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Abstract—Components are often subject to multiple competing 

degradation processes. For multi-component systems, the 

degradation dependency within one component or/and among 

components need to be considered. Physics-based models (PBMs) 

and multi-state models (MSMs) are often used for component 

degradation processes, particularly when statistical data are 

limited. In this paper, we treat dependencies between 

degradation processes within a piecewise-deterministic Markov 

process (PDMP) modeling framework. Epistemic (subjective) 

uncertainty can arise due to the incomplete or imprecise 

knowledge about the degradation processes and the governing 

parameters: to take into account this, we describe the parameters 

of the PDMP model as fuzzy numbers. Then, we extend the finite-

volume (FV) method to quantify the (fuzzy) reliability of the 

system. The proposed method is tested on one subsystem of the 

residual heat removal system (RHRS) of a nuclear power plant, 

and a comparison is offered with a Monte Carlo (MC) simulation 

solution: the results show that our method can be most efficient. 

 
Index Terms—Multiple dependent competing degradation 

processes, piecewise-deterministic Markov process (PDMP), 

epistemic uncertainty, fuzzy set theory, fuzzy reliability, finite-

volume (FV) method. 

 

I. INTRODUCTION 

NDUSTRIAL components are often subject to multiple 

competing degradation processes, whereby any of them may 

cause failure [1]. For multi-component systems, the 

dependency between degradation processes within one 

component (e.g. the wear of rubbing surfaces influenced by 

the environmental stress shock within a micro-engine [2]), 

or/and the degradation dependency among components (e.g. 

the degradation of the pre-filtrations stations leading to a 

lower performance level of the sand filter in a water treatment 

plant [3]) need to be considered.  

Physics-based models (PBMs) [4-7] and multi-state models  
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(MSMs) [8-11] are two modeling frameworks that can be used 

for describing the evolution of degradation in structures and 

components. The former uses physics knowledge that is 

implemented into mathematical equations for an integrated 

mechanistic description of the component behavior given the 

underlying degradation mechanisms (e.g. shocks, fatigue, 

wear, corrosion, etc.). The latter generally uses degradation 

and/or failure data from historical field collection or 

degradation tests, or material science knowledge (e.g. multi-

state physics model [12]) to describe the degradation 

processes by a finite number of states of degradation severity 

and a set of transition rates (estimated from historical data) 

between the different degradation states.    

To treat degradation dependencies in a system whose 

components are modeled by these two types of models, a 

piecewise-deterministic Markov process (PDMP) approach 

was employed in our previous work [13]. Monte Carlo (MC) 

simulation methods [14, 15] can be used to solve PDMP, since 

the analytical solution is difficult to obtain due to the complex 

behavior of the system, resulting in the stochasticities of 

MSMs and time-dependent evolutions of PBMs. However, the 

major shortcoming is that MC can be quiet time-consuming 

[16]. The finite-volume (FV) scheme studied by Cocozza-

Thivent et al. [17] and Eymard et al. [18] appears to be more 

efficient, leading to comparable results as MC simulation with 

acceptable computing time [16].    

Epistemic (subjective) uncertainty [19] can affect the 

analysis due to the incomplete or imprecise knowledge about 

the degradation processes of the components [20, 21]. For 

PBMs, the parameters (e.g. wear coefficient) and influencing 

factors (e.g. temperature and pressure) may be unknown [22] 

and elicited from expert judgment [23]; for MSMs, the state 

performances may be poorly defined due to the imprecise 

discretization of the underlying continuous degradation 

processes [24] and the transition rates between states may be 

difficult to estimate statistically due to insufficient data, 

especially for those highly reliable critical components (e.g. 

valves and pumps in nuclear power plants or aircrafts, etc.) 

[25].   

In literature, fuzzy reliability has been studied by many 

researchers to account for imprecision and uncertainty in the 

system model parameters. Tanaka et al. [26] have proposed 

the fuzzy fault tree for the fuzzy reliability assessment of 

binary-state systems and Singer [27] has assigned fuzzy 
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probabilities to the basic events. Dunyak et al. [28] have 

proposed another fuzzy extension to assign fuzzy probability 

to all events, which is consistent with the calculations from 

fuzzy fault trees. Ding et al. [20] have developed fuzzy multi-

state systems (FMSS) models by considering the steady state 

probabilities, or/and steady state performance levels of a 

component as fuzzy numbers. Ding and Lisnianski [29] have 

proposed the fuzzy universal generating function (FUGF) for 

the quantification of the fuzzy reliability of FMSS. Later, Li et 

al. [30] have developed a random fuzzy extension of the 

universal generating function and Sallak et al. [31] have 

employed Dempster–Shafer theory to quantify the fuzzy 

reliability of MSS. Liu et al. [24] have proposed a fuzzy 

Markov model with fuzzy transition rates for FMSS when the 

steady fuzzy state probabilities are not available. To the 

knowledge of the authors, none of the previous studies has 

considered epistemic uncertainty in PDMP system models.   

The contributions of the paper are twofold. First, we employ 

fuzzy numbers to represent various epistemic uncertainties in 

multiple dependent competing degradation processes modeled 

by PDMP. Second, we extend the FV scheme for the 

quantification of PDMP under epistemic uncertainty instead of 

using time-consuming MC simulation methods [32, 33]. The 

reminder of the paper is structured as follows. Section 2 

introduces the PDMP for multiple dependent competing 

degradation processes. Section 3 presents the FV scheme for 

PDMP. Section 4 presents the PDMP under uncertainty and 

the extended FV scheme for system reliability quantification. 

Section 5 presents a case study on one subsystem of the 

residual heat removal system (RHRS) [34] of a nuclear power 

plant. Section 6 presents numerical results and analysis. 

