. [2], Klutke and Yang [30], and Wortmanetal. [31] have modeledthe 

influences of cumulative shocks ontoa degradation process.Both extreme and 

cumulative random shocks have been considered by Li and Pham[1], and Wang and 

Pham [22]. Additionally, Ye et al. [28],and Fan et al. [29] have considered that a high 

severity of degradation can lead to a high probability thata random shock causes 

extreme damage.However, the fact that theeffects of cumulative shocks can vary 

according to the severity of degradationhas alsoto be considered. 

Among the models mixing the multi-state degradation models and random shocks, 

Li and Pham [1] divided the underlining continuous and monotonically increasing 

degradation processes into a finite number of states, and combined them with 

s-independent random shocks. Wang and Pham [22] further considered the 

dependences among the continuous and monotone (increasing or decreasing) 

degradation processes, and between degradation processes and random shocks. Yang 

et al. [33] integrated random shocks into a Markov degradation model. Becker et al. 

[32] combined a semi-Markov degradation model, which is more general than 

Markov model, with random shocks in a dynamic reliability formulation, where the 

influence of random shocks is characterized by the change of continuous degradation 

variables (e.g. structure strength). To ourknowledge, this is the first work of 

semi-Markov degradation modeling that represents the influence of random shocks by 

changing the transition rates, which might also be physics functions. 

The contribution of the paper is that it generalizes the MSPM framework to 

handle both degradation and random shocks, which have not been previously 
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considered by the existing MSPMs. First, we extend our previous MSPM framework 

[9] to semi-Markov modeling, which more generallydescribes the fact that the time of 

transition to a state can dependon the residence time in the current state, and hence is 

more suitable for including maintenance[34].Then,we propose a general random 

shock model, where the probability of a random shock resulting in extreme or 

cumulativedamage, and the cumulative damages,are both s-dependent on the current 

component degradation condition (the component degradation state, and residence 

time in the state).Finally, we integrate the random shock model into the MSPM 

frameworkto describe the influence of random shocks on the degradation processes. 

The rest of this paper is organized as follows. Section 2 introduces the semi-Markov 

scheme into the MSPM framework. Section 3 presents the random shock model;in 

Section 4, its integration into MSPM is presented. Monte Carlo simulation procedures 

to solve the integrated model are presented in Section 5. Section 6 uses a numerical 

example regarding a case studyto illustrate the proposed model. Section 7 concludes 

the work. 

 

2. A MSPM OF COMPONENT DEGRADATION PROCESSES 

A continuous-time stochastic process is called a semi-Markov processif the embedded 

jump chainis a Markov Chain and the times between transitionsmay berandom 

variables with any distribution [35].The following assumptions are madefor the 

extended MSPM framework [9] based on semi-Markov processes.  

 The degradation process hasa finite number of states 𝑺 = {0,1, … ,𝑀}where 

states 0, and M represent the complete failure state, and perfect functioning 

state, respectively. The generic intermediate degradation statesi(0<i<M) are 

established according to the degradation development and condition, wherein 

the component isfunctioning or partiallyfunctioning. 

 The degradation follows a continuous-time semi-Markov process;the 

transition rate between state i and state j, denoted by 𝜆𝑖,𝑗  𝜏𝑖 , 𝜽 ,is a function 

of𝜏𝑖  whichis the residence time of thecomponent being in the current state 
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isince the last transition, and 𝜽whichrepresents the external influencing 

factors (including physical factors).  

 The initial state (at time t = 0) of the component isM. 

 Maintenance can be carried out from any degradation state, except for the 

complete failure state (in other words, there is no repair from failure). 

Fig. 1 presents the diagram of the semi-Markov component degradation process. 

 

 

Fig. 1.The diagram of the semi-Markov process. 

 

The probability that the continuous time semi-Markov process will step to statej in 

the next infinitesimal time interval (𝑡, 𝑡 + ∆𝑡), given that it has arrived at state iat time 

𝑇𝑛after n transitions and remained stable ini from Tnuntil time t, isdefined as  

𝑃 𝑋𝑛+1 = 𝑗, 𝑇𝑛+1 ∈  𝑡, 𝑡 + ∆𝑡   𝑋𝑘, 𝑇𝑘 𝑘=0

𝑛−1
,  𝑋𝑛 = 𝑖, 𝑇𝑛 , 𝑇𝑛 ≤ 𝑡 ≤ 𝑇𝑛+1, 𝜽] 

= 𝑃 𝑋𝑛+1 = 𝑗, 𝑇𝑛+1 ∈  𝑡, 𝑡 + ∆𝑡  (𝑋𝑛 = 𝑖, 𝑇𝑛) , 𝑇𝑛 ≤ 𝑡 ≤ 𝑇𝑛+1, 𝜽] 