Section 7 concludes the work. 

 

II. PDMP FORSYSTEMS DEGRADATION CONSIDERING 

DEPENDENCY 

The following assumptions are made on the multiple 

dependent competing degradation processes of a system [13]: 

 The system consists of two groups of components: the 

first group contains M components, 𝐿  = (𝐿1, 𝐿2, … , 

𝐿𝑀), whose degradation processes are modeled by 

PBMs; the second group contains N components, 

𝐾   = (𝐾1, 𝐾2, … , 𝐾𝑁), whose degradation processes are 

modeled by MSMs including MSPM. 

 All degradation processes of the system follow the 

PDMP, taking into account the degradation dependency 

of components within each group and between the 

groups. 

 For a generic component 𝐿𝑚 , 𝑚 = 1, 2, …  , 𝑀, of the first 

group, 𝑑𝐿𝑚
 time-dependent continuous variables are used 

to describe the degradation process; the variables 

vector𝑋𝐿𝑚
         𝑡 = (𝑋𝐿𝑚

𝐷         𝑡 , 𝑋𝐿𝑚

𝑃         𝑡 ) contains (1) non-

decreasing degradation variables 𝑋𝐿𝑚

𝐷         𝑡  (e.g. crack 

length) and (2) physical variables 𝑋𝐿𝑚

𝑃         𝑡  (e.g. velocity 

and force), whoseevolution in time is described by a set 

of first-order differential equations mathematically 

representing the underlying physical processes. The 

component 𝐿𝑚  fails when one variable of the first type 

𝑥𝐿𝑚
𝑖  𝑡 ∈ 𝑋𝐿𝑚

𝐷         𝑡  reaches or exceeds its corresponding 

failure threshold, denoted by 𝑥𝐿𝑚
𝑖 ∗

; the set of failure 

states of 𝐿𝑚  is denoted by ℱ𝐿𝑚
.  

 For a generic component 𝐾𝑛 , 𝑛 = 1, 2, …  , 𝑁, in the 

second group, its discrete degradation state space is 

denoted by 𝑆𝐾𝑛
= {0𝐾𝑛

, 1𝐾𝑛
, … , 𝑑𝐾𝑛

}, ranging from 

perfect functioning state„𝑑𝐾𝑛
‟ to complete failure 

state„0‟. The component is functioning or partially 

functioning in all generic intermediate states. The 

transition rates between two different degradation states 

are used to describe the speed of reaching another 

degradation state. The performance level of one 

component (e.g. vibration of the valve due to 

degradation) at each degradation state and the impact on 

the other components are considered as deterministic. 

The failure state set of 𝐾𝑛  is denoted by ℱ𝐾𝑛
= {0𝐾𝑛

}. 

The degradation condition of the whole system is, then, 

represented as follows: 

𝑍  𝑡 =

 

 
 
 
 

 

 
 

𝑋𝐿1
        𝑡 

𝑋𝐿2
        𝑡 

⋮

𝑋𝐿𝑀
         𝑡  

 
 

= 𝑋      𝑡 

 𝑌𝐾1
 𝑡 , 𝑌𝐾2

 𝑡 , … , 𝑌𝐾𝑁
 𝑡  = 𝑌   𝑡  

 
 
 
 

 

∈ 𝐸 = ℝ𝑑𝐿 × 𝑆 (1) 

where𝑌𝐾𝑛
 𝑡 , 𝑛 = 1, 2, …  , 𝑁 denotes the degradation state of 

component 𝐾𝑛  at time 𝑡, 𝐸 is a hybrid space ofℝ𝑑𝐿 (𝑑𝐿 =
𝑑𝐿1

+ 𝑑𝐿2
+  …  + 𝑑𝐿𝑀

) and 𝑆(𝑆 = 𝑆𝐾1
× 𝑆𝐾2

… × 𝑆𝐾𝑁
). 

The evolution of the degradation processes 𝑍  𝑡  involves 

the stochasticbehavior of 𝑌   𝑡  and the deterministic 

behaviorof 𝑋      𝑡 , between two consecutive jumps of 𝑌   𝑡 , 

given 𝑌   𝑡 . Let 𝑌𝑘
    ∈ 𝑆, 𝑘 ∈ ℕ denote the state of the 𝑁 

components in the second group after 𝑘 transitions (a 

transition occurs as long as any one of the 𝑁 components 

changes its state) and 𝑇𝑘 ∈ ℝ+, 𝑘 ∈ ℕ denote the time of 

arrival at state 𝑌𝑘
    . 𝑌   𝑡 is written as follows:  

𝑌   𝑡 = 𝑌𝑘
    , ∀𝑡 ∈  𝑇𝑘 , 𝑇𝑘+1                       (2) 

The probability that 𝑌   𝑡  will step to state 𝑗  from state 𝑖 in the 

next infinitesimal time interval  𝑇𝑛 , 𝑇𝑛 + ∆𝑡 , given 

(𝑍      𝑡 )0≤𝑡≤𝑇𝑛
, is as follows: 

𝑃 𝑌𝑛+1
         = 𝑗 , 𝑇𝑛+1 ∈  𝑇𝑛 , 𝑇𝑛 + ∆𝑡  (𝑍      𝑡 )0≤𝑡≤𝑇𝑛

, 𝜃𝐾
     ] 

= 𝑃 𝑌𝑛+1
         = 𝑗 , 𝑇𝑛+1 ∈  𝑇𝑛 , 𝑇𝑛 + ∆𝑡  𝑍      𝑇𝑛 = (𝑋      𝑇𝑛 , 𝑖 ), 𝜃𝐾

     ] 

= 𝜆𝑖  𝑗 , 𝑋      𝑇𝑛  | 𝜃𝐾
      ∆𝑡, 

∀ 𝑛 ≥ 0, 𝑖 , 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗      (3) 

where𝜃𝐾
      represents the external influencing factorsof the 

components in the second group and the related coefficients to 

the transition rates, 𝜆𝑖  𝑗 , 𝑋      𝑇𝑛  | 𝜃𝐾
       represents the 

corresponding transition rate. Theevolution of𝑋      𝑡 ,when 

𝑡 ∈  𝑇𝑘 , 𝑇𝑘+1 , 𝑘 ∈ ℕ, is deterministically described by a set of 
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differential equations as follows: 

𝑋   𝑡 =

 

  
 

𝑋𝐿1
         𝑡 

𝑋𝐿2
         𝑡 

⋮

𝑋𝐿𝑀
          𝑡  

  
 

=

 

 
 
 

𝑓𝐿1

𝑌𝑘                  𝑋      𝑡 , 𝑡  𝜃𝐿1
       

𝑓𝐿2

𝑌𝑘                  𝑋      𝑡 , 𝑡  𝜃𝐿2
       

⋮

𝑓𝐿𝑀

𝑌𝑘                   𝑋      𝑡 , 𝑡  𝜃𝐿𝑀
          

 
 
 

 

= 𝑓𝐿
𝑌𝑘                𝑋      𝑡 , 𝑡  𝜃𝐿

       (4) 

where𝑓𝐿𝑚

𝑌𝑘            , 𝑚 = 1, 2, … , 𝑀 are the set of physics equations, 

given the influence of the degradation state 𝑌𝑘
     of the second 

group components, 𝜃𝐿𝑚
        , 𝑚 = 1, 2, … , 𝑀represents the external 

influencing factorsof the component 𝐿𝑛  and the physical 

parameters used in the physics equations. Mathematically, the 

dependency within each group and between two groups is 

treated in the framework of a piecewise-deterministic Markov 

process (PDMP) modeling, where the physics equations in the 

first group, denoted by 𝑓𝐿
𝑌𝑘                𝑋      𝑡 , 𝑡  𝜃𝐿

      , are dependent on 

the states (𝑌𝑘
    ) of the components in the second group and the 

transition rates in the second group, denoted by 

𝜆𝑖  𝑗 , 𝑋      𝑡  | 𝜃𝐾
      , are dependent on the evolution of the 

variables (𝑋      𝑡 ) in the first group. 

The reliability of the system at time t is defined as follows: 

𝑅 𝑡 = 𝑃[𝑍 (𝑠) ∉ ℱ, ∀𝑠 ≤ 𝑡]                      (5) 

whereℱ = ℱ𝑋  × ℱ𝑌  ⊊ 𝐸 denotesthe space of the failure states 

of 𝑍  𝑡 , where ℱ𝑋   denotes the sub-space of the states of𝑋  𝑡  

and ℱ𝑌   denotes the sub-space of the states of𝑌   𝑡 . Let 

𝑝𝑡 𝑥 , 𝑖  | 𝜃𝐿
     , 𝜃𝐾

      , 𝑥 ∈ ℝ𝑑𝐿 , 𝑖 ∈ 𝑆 denote the probability density 

function (PDF) of processes (𝑋      𝑡 , 𝑌      𝑡 )𝑡≥0 being in state 

(𝑥     , 𝑖 ) at time 𝑡, which satisfies: 

  𝑝𝑡 𝑥 , 𝑖  | 𝜃𝐿
     , 𝜃𝐾

      𝑑𝑥 𝑖  ∈ 𝑆ℝ𝑑𝐿
= 1                  (6) 

The reliability of the system can be calculated as:  

𝑅 𝑡 =   𝑝𝑡 𝑥 , 𝑖  | 𝜃𝐿
     , 𝜃𝐾

      𝑑𝑥 𝑖  ∉ ℱ
𝑌   𝑥  ∉ ℱ

𝑋    
             (7) 

The PDF 𝑝𝑡 𝑥 , 𝑖  | 𝜃𝐿
     , 𝜃𝐾

       obeys the Chapman-Kolmogorov 

equation [35]as follows: 
𝜕

𝜕𝑡
𝑝𝑡 𝑥 , 𝑖  | 𝜃𝐿

     , 𝜃𝐾
      = 

 𝜆𝑗  𝑖 , 𝑥  | 𝜃𝐾
      

𝑗  ≠ 𝑖 

𝑝𝑡 𝑥 , 𝑗  | 𝜃𝐿
     , 𝜃𝐾

       

−𝜆𝑖  𝑥  | 𝜃𝐾
      𝑝𝑡 𝑥 , 𝑖  | 𝜃𝐿

     , 𝜃𝐾
       

−𝑑𝑖𝑣  𝑓𝐿
𝑖      
(𝑥 , 𝑡| 𝜃𝐿

     )𝑝𝑡 𝑥 , 𝑖  | 𝜃𝐿
     , 𝜃𝐾

        (8) 

where𝜆𝑖  𝑥  | 𝜃𝐾
      =  𝜆𝑖  𝑗 , 𝑥  | 𝜃𝐾

      𝑗  ≠ 𝑖  is the transition rate 

departing from the state 𝑖 . Among the right-hand parts of 

equation (8), the first two terms are due to the stochastic 

behavior of processes 𝑌   𝑡  : the first term accounts for the 

transition of processes 𝑍  𝑡  into state (𝑖 , 𝑥 ), the second term 

accounts for the transition of processes 𝑍  𝑡  out of state (𝑖 , 𝑥 ); 

the last term is due to the deterministic behavior of processes 

𝑋  𝑡 , which represents the volume density of the outward flux 

of the probability field around the point (𝑖 , 𝑥 ). Given the initial 

probability distribution of the system 𝑝0 𝑥 , 𝑖  |𝜃𝐿
     , 𝜃𝐾

      , its 

evolution in time and that of the system reliability can be 

obtainedsolving equations (8) and (7), respectively. 