=  𝜆𝑖,𝑗  𝜏𝑖 = 𝑡 − 𝑇𝑛 , 𝜽 ∆𝑡, ∀ 𝑖, 𝑗 ∈  𝑺, 𝑖 ≠ 𝑗.(1) 

where𝑋𝑘  denotes the state of the component after ktransitions. The degradation 

transition rates can be obtained from the structural reliability analysisofthe 

degradation processes (e.g. the crack propagation process [15], [17],whereas the 

transition rates related to maintenance tasks can be estimated from the frequencies of 

maintenance activities).For example, the authors of [17] divided the degradation 

process of the alloy metal weld into six states dependent on the underlying physics 
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phenomenon, and some degradation transition rates are represented by corresponding 

physics equations. 

The solution tothe semi-Markov process model is the state probability 

vector𝑃(𝑡) = {𝑝𝑀(𝑡), 𝑝𝑀−1(𝑡),… , 𝑝0(𝑡)}.Because no maintenance is carried out from 

the component failure state, and the component is regarded as functioning in all other 

intermediate alternative states, its reliability can be expressed as 

𝑅 𝑡 = 1 − 𝑝0(𝑡).                           (2) 

Analyticallysolving the continuous time semi-Markov model with state residence 

time-dependent transition rates is a difficult or sometimes impossible task, andthe 

Monte Carlo simulation method is usuallyapplied to obtain 𝑃(𝑡)[36]-[37]. 

 

3. RANDOM SHOCKS 

The followingassumptions are madeon the random shock process.  

 The arrivals of random shocks follow a homogeneous Poisson process 

{𝑁 𝑡 , 𝑡 ≥ 0} [21] with constant arrival rate𝜇.The random shocks are 

s-independent of the degradation process, but they can influence the 

degradation process (see Fig. 2). 

 The damages of random shocks aredivided into two types: extreme, and 

cumulative. 

 Extreme shock and cumulative shock are mutually exclusive. 

 The component failsimmediately upon occurrence of extreme shocks. 

 The probability of a random shock resulting in extreme or cumulative 

damageiss-dependent on the current component degradation. 

 The damageof cumulative shockscan only influence the degradation 

transition departing from the current state, and its impact on the degradation 

process is s-dependent on the current component degradation. 
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Fig. 2. Degradation andrandom shock processes. 

 

The first five assumptions are takenfrom [22]. The sixthassumption reflects the aging 

effects addressed in Fan et al.’s shock model [29], where the random shocks are more 

fatal to the component (i.e. more likely lead to extreme damages)when the component 

is in severe degradation states.However, the influences of cumulative 

shocksunderaging effects have not been consideredin Fan et al.’s model.In addition, 

the random shock damage is assumed to depend on the current degradation, 

characterizedby three parameters: 1)the current degradation statei,2)the number of 

cumulative shocks mthat occurred while in the current degradation state since the last 

degradation state transition, and3)the residence time𝜏𝑖,𝑚
′ ofthe component inthe current 

degradation state iaftermcumulative shocks𝜏𝑖,𝑚
′ ≥0. 

Let𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ ) denote the probability that one shock results in extreme damage 

(thecumulative damageprobability is then1 − 𝑝𝑖,𝑚(𝜏𝑖,𝑚
′ )).In the case of cumulative 

shock, the degradation transition rates for the current state change at the moment of 

the occurrence of the shock, whereas the other transition rates are not affected.Let 

𝜆𝑖,𝑗
 𝑚 

 𝜏𝑖,𝑚
′ , 𝜽 denote the transition rates after m cumulative random shocks,where 

𝜆𝑖,𝑗
 0 (𝜏𝑖,0

′ , 𝜽)holds the same expression asthe transition rate 𝜆𝑖,𝑗  𝜏𝑖,0
′ , 𝜽  in the pure 

degradation model,and the other transition rates (i.e. m>0) depend on thedegradation 

3
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and the external influencing factors.Because the influences of random shocks can 

render invalid the original physics functions, we propose a general model which 

allows the formulation of physics functions dependent on the effects of shocks. The 

modified transition rates can be obtained bymaterial science knowledge, and data 

from shock tests [38].These quantities will be used as the key linking elements in the 

integration work of the next section. 