A challenging problem is to calculate the probability 

density function 𝑝𝑡 𝑥 , 𝑖  |𝜃𝐿
     , 𝜃𝐾

      , because the analytical 

solutionis difficult to obtain due to the complex behavior of 

the processes[14, 15]. MC simulation methods can be applied 

for such numerical computations, but the major shortcoming is 

that they are typically time-consuming[16]. FV methods is an 

alternative that can lead to comparable results as MC 

simulation,but within a more acceptable computing time [16]. 

 

III. FINITE-VOLUMESCHEMEFOR PDMP 

Instead of directly solving the probability density function 

𝑝𝑡 𝑥 , 𝑖  |𝜃𝐿
     , 𝜃𝐾

       through the Chapman-Kolmogorov equation 

(8), an approximate solution can be obtained by the FV 

scheme by discretizing the state space of the continuous 

variables and the time space of PDMP. The approximated 

solution converges towards the accurate solution under certain 

conditions. Here, we employ an explicit FV scheme to PDMP, 

developed by Cocozza-Thiventet al. [17]. 

 

A. Assumptions 

This approach can be applied under the following 

assumptions [17]: 

 The transition rates 𝜆𝑖  𝑗 ,∙  | 𝜃𝐾
      , ∀𝑖 , 𝑗 ∈ 𝑆 are continuous 

and bounded functions from ℝ𝑑𝐿 to ℝ+. 

 The physics equations𝑓𝐿
𝑖        ∙,∙  𝜃𝐿

      , ∀𝑖 ∈ 𝑆 are continuous 

functions from ℝ𝑑𝐿 × ℝ+ to ℝ𝑑𝐿  and locally Lipschitz 

continuous. 

 The physics equations𝑓𝐿
𝑖        ∙, 𝑡  𝜃𝐿

      , ∀𝑖 ∈ 𝑆 are sub-linear, 

i.e. there are some 𝑉1 > 0 and 𝑉2 > 0 such that  

 ∀𝑥 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝ+  𝑓𝐿
𝑖        𝑥 , 𝑡  𝜃𝐿

       ≤ 𝑉1( 𝑥  +  𝑡 ) + 𝑉2 

 The functions𝑑𝑖𝑣(𝑓𝐿
𝑖        ∙,∙  𝜃𝐿

      ), ∀𝑖 ∈ 𝑆are almost 

everywhere bounded in absolute value by some real value 

D > 0 (independent of 𝑖). 
 

B. Numerical scheme 

For the ease of notation, first we let 𝑔𝑖      ∙,∙ : ℝ𝑑𝐿 × ℝ → ℝ𝑑𝐿  

denote the solution of 

𝜕

𝜕𝑡
𝑔𝑖      𝑥 , 𝑡 | 𝜃𝐿

      = 𝑓𝐿
𝑖        𝑔𝑖      𝑥 , 𝑡 | 𝜃𝐿

      , 𝑡 𝜃𝐿
      , 

∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝ(9) 

with 

𝑔𝑖      𝑥 , 0 | 𝜃𝐿
      = 𝑥 , ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ𝑑𝐿                (10) 
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and𝑔𝑖      𝑥 , 𝑡 | 𝜃𝐿
       is the result of the deterministic behavior of 

𝑋      𝑡  after time 𝑡, starting from the point 𝑥  while the 

processes 𝑌   𝑡  hold on state 𝑖 . 

The state space ℝ𝑑𝐿  of continuous variables 𝑋      𝑡  is divided 

into an admissible mesh ℳ, which is a family of measurable 

subsets of ℝ𝑑𝐿  (ℳ is a partition of ℝ𝑑𝐿 ) such that [17]: 

(1)  𝐴𝐴∈ℳ = ℝ𝑑𝐿 . 

(2) ∀𝐴, 𝐵 ∈ ℳ, 𝐴 ≠ 𝐵 ⇒ 𝐴 ∩ 𝐵 = ∅. 

(3) 𝑚𝐴 =  𝑑𝑥     
𝐴

> 0, ∀𝐴 ∈ ℳ, where 𝑚𝐴  is the volume of 

grid 𝐴. 

(4) 𝑠𝑢𝑝𝐴∈ℳ𝑑𝑖𝑎𝑚 𝐴 < +∞where 𝑑𝑖𝑎𝑚 𝐴 = 𝑠𝑢𝑝∀𝑥 ,𝑦  ∈𝐴  

 𝑥 − 𝑦  . 
Additionally, the time space ℝ+is divided into small intervals 

ℝ+ =  [𝑛∆𝑡, (𝑛 + 1)∆𝑡[𝑛=0,1,2,…  by setting the time step 

∆𝑡 > 0 (the length of each interval). 