 

4. INTEGRATION OF RANDOM SHOCKS IN THE MSPM 

Based on the first and second assumptions on random shocks, the new model that 

integrates random shocks into MSPM is shown in Fig 3. In the model, the states of the 

component are represented by pair (i,m),where i is the degradation state, and m is the 

number of cumulative shocks that occurred during the residence time in the current 

state. For all the degradation states of the component except for state 0, the number of 

cumulative shocks could range from 0 to positive infinity. If the transition to a new 

degradation state occurs, the number of cumulative shocks is set to 0, coherently with 

the last assumption on random shocks. The state space of the new integrated model is 

denoted by 𝑺′ = { 𝑀, 0 ,  𝑀, 1 ,  𝑀, 2 , … , (𝑀 − 1,0), (𝑀 − 1,1),… , (0,0)} .The 

component is failed whenever the model reaches (0,0). The transition ratedenoted 

by 𝜆 𝑖,𝑚 , 𝑗 ,𝑛  𝜏𝑖,𝑚
′ , 𝜽 is residence time-dependent, thus rendering the process a 

continuous time semi-Markov process. 
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Fig. 3.Degradation and random shock processes. 

 

Suppose that the component is in a non-failure state (i,m);then,we have three types 

of outgoing transition rates: 

𝜆 𝑖,𝑚 , 0,0  𝜏𝑖,𝑚
′ , 𝜽 = 𝜇 ∙ (𝑝𝑖,𝑚 𝜏𝑖,𝑚

′  ),               (3) 

the rate of occurrence of an extreme shock which will cause the component to go to 

state (0,0); 

𝜆 𝑖,𝑚 , 𝑖,𝑚+1  𝜏𝑖,𝑚
′ , 𝜽 = 𝜇 ∙ (1 − 𝑝𝑖,𝑚 𝜏𝑖,𝑚

′  ),           (4) 

the rate of occurrence of a cumulative shock which will cause the component to go to 

state (i,m+1); and  

𝜆 𝑖,𝑚 , 𝑗 ,0  𝜏𝑖,𝑚
′ , 𝜽 = 𝜆𝑖,𝑗

 𝑚 
 𝜏𝑖,𝑗

′ , 𝜽 ,               (5) 

therate of transition (i.e. degradation or maintenance) which will cause the component 

to make the transition to state (j,0). 

The effect of random shocks on the degradation processes is shown in (5) by using 
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the superscript  𝑚 , where 𝑚 is the number of cumulative shocks occurring during 

the residence time in the current state. It means that the transition rate functions 

depend on the number of cumulative shocks. This is a general formulation. 

The first two types (3), (4) depend on the probability of a random shock resulting 

in extreme damage,and in cumulative damage, respectively; the last type of transition 

rates (5) depends on the cumulative damage of random shocks.In this model, we do 

not directly associate a failure threshold to the cumulative shocks, because the 

damage of cumulative shocks can only influence the degradation transition departing 

from the current state, and its impact on the degradation process is s-dependent on the 

current component degradation. The cumulative shocks can only aggravate the 

degradation condition of the component instead of leading it suddenly to failure 

(which is the role of extreme shocks). The effect of the cumulative shocks is reflected 

in the change of transition rates. The probability of a shock becoming an extreme one 

depends on the degradation condition of the component. The extreme shocks 

immediately lead the component to failure, whereas the damage of cumulative shocks 

accelerates the degradation processes of the component. 

The proposed model is based on a semi-Markov process and random shocks. 

Under this general structure, as explained in the paragraph above, the physics lies in 

the transition rates of the semi-Markov process. We refer to it as a physics model 

because the stressors (e.g. the crack in the case study) that cause the component 

degradation are explicitly modeled, differently from the conventional way of 

estimating the transition rates from historical failure and degradation data, which are 

relatively rare for the critical components. More information aboutMSPM can be 

found in [9]. In addition, the random shocks are integrated into the MSPM in a way 

that they may change the physics functions of the transition rates, within a general 

formulation. 

Similarly to what was said for the semi-Markov process presented in Section 2, 

the state probabilities of the new integrated model can be obtained by Monte Carlo 

simulation, and the expression of component reliability is 
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𝑅 𝑡 = 1 − 𝑝 0,0 (𝑡).             (6) 

 

5. RELIABILITY ESTIMATION 

5.1 Basics of Monte Carlo simulation 

The key theoretical construct upon which Monte Carlo simulation is based is the 

transition probability density function𝑓 𝑖,𝑚 , 𝑗 ,𝑛 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽), defined as  

𝑓 𝑖,𝑚 , 𝑗 ,𝑛 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽)𝑑𝜏𝑖,𝑚

′ ≡theprobability that, given that the system arrives at the 

state  𝑖,𝑚  at time t, with physical factors 𝜽, the 

next transition will occur in the infinitesimal 

timeinterval (𝑡 + 𝜏𝑖,𝑚
′ , 𝑡 + 𝜏𝑖,𝑚

′ + 𝑑𝜏𝑖,𝑚
′ ), and will be 

tothe state  𝑗, 𝑛 [36].     (7) 

By using the previously introduced transition rates, (7) can be expressed as 

𝑓 𝑖,𝑚 , 𝑗 ,𝑛 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽)𝑑𝜏𝑖,𝑚

′ = 𝑃 𝑖,𝑚 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽)𝜆 𝑖,𝑚 , 𝑗 ,𝑛  𝜏𝑖,𝑚

′ , 𝜽 𝑑𝜏𝑖,𝑚
′ . (8) 

𝑃 𝑖,𝑚 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽)is the probability that, given thatthe component arrives at the state 

 𝑖, 𝑚  at time t with physical factors 𝜽, no transition will occur in the time interval 

(𝑡, 𝑡 + 𝜏𝑖,𝑚
′ ).It satisfies 

𝑑𝑃 𝑖,𝑚  (𝜏𝑖,𝑚
′  | 𝑡,𝜽)

𝑃 𝑖,𝑚  (𝜏𝑖,𝑚
′  | 𝑡,𝜽)

= −𝜆 𝑖,𝑚  𝜏𝑖,𝑚
′ , 𝜽 𝑑𝜏𝑖,𝑚

′ . (9) 

𝜆 𝑖,𝑚  𝜏𝑖,𝑚
′ , 𝜽 𝑑𝜏𝑖,𝑚

′ is the conditional probability that, given that the component is in 

the state  𝑖,𝑚  at time t, having arrived there at time 𝑡 − 𝜏𝑖,𝑚
′ ,with physical factors 

𝜽, it will depart from  𝑖,𝑚  during (𝑡, 𝑡 + 𝑑𝜏𝑖,𝑚
′ ).𝜆 𝑖,𝑚  𝜏𝑖,𝑚

′ , 𝜽 is obtained as 

𝜆 𝑖,𝑚  𝜏𝑖,𝑚
′ , 𝜽 =  𝜆 𝑖,𝑚 , 𝑖′ ,𝑚′  𝜏𝑖,𝑚

′ , 𝜽  𝑖′ ,𝑚′ . (10) 

Taking the integral of both sides of (9) with the initial condition𝑃 𝑖,𝑚 (0| 𝑡, 𝜽) = 1, 

we obtain 

𝑃 𝑖,𝑚 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽) = 𝑒𝑥𝑝⁡[− 𝜆 𝑖,𝑚  𝑠, 𝜽 𝑑𝑠

𝜏𝑖,𝑚
′

0
].  (11) 

 Substituting (11) into (8), we obtain 

𝑓 𝑖,𝑚 , 𝑗 ,𝑛 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽) = 𝜆 𝑖,𝑚 , 𝑗 ,𝑛  𝜏𝑖,𝑚

′ , 𝜽 𝑒𝑥𝑝⁡[− 𝜆 𝑖,𝑚  𝑠, 𝜽 𝑑𝑠
𝜏𝑖,𝑚
′

0
].  (12) 

 To derive a Monte Carlo simulation procedure, (12) is rewritten as 
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𝑓 𝑖,𝑚 , 𝑗 ,𝑛 (𝜏𝑖,𝑚
′  | 𝑡, 𝜽)

=
𝜆 𝑖,𝑚 , 𝑗 ,𝑛  𝜏𝑖,𝑚

′ , 𝜽 

𝜆 𝑖,𝑚  𝜏𝑖,𝑚
′ , 𝜽 

∙ 𝜆 𝑖,𝑚  𝜏𝑖,𝑚
′ , 𝜽 𝑒𝑥𝑝⁡[− 𝜆 𝑖,𝑚  𝑠, 𝜽 𝑑𝑠

𝜏𝑖,𝑚
′

0

] 

= 𝜋 𝑖,𝑚 , 𝑗 ,𝑛  𝜏𝑖,𝑚
′  | 𝜽 ∙ 𝜓 𝑖,𝑚  𝜏𝑖,𝑚

′  | 𝜽 .    (13) 

𝜓 𝑖,𝑚  𝜏𝑖,𝑚
′  | 𝜽 is the probability density function for the holding time 𝜏𝑖,𝑚

′  inthe 

state  𝑖,𝑚 , given the physical factors 𝜽. It satisfies 

𝜓 𝑖,𝑚  𝜏𝑖,𝑚
′  | 𝜽 = 𝜆 𝑖,𝑚  𝜏𝑖,𝑚

′ , 𝜽 𝑒𝑥𝑝⁡[− 𝜆 𝑖,𝑚  𝑠, 𝜽 𝑑𝑠
𝜏𝑖,𝑚
′

0
].    (14) 

𝜋 𝑖,𝑚 , 𝑗 ,𝑛  𝜏𝑖,𝑚
′  | 𝜽 =

𝜆 𝑖,𝑚  , 𝑗 ,𝑛   𝜏𝑖,𝑚
′ ,𝜽 

𝜆 𝑖,𝑚   𝜏𝑖,𝑚
′ ,𝜽 

,    (15) 

is regarded as the conditional probability that, for the transition out of state  𝑖,𝑚  

after holding time 𝜏𝑖,𝑚
′ ,with the physical factors 𝜽, the transition arrival state will be 

 𝑗, 𝑛 . 