The numerical scheme aims at giving an approximate value 

for the probability density function 𝑝𝑡 𝑥 , 𝑖  | 𝜃𝐿
     , 𝜃𝐾

       on each 

{𝑖} × [𝑛∆𝑡, (𝑛 + 1)∆𝑡[× 𝐴, ∀𝑖 ∈ 𝑆, 𝑛 ∈ ℕ, 𝐴 ∈ ℳ denoted by 

𝑝𝑛 𝐴, 𝑖  |𝜃𝐿
     , 𝜃𝐾

      , by assuming that: 

𝑝𝑡 𝑥 , 𝑖  |𝜃𝐿
     , 𝜃𝐾

      = 𝑝𝑛 𝐴, 𝑖  |𝜃𝐿
     , 𝜃𝐾

      ,  

∀𝑖 ∈ 𝑆, 𝑥 ∈ 𝐴, 𝑡 ∈ [𝑛∆𝑡, (𝑛 + 1)∆𝑡[(11) 

Given the initial probability density function 

𝑝0 𝑥 , 𝑖  | 𝜃𝐿
     , 𝜃𝐾

       of the system at time 𝑡 = 0, 

𝑝0 𝐴, 𝑖  |𝜃𝐿
     , 𝜃𝐾

      , ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ can be obtained as: 

𝑝0 𝐴, 𝑖  |𝜃𝐿
     , 𝜃𝐾

      =  𝑝0 𝑥 , 𝑖  |𝜃𝐿
     , 𝜃𝐾

      𝑑𝑥     
𝐴

/𝑚𝐴  (12) 

Then, 𝑝𝑛+1 𝐴, 𝑖  |𝜃𝐿
     , 𝜃𝐾

      , ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ, 𝑛 ∈ ℕ can be 

calculated considering the deterministic evaluation of 𝑋      𝑡  

and the stochastic evolution of 𝑌      𝑡  based on 

𝑝𝑛 ℳ, 𝑖  | 𝜃𝐿
     , 𝜃𝐾

       by the Chapman-Kolmogorov forward 

equation [36], as follows: 

𝑝𝑛+1 𝐴, 𝑖  | 𝜃𝐿
     , 𝜃𝐾

      =
1

1 + ∆𝑡𝑏𝐴
𝑖 
𝑝𝑛+1  𝐴, 𝑖  | 𝜃𝐿

     , 𝜃𝐾
       

+∆𝑡  
𝑎𝐴

𝑗  𝑖 

1+∆𝑡𝑏𝐴
𝑗  𝑝𝑛+1  𝐴, 𝑗  | 𝜃𝐿

     , 𝜃𝐾
      𝑗 ∈𝑆

𝑗  ≠ 𝑖 

 (13) 

where 

𝑎𝐴
𝑗 𝑖 

=  𝜆𝑗  𝑖 , 𝑥  | 𝜃𝐾
      𝑑𝑥     

𝐴
𝑚𝐴 , ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ(14) 

is the average transition rate from state 𝑗 to state𝑖  for grid 𝐴, 

𝑏𝐴
𝑗 

=  𝑎𝐴
𝑗 𝑖 

𝑖  ≠ 𝑗 , ∀𝑗 ∈ 𝑆, 𝐴 ∈ ℳ                  (15) 

is the average transition rate out of state 𝑖  for grid 𝐴, 

𝑝𝑛+1  𝐴, 𝑖  | 𝜃𝐿
     , 𝜃𝐾

      =
 𝑚𝐵𝐴

𝑖 
𝐵∈ℳ 𝑝𝑛 𝐵, 𝑖  | 𝜃𝐿

     , 𝜃𝐾
      

𝑚𝐴

, 

 ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ(16) 

is the approximate value for probability density functionon 

 𝑖 × [(𝑛 + 1)∆𝑡, (𝑛 + 2)∆𝑡[× 𝐴according to the 

deterministic evaluation of 𝑋      𝑡 , 

𝑚𝐵𝐴
𝑖 =  𝑑𝑦     

{𝑦  ∈𝐵 | 𝑔𝑖      
 𝑦  ,∆𝑡  | 𝜃𝐿       ∈𝐴}

, ∀𝑖 ∈ 𝑆, 𝐴, 𝐵 ∈ ℳ(17) 

is the volume of the part of grid 𝐵, which will enter grid 𝐴 

after time ∆𝑡 according to the deterministic evaluation of 

𝑋      𝑡 . 

The first term of the right-hand parts of equation (13)  

accounts for the situation that processes 𝑌   𝑡  hold on state 𝑖  
during time [𝑛∆𝑡,  𝑛 + 1 ∆𝑡], represented by “1” in an 

illustrated example in ℝ2 (Fig. 1), where 
1

1+∆𝑡𝑏𝐴
𝑖 , ∀𝑖 ∈ 𝑆, 𝐴 ∈

ℳ is the approximated probability that no transition happens 

from state 𝑖  for grid 𝐴 and the second term of the right-hand 

parts of equation (13) accounts for the situation that 

processes𝑌   𝑡  step to state 𝑖  from another state 𝑗  at time 

 𝑛 + 1 ∆𝑡, represented by “2” in an illustrated example in ℝ2 

(Fig. 1), where 𝑎𝐴
𝑗 𝑖 
∆𝑡, ∀𝑖 , 𝑗 ∈ 𝑆, 𝐴 ∈ ℳ is the transition 

probability from state 𝑗  to state 𝑖  for grid 𝐴 (𝐵1 , 𝐵2 , 𝐵3  and 𝐵4 

are the grids of which some parts will enter grid 𝐴 according 

to the deterministic evaluation of 𝑋      𝑡  at time  𝑛 + 1 ∆𝑡). 

The approximated solution 𝑝𝑛 𝐴, 𝑖  | 𝜃𝐿
     , 𝜃𝐾

       weakly 

converges towards the unique solution of equation (8) when 

∆𝑡 → 0 and  ℳ /∆𝑡 → 0where  ℳ = 𝑠𝑢𝑝𝐴∈ℳ𝑑𝑖𝑎𝑚 𝐴 [17]. 