 In the Monte Carlo simulation, for the component arriving atany non-failurestate 

 𝑖, 𝑚  at any time t, the process at first samples the holding time at state  𝑖, 𝑚  

corresponding to (14), and then determines the transition arrival state  𝑗, 𝑛  from 

state  𝑖,𝑚  according to (15). This procedure is repeated until the accumulated 

holding time reaches the predefined time horizon,or the component reaches the 

failurestate  0,0 . 

 

5.2 The simulation procedure 

To generate the holding time 𝜏𝑖,𝑚
′  and the next state  𝑗, 𝑛 for the component 

arriving in any non-failure state  𝑖,𝑚  at any time t,oneproceeds as follows. Two 

uniformly distributed random numbers u1 and u2 are sampled in the interval [0, 1]; 

then,𝜏𝑖,𝑚
′ is chosen so that 

 𝜆 𝑖,𝑚  𝑠, 𝜽 
𝜏𝑖,𝑚
′

0
𝑑𝑠 = ln⁡(1/𝑢1), (16) 

and 𝑗, 𝑛 = 𝑎∗that satisfies 

 𝜆 𝑖,𝑚 ,𝑘 𝜏𝑖,𝑚
′ , 𝜽 < 𝑢2𝜆 𝑖,𝑚  𝜏𝑖,𝑚

′ , 𝜽 ≤𝑎∗−1
𝑘=0  𝜆 𝑖,𝑚 ,𝑘 𝜏𝑖,𝑚

′ , 𝜽 𝑎∗

𝑘=0 (17) 

where𝑎∗represents one state in the ordered sequence of all possibleoutgoing states of 

state  𝑖,𝑚 .The state𝑎∗ is determined by going through the ordered sequence of all 
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possible outgoing states of state  𝑖, 𝑚 until (17) is satisfied.The algorithm ofMonte 

Carlo simulation for solving the integrated MSPMon a time horizon[0, 𝑡𝑚𝑎𝑥 ]is 

presented as follows.  

 

Set 𝑁𝑚𝑎𝑥  (the maximum number of replications),and𝑘 = 0. 

While𝑘 < 𝑁𝑚𝑎𝑥 , do the following.  

Initialize the system by setting 𝑠 = (𝑀, 0)  (initial state of perfect 

performance),setting the time 𝑡 = 0 (initial time). 

Set𝑡′ = 0 (state holding time). 

While𝑡 < 𝑡𝑚𝑎𝑥 , do the following.  

Calculate (10). 

Sample a𝑡’by using(16). 

Sample anarrival state  𝑗, 𝑛 by using (17). 

Set 𝑡 = 𝑡 + 𝑡′. 

Set 𝑠 = (𝑗, 𝑛). 

If 𝑠 = (0,0), 

thenbreak. 

End if. 

End While. 

Set𝑘 = 𝑘 + 1. 

End While. □ 

 

The estimation of thestate probability vector 𝑷 (𝑡) = {𝑝𝑀 (𝑡), 𝑝𝑀−1 (𝑡),… , 𝑝0 (𝑡)}at 

time 𝑡is 

𝑷 (𝑡) =
1

𝑁𝑚𝑎𝑥
{𝑛𝑀(𝑡), 𝑛𝑀−1(𝑡), … , 𝑛0(𝑡)} (18) 

where{𝑛𝑖 𝑡 |𝑖 = 𝑀,… ,0, 𝑡 ≤ 𝑡𝑚𝑎𝑥 } is the total number of visits to state i at time 

t,with sample variance[39]defined as 

𝑣𝑎𝑟𝑝𝑖 (𝑡) = 𝑝𝑖 (𝑡)(1 − 𝑝𝑖 (𝑡))/(𝑁𝑚𝑎𝑥 − 1) .(19) 
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6. CASE STUDY AND RESULTS 

6.1 Case study 

We illustrate the proposed modeling framework on a case study slightly modified 

from an Alloy 82/182 dissimilar metal weld in a primary coolant system of a nuclear 

power plant in [17]. The MSPM of the original crack growth is shown in Fig. 4. 

 

 

 

Fig.4.MSPM of crackdevelopment in Alloy 82/182 dissimilar metal welds. 

 

where 𝜑𝑖 ,and 𝜔𝑖  represent the degradation transition rate, and maintenance 

transition rate, respectively.Except for 𝜑5,𝜑4,𝜑4′and𝜑3,all the other transition rates 

are assumed to be constant. The expressions of the variabletransition rates are  

𝜑5 =  
𝑏

𝜏
 ∙  

𝜏5

𝜏
 
𝑏−1

; (20) 

𝜑4 =  

𝑎𝐶𝑃𝐶

𝑎 𝑀 𝜏4
2(1−𝑃𝐶 1−𝑎𝐶/(𝑢𝑎 𝑀 ) )

,      𝑖𝑓 𝜏4 > 𝑎𝐶/𝑎 𝑀

0,                      𝑒𝑙𝑠𝑒;

               (21) 

𝜑4′ =  

𝑎𝐷𝑃𝐷

𝑎 𝑀 𝜏4
2(1−𝑃𝐷  1−𝑎𝐷/(𝑢𝑎 𝑀 ) )

,      𝑖𝑓 𝜏4 > 𝑎𝐷/𝑎 𝑀

0,                      𝑒𝑙𝑠𝑒;

               (22) 

𝜑3 =  

1

𝜏3
,      𝑖𝑓 𝜏3 > (𝑎𝐿 − 𝑎𝐷)/𝑎 𝑀

0,        𝑒𝑙𝑠𝑒.                               

                      (23) 

The other transition rates andthe parametersvalues are presented in Table I.  
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3
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1
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Table I 

Parameters and constant transition rates [17] 

 

b –Weibull shape parameter for crack initiation model 2.0 

τ – Weibull scale parameter for crack initiation model   4 years 

𝑎𝐷– Crack length threshold for radial macro-crack 10 mm 

𝑃𝐷– Probability that micro-crack evolves as radial crack   0.009 

𝑎 𝑀– Maximum credible crack growth rate 9.46 mm/yr 

𝑎𝐶– Crack length threshold for circumferential macro-crack 10 mm 

𝑃𝐶 – Probability that micro-crack evolves as circumferential crack   0.001 

𝑎𝐿 – Crack length threshold for leak   20 mm 

ω4–Repair transition rate from micro-crack   1 x10-3 /yr 

𝜔3–Repair transition rate from radial macro-crack   2 x10-2 /yr 

𝜔2–Repair transition rate from circumferential macro-crack   2 x10-2 /yr 

𝜔1–Repair transition rate from leak   8 x10-1 /yr 

𝜑
1
 – Leak to rupture transition rate   2x10-2 /yr 

𝜑
2
 – Macro-crack to rupture transition rate  1x10-5 /yr 

 

 The random shockscorrespond to the thermal and mechanical shocks(e.g.internal 

thermal shocks and water hammers) [17], [19]-[20] applied to the dissimilar metal 

welds. The damage of random shocks can accelerate the degradation processes, and 

hence increase the rate of component degradation. Note that Yang et al[33]have 

related random shocks to the degradation rates in their work.To assess the degree of 

impact of shocks, we may use 1) physics functions for the influence of random shocks 

through material science knowledge; and 2) transition times, speed of cracking 

development, and other related information obtained from shock tests [38].We setthe 

occurrencerate 𝜇 = 1 15 𝑦−1,and the probability of a random shock becomingan 

extreme shock as 𝑝𝑖,𝑚 𝜏𝑖,𝑚
′  = 1 − 𝑒𝑥𝑝  −𝛿𝑚 6 − 𝑖  2 − 𝑒−𝜏𝑖,𝑚

′
  , taking the 

exponential formulationfromFan et al.’s work [29].In this formula, we use 𝑚 6 −

𝑖 (2 − 𝑒−𝜏𝑖,𝑚
′

)to quantify the component degradation.It is noted that the quantity 

2 − 𝑒−𝜏𝑖,𝑚
′

 ranges from 1 to2,representing the relatively small effect of𝜏𝑖,𝑚
′ onto the 

degradation situation in comparison with theother two parameters𝑚 and i, and𝛿 is a 

predetermined constantwhich controls the influence of the degradation onto the 

probability 𝑝𝑖,𝑚 𝜏𝑖,𝑚
′  . In this study, we set𝛿 = 0.0001.The value of 𝛿  was set 
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considering the balance between showing the impact of extreme shocks and reflecting 

the high reliability of the critical component.In addition, we assume the corresponding 