 

IV. PDMP UNDERUNCERTAINTY 

Fuzzy set theories and techniques introduced by Zadeh[37, 

38]have been employed in reliability models under epistemic 

uncertainty when the crisp values are insufficient to capture 

the actual behavior of components. In this work, the following 

assumptions are madetoextend the previous PDMP model with 

the consideration of epistemic uncertainty: 

 The values of the external influencing factors and 

physical parameters 𝜃𝐿
      in the physics equations 

𝑓𝐿
𝑖      
(𝑥 , 𝑡 |𝜃𝐿

     ), ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ𝑑𝐿  and equations 

𝑔𝑖      𝑥 , 𝑡 | 𝜃𝐿
      , ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝfor the deterministic 

processes 𝑋  𝑡  can be fuzzy numbers, denoted by 𝜃𝐿
      

.  

 The values of the external influencing factors and the 

related coefficients 𝜃𝐾
      in the transition rates for the 

stochastic processes 𝑌   𝑡  between two different states 

𝜆𝑖  𝑗 , 𝑥  | 𝜃𝐾
      , ∀ 𝑡 ∈ ℝ+, 𝑥 ∈ ℝ𝑑𝐿 , 𝑖 , 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗  can be 

fuzzy numbers, denoted by 𝜃𝐾
      

. 

The values of the probability density function 

𝑝 𝑡, 𝑥 , 𝑖  | 𝜃𝐿
     , 𝜃𝐾

      and reliability function 𝑅 𝑡 have, 

 
 

Fig.1.The evolution of degradation processes during [𝑛∆𝑡,  𝑛 + 1 ∆𝑡]. 
 

 

“2”

“1”
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therefore,changed from crisp values to fuzzy numbers, 

denoted by 𝑝  𝑡, 𝑥 , 𝑖  |𝜃𝐿
      

, 𝜃𝐾
      

  and 𝑅  𝑡  respectively. In the next 

section, we extend the approach presented in Section 2 to 

quantify the dependent degradation processes modeled by 

PDMP under uncertainty. 

 

A. Quantification of PDMP under uncertainty 

Let  𝑎  𝛼 = [𝑎𝛼 , 𝑎𝛼  ] denote the α-cut of a fuzzy number 𝑎 , 

where 𝑎𝛼  and 𝑎𝛼are the bounds;then, the 𝛼-cut of 

𝑝  𝑡, 𝑥 , 𝑖  |𝜃𝐿
      

, 𝜃𝐾
      

 , ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ𝑑𝐿 , 𝑡 ∈ ℝ can be obtained 

based on the extension principle [38] as: 

 𝑝  𝑡, 𝑥 , 𝑖  |𝜃𝐿
      

, 𝜃𝐾
      

  
𝛼

= 

 
 
 
 
 

𝑚𝑖𝑛
𝜃𝐿      ∈ 𝜃𝐿       

 
𝛼

𝜃𝐾       ∈ 𝜃𝐾        
 
𝛼

𝑝 𝑡, 𝑥 , 𝑖  |𝜃𝐿
     , 𝜃𝐾

      , 𝑚𝑎𝑥
𝜃𝐿      ∈ 𝜃𝐿       

 
𝛼

𝜃𝐾       ∈ 𝜃𝐾        
 
𝛼

𝑝 𝑡, 𝑥 , 𝑖  |𝜃𝐿
     , 𝜃𝐾

      

 
 
 
 
 

       

(18) 

The approximate solution for  𝑝  𝑡, 𝑥 , 𝑖  | 𝜃𝐿
      

, 𝜃𝐾
      

  
𝛼

, ∀𝑖 ∈

𝑆, 𝑥 ∈ 𝐴, 𝑡 ∈ [𝑛∆𝑡, (𝑛 + 1)∆𝑡[ denoted by 𝑝𝑛  𝐴, 𝑖  | 𝜃𝐿
      

, 𝜃𝐾
      

  

can be obtained by varying 𝜃𝐿
      in  𝜃𝐿

      
 
𝛼

 and 𝜃𝐾
      in  𝜃𝐾

      
 
𝛼

 as 

follows: 

 𝑝𝑛  𝐴, 𝑖  |𝜃𝐿
      

, 𝜃𝐾
      

  
𝛼

= 

 
 
 
 
 

𝑚𝑖𝑛
𝜃𝐿      ∈ 𝜃𝐿       

 
𝛼

𝜃𝐾       ∈ 𝜃𝐾        
 
𝛼

𝑝𝑛 𝐴, 𝑖  |𝜃𝐿
     , 𝜃𝐾

      , 𝑚𝑎𝑥
𝜃𝐿      ∈ 𝜃𝐿       

 
𝛼

𝜃𝐾       ∈ 𝜃𝐾        
 
𝛼

𝑝𝑛 𝐴, 𝑖  |𝜃𝐿
     , 𝜃𝐾

      

 
 
 
 
 

 

(19) 

where𝑝𝑛 𝐴, 𝑖  | 𝜃𝐿
     , 𝜃𝐾

       is obtained by eq. (13) through the FV 

scheme. Then, the parametric programming algorithms [24] 

can be applied to find the fuzzy probability in eq. (19). 

The approximate solution for the 𝛼-cut of fuzzy reliability 

𝑅  𝑡  of the system at time 𝑡 ∈ [𝑛∆𝑡, (𝑛 + 1)∆𝑡[ can, then, be 

obtained as follows:  

[𝑅  𝑡 ]𝛼 =   [𝑝𝑛  𝐴, 𝑖  | 𝜃𝐿
      

, 𝜃𝐾
      

 ]𝛼
𝑖  ∉ ℱ

𝑌   

 𝑑𝑥     
 𝑥 ∈𝐴  𝑥  ∉ ℱ

𝑋    
}𝐴∈ℳ

 

  (20) 

In most cases, the original 𝑅 𝑡  is monotonic with 𝜃𝐿
     and 𝜃𝑘

     ; 
then, we can directly obtain that instead of using eq. (19): 

 𝑅  𝑡  𝛼 = 

   𝑝𝑛  𝐴, 𝑖  |𝜃𝐿
     

𝛼
, 𝜃𝐾
     

𝛼
 

𝑖  ∉ ℱ
𝑌   

 𝑑𝑥     
 𝑥 ∈𝐴  𝑥  ∉ ℱ

𝑋    
}𝐴∈ℳ

,  

   𝑝𝑛  𝐴, 𝑖  |𝜃𝐿
     

𝛼
, 𝜃𝐾
     

𝛼
 

𝑖  ∉ ℱ
𝑌   

 𝑑𝑥     
 𝑥 ∈𝐴  𝑥  ∉ ℱ

𝑋    
}𝐴∈ℳ

  

 

(21) 

 

V. ILLUSTRATIVE CASE 

The illustrative case refers to one important subsystem of a 

residual heat removal system (RHRS) consisting of a 

centrifugal pump and a pneumatic valve. The definition of the 

system has been provided by Électricité de France (EDF). The 

degradation model of the pump is a modified MSM from the 

one originally supplied by EDF, while that of the valve is a 

PBM developed by Daigle and Goebel [4]. Upon discussion 

with the experts, a degradation dependency between the two 

components has been considered, as follows: the degradation 

of the pump will cause it to vibrate [39] which, in turn, will 

lead the valve to vibrate and therefore aggravate the 

degradation processes of the latter [40]. 

Given its series logic structure, the subsystem is considered 

failed when one of the two components is failed. 

 

A. Centrifugal pump 

The multi-state model of the degradation processes of the 

centrifugal pump is a continuous-time homogeneous Markov 

chain with constant transition rates as shown in Fig. 2. 

There are four degradation states for the pump, from the 

perfect functioning state „3‟ to the complete failure state „0‟. 

Due to the degradation, the pump can vibrate when it reaches 

the degradation states „2‟ and „1‟. The intensity of the 

vibration of the state „2‟ is assigned as „smooth‟ and that of 

the state „1‟ is assigned as „rough‟ by the experts. Let 𝑌𝑝 𝑡  

denote the degradation state of the pump at time 𝑡 and 

𝑆𝑝 = {‘0’, ‘1’, ‘2’, ‘3’} denote the degradation states set. The 

pump is functioning until it reaches the complete failure state 

„0‟; 𝜆32 , 𝜆21  and 𝜆10  are the transition rates of the degradation 

process. 

 

B. Pneumatic valve 

The simplified scheme of the pneumatic valve is shown in 

Fig. 3.  

The pneumatic valve is a normally-closed and gas-actuated 

valve with a linear cylinder actuator. Top chamber and bottom 

chamber are separated by the piston, and are connected to a 

top pneumatic port and a bottom pneumatic port, respectively. 

The position of the piston between fully closed position „0‟ 

and fully open position „𝑥𝑠‟ can be controlled by regulating 

the pressure of the pneumatic ports to fill or evacuate the two 

chambers. A return spring is linked with the piston to ensure  

that the valve will close when pressure is lost, due to the 

spring force. 

There are several common degradation mechanisms of the 

valve (e.g. sliding wear, internal leaks, external leaks, etc.). In 

this case study, as degradation mechanism we have chosen the 

external leak at the actuator connections to the bottom 

pneumatic port due to corrosion and other environmental 

factors, for two reasons: 1) it is more significant than the other 

degradation mechanisms according to the results shown in [4]; 

2) the uncertainty associated with the wear coefficient 

estimated from a limited amount of data should be taken into 

account. The leak will lead the valve to be more difficult to 
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open but easier to close. The threshold of the area of leak hole 

𝐷𝑏
∗ is defined as the value above which (𝐷𝑏 𝑡 > 𝐷𝑏

∗) the valve 

cannot reach the fully open position within the 15s time limit 

from the fully closed position, after an opening command is 

executed. 

Let 𝐷𝑏 (𝑡) denote the area of the leak hole at the bottom 

pneumatic port at time t, the development of the leak size is 

described by: 

𝐷𝑏
  𝑡 = 𝜔𝑏(1 + 𝛽𝑌𝑝  𝑡 )                        (22) 

where 𝜔𝑏  is the original wear coefficient and where 𝛽𝑌𝑝  𝑡  is 

the relative increment of the developing rate of the external 

leak at the bottom pneumatic port caused by the vibration of 

the pump at the degradation state „2‟ or „1‟ (if we ignore the 

degradation dependency, then 𝛽𝑌𝑝  𝑡 = 0). 

The function command of the valve cycle is a 30s-periodic-

signal and the valve is commanded to open in the first half-

period and to close in the second half by changing the pressure 

of the top bottom pneumatic port 𝑢𝑡 𝑡  and that of the bottom 

pneumatic port 𝑢𝑏 𝑡  (opening command: 𝑢𝑡 𝑡 = 𝑃𝑎𝑡𝑚  and 

𝑢𝑏 𝑡 = 𝑃𝑠𝑢𝑝 ; closing command: 𝑢𝑡 𝑡 = 𝑃𝑠𝑢𝑝  and 𝑢𝑏 𝑡 =

𝑃𝑎𝑡𝑚 ). At the beginning, the valve is set to the fully closed 

position. 