degradation transition rates after m cumulative shocksto be 𝜆𝑖,𝑗
 𝑚 

 𝜏𝑖,𝑚
′ , 𝜽 = (1 +

𝜀)𝑚𝜆𝑖,𝑗  𝜏𝑖,𝑚
′ , 𝜽 , where 𝜀 = 0.3 is the relative increment of transition rates after one 

cumulative shock happens, and the formulation (1 + 𝜀)𝑚  is used to characterize the 

accumulated effect of such shocks.To characterize the increase of the transition rates, 

in the case study we have used the parameter 𝜀 to represent the relative increment of 

degradation transition rate after one cumulative shock occurs.For the sake of 

simplicity, but without loss of generality in the framework for integration, we assume 

that the values of 𝜀 for each cumulative shock are equal. But the model can handle 

different 𝜀 for different stages of the crack process. 

 

6.2 Results and analysis 

The Monte Carlo simulation over a time horizon of 𝑡𝑚𝑎𝑥 = 80  years is run 

𝑁𝑚𝑎𝑥 = 106 times. The results are collected and analyzed in the following sections. 

 

6.2.1 Results of state probabilities 

The estimated state probabilitieswithout,and with random shocksthroughout the 

time horizon are shown in Figs. 5, and 6, respectively. 
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Fig. 5.State probabilities obtained without random shocks. 

 

 

 

Fig.6.State probabilities obtained with random shocks. 

 

Comparing the above two figures, it can be observed that as expected the random 

shocks drive the component to higher degradation statesthan the micro-crack 

state.The numerical comparisons on the state probabilitieswith/without random 

shocks at year 80 are reported in Table II.It is seen that, except for the micro-crack 

state probability, all the other state probabilities at year 80 have increased due to the 

random shocks, with the increase inleak probability being the most significant. 

 

Table II 

Comparison of state probabilities with/without random shocks  

(at year 80) 

 

State  Probability without 

random shocks 

Probability with 

random shocks 

Relative 

difference 

Initial  3.52e-3 9.82e-3 180.00% 

Micro-crack 0.9959 0.9661 -2.99% 

Circumferential crack  3.05e-4 7.28e-3 2286.89% 

Radial crack  1.00e-4 7.75e-3 7650.00% 

Leak  1.30e-5 2.59e-3 19823.08% 

Rupture state  2.06e-4 7.00e-3 3298.06% 
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The fact that the probability of the initial state (compared with no random shocks) at 

80 years has increased is attributed to the maintenance tasks. All the maintenance 

tasks lead the component to the initial state, and the repair rates from radial 

macro-crack state, circumferential macro-crack state, and leak state are higher than 

that from the micro-crack state. The shocks generally increase the component 

degradation speed, i.e. render the component step to further degradation states (other 

than micro-crack state) faster than the case without shocks.The transitions to initial 

state occur more frequentlyfrom further degradation states (other than from the 

micro-crack state) due to their higher maintenance rates. In summary, this 

phenomenon is due to the combined effects of shocks. 

 

6.2.2 Results of component reliability 

The estimated component reliabilitieswith and without random shocks throughout the 

time horizon are shown in Fig. 7.At year 80, the estimated component reliability with 

random shocks is 0.9930,with sample varianceequal to 6.95e-9.Compared with 

thecase without random shocks(reliability equals to 0.9998, with sample 

variance2.00e-10), thecomponent reliabilityhas decreased by 0.68%. 

 

 

 

Fig.7.Component reliability estimation with/without random shocks. 
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Table IIIpresents the frequenciesof differentnumbers of random shocks that 

occurredper simulation trial.The most likely number is around 5, which is consistent 

with our assumption on the value of the occurrence rate (𝜇 = 1/15𝑦−1) of random 

shocks. 

 

Table III 

Frequencyof the number of random shocks occurred per trial 

(mission time t=80 years) 

 

Nb of random 

shocks/trial 

0 1 2 3 4 5 6 7 8 9 >9 

Percentage (%) 0.63 3.14 8.00 13.55 17.15 17.56 14.91 10.83 6.87 3.90 3.45 

 

In total, 6973 trials ended in failure, among which 4531 trials (64.98%) are 

caused by extreme shocks. Table IVreportsthe number of trials ending with extreme 

shocks,fordifferentnumbers of cumulative shocks occurringper trial. 

 

Table IV 

Number of trials that ended with extreme shocksfor different numbers of 

cumulative shocks (mission time t=80 years) 

 

Nb of cumulative 

shocks per trial 

Nb of trials Nb of trials ending 

with extreme shock 

0 6345 0 

1 31739 367 

2 80292 633 

3 135676 812 

4 171526 809 

5 175569 743 

6 148844 500 

7 108101 332 

8 68579 172 

9 38964 90 

10 19569 43 

11 8998 19 

>11 5798 11 
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The influence of the number of cumulative shocks that occurredper trialon the 

probability of the next random shock being extreme is shown in Fig. 8.As expected, 

thelargerthe number of cumulative shocks the higher the probability of extreme shock. 

 

 

 

Fig.8.The probability of the next random shock being extremeas a function of 

the number of cumulative shocks occurred per trial. 

 

The influence of the degradation state on the probability of the next random shock 

being extreme is shown in Fig. 9.As expected, thelikelihood of extreme shocksis 

higher whenthe component degradation state is closer to the failure state. 
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Fig. 9.The probability of the next random shock being extreme as a function of the 

degradation state of the component. 

 

6.2.4 Influence of cumulative shocks on degradation 

To characterize the influence of cumulative shocks on the degradation processes, 

we set to 0the probability of a random shock being extreme, so that all random shocks 

will be cumulative. The estimated state probabilities are shown in Fig. 10. 

 

 

 

Fig.10.State probabilities obtained with cumulative shocks only. 

 

The state probabilities with cumulative shocks exhibit similar patterns as those in Fig. 

6;only the rupture state probability has decreased due to the lack of extreme shocks. 

The numerical comparisons on the state probabilities without random shocks and with 

cumulative shocks at year 80 are reported in Table V. 

 

Table V 

Comparison of state probabilities without random shocks and with cumulative 

shocks  

(at year 80) 

 

State  Probability without 

random shocks 

Probability with 

cumulative shocks 

Relative difference 

Initial  3.52e-3 9.94e-3 184.11% 
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Micro-crack  0.9959 0.9704 -2.56% 

Circumferential crack  3.05e-4 7.05e-3 2210.16% 

Radial crack  1.00e-4 7.52e-3 7419.00% 

Leak  1.30e-5 2.76e-3 21161.54% 

Rupture  2.06e-4 2.70e-3 1212.62% 

 

As for the case with random shocks, cumulative shocks have a similar influenceon the 

state probabilities. In Fig. 11, we compare the estimated component reliabilitywith 

cumulative shockswiththe other two estimated probabilities of Fig. 7.At year 80, the 

estimated component reliability with cumulative shocks is 0.9973,andthe sample 

variance equals 2.69e-9. Considering cumulative shocks only, thecomponent 

reliability has decreased by 0.26%. 

 

 

 

Fig.11.Component reliability with/without random shocks, and with only 

cumulative shocks. 

 

6.3 Sensitivity analysis 

With the model specificationsof Section 6.1, two important parametersare: the 

constant 𝛿 in 𝑝i,m 𝜏i,m
′   and the relative increment 𝜀in 𝜆𝑖,𝑗

 𝑚 
 𝜏𝑖,𝑚

′ , 𝜽 . To analyze 

the sensitivity of the component reliabilityestimatesto these two parameters, we take 

values of𝛿within the range [0.0001, 0.0002], and 𝜀 within the range [0.2, 0.4].  

Fig. 12 shows the estimated component reliabilitieswith different combinations of 
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the two parameters.In general,the component reliability decreases when any of 

theparameters increases.In fact,a higher 𝛿in 𝑝i,m 𝜏i,m
′   leads to a higher probability 

ofthe random shock being extreme, which is more critical to the component,anda 

higher relative increment 𝜀 in 𝜆𝑖,𝑗
 𝑚 

 𝜏𝑖,𝑚
′ , 𝜽 results in larger degradation transition 

rates. We can also see from the figure that,in this situation, when the same percentage 

of variation applies to the two parameters,𝜀  is more influential than 𝛿on the 

component reliability. The corresponding variances of the estimated component 

reliabilitycomputedusing (19) are shown in Fig. 13,where it is seen that the high 

reliabilityestimates have low variance levels. 

 

 

 

Fig. 12.Component reliability estimateas a function of𝜀 and 𝛿(at year 80). 
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Fig. 13.Variance of component reliability estimate as a function ofε and δ (at 

year 80). 

 

7. CONCLUSIONS 

An original, general model of a degradation process dependent on random shocks 

has been proposed and integrated into a MSPM framework with semi-Markov 

processes, which also considers two types of random shocks: extreme, and cumulative. 

General dependences between the degradation and the effects of shocks can be 

considered.  

A literature case study has been illustrated to show the effectiveness and modeling 

capabilities of the proposal, and a crude sensitivity analysis has been applied to a pair 

of characteristic parameters newly introduced.The significance of the findings in the 

case study considered isthat our extended model is able to characterize the influences 

of different types of random shocks onto the component state probabilities and the 

reliability estimates. 
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