Let 𝑥 𝑡  denote the position of the valve at time 𝑡, whose 

evolution in time is described by the following equations: 

𝑥  𝑡 = 𝑎 𝑡           (23) 

where 

𝑎 𝑡 =
1

𝑚
[ 𝑝𝑏 𝑡 − 𝑝𝑡 𝑡  𝐴𝑝 − 𝑚𝑔 + 

−𝑘 𝑥 𝑡 + 𝑥0 − 𝑟𝑣 𝑡 + 𝐹𝑐 𝑥 𝑡  ]               (24) 

is the valve acceleration, where 

𝑝𝑏 𝑡 =
𝑚𝑏 (𝑡)𝑅𝑔𝑇

𝑉𝑏0+𝐴𝑝 𝑥 𝑡 
    (25) 

is the gas pressure of the bottom of the piston, 

𝑝𝑡 𝑡 =
𝑚𝑡(𝑡)𝑅𝑔𝑇

𝑉𝑡0+𝐴𝑝 (𝑥𝑠−𝑥 𝑡 )
        (26) 

is the gas pressure of the top of the piston and where 

𝑚𝑡 𝑡 = 𝑚𝑡 0 +  𝑓𝑔 𝑢𝑡 𝑡 , 𝑝𝑡 𝑡 , 𝐴𝑠 𝑑𝑡
𝑡

0

 

with𝑚𝑡 0 =
𝑃𝑠𝑢𝑝 (𝐿𝑠𝐴𝑝 +𝑉𝑡0)

𝑅𝑔𝑇
     (27) 

and 

𝑚𝑏 𝑡 = 𝑚𝑏 0 +  𝑓𝑔 𝑢𝑏 𝑡 , 𝑝𝑏 𝑡 , 𝐴𝑠 
𝑡

0

+ 𝑓𝑔 𝑃𝑎𝑡𝑚 , 𝑝𝑏 𝑡 , 𝐷𝑏 (𝑡) 𝑑𝑡 

with𝑚𝑏 0 =
𝑃𝑎𝑡𝑚 𝑉𝑏0

𝑅𝑔𝑇
        (28) 

are respectively the masses of the gas in the top chamber and 

bottom chamber at time 𝑡, and where  

𝑓𝑔 𝑝1 , 𝑝2 , 𝐴 

=

 
 
 

 
 

휀𝑃𝐶𝑠𝐴 
𝛾

𝑧𝑅𝑔𝑇
(

2

𝛾 + 1
)

𝛾+1

𝛾−1 ,                     𝑖𝑓 𝛿 ≤ (
2

𝛾 + 1
)

𝛾

𝛾−1

휀𝑃𝐶𝑠𝐴 
𝛾

𝑧𝑅𝑔𝑇
(

2

𝛾 − 1
)(𝛿

2

𝛾 − 𝛿
𝛾+1

𝛾 ) ,     𝑖𝑓 𝛿 > (
2

𝛾 + 1
)

𝛾

𝛾−1

  

with 

𝑃 = 𝑚𝑎𝑥(𝑝1 , 𝑝2)  

𝛿 =
𝑚𝑖𝑛 (𝑝1 ,𝑝2)

𝑚𝑎𝑥 (𝑝1 ,𝑝2)

휀 = 𝑠𝑔𝑛(𝑝1 − 𝑝2)

          (29) 

defines the gas flow through an orifice, and 

𝐹𝑐 𝑥 𝑡  =  

𝑘𝑐(−𝑥 𝑡 ),                𝑖𝑓 𝑥 𝑡 < 0            

 0,                                 𝑖𝑓 0 ≤ 𝑥 𝑡 ≤ 𝐿𝑠

−𝑘𝑐 𝑥 𝑡 − 𝑥𝑠 ,       𝑖𝑓 𝑥 𝑡 > 𝐿𝑠

 (30) 

is the contact force exerted on the piston by the flexible seals. 

The parameters definitions and values (except for 𝜔𝑏and 

𝛽𝑌𝑝  𝑡 ) of the valve are presented in Table I. 

With the given values, the threshold of the area of leak hole 

𝐷𝑏
∗ = 1.06𝑒 − 5 𝑚2 (maximum damage) can be calculated: 

once exceeded, the valve will not reach the fully open position 

within the 15s limit, as shown in Fig. 4. 

 

C. PDMP for the system under uncertainty 

 

The degradation processes of the whole system are modeled 

by PDMP as follows:  

𝑍  𝑡 =  
𝐷𝑏 𝑡 

𝑌𝑝 𝑡 
  ∈  ℝ+ × 𝑆𝑝                     (31) 

 

 
 

Fig. 2. Degradation processes of the pump. 

 

 

 
 

Fig. 3. Simplified scheme of the pneumatic valve [4]. 

3 2 1 0
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Return Spring

Piston

Bottom chamberBottom 

pneumatic port

Top chamber

Top

pneumatic port

Fluid 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

7 

The space of the failure states of 𝑍  𝑡 is ℱ = ℱ𝐷𝑏
× ℱ𝑌𝑝

=

 𝐷𝑏
∗ , +∞ × {‘0’}. We have 𝜃𝐿

     = (𝜔𝑏 , 𝛽𝑌𝑝  𝑡 ) and 𝜃𝐾
     =

(𝜆32 , 𝜆21 , 𝜆10) which are the uncertain parameters due to the 

fact that their values are estimated from insufficient 

degradation data or elicited from expert judgment. Epistemic 

uncertainty associated to them, hence, needs to be taken into 

account and a proper mathematical representation of 

uncertainty of this nature is by fuzzy numbers (FNs). We 

choose triangular fuzzy numbers (TFNs) [41] to represent the 

uncertain parameters because their boundary values and most 

probable or most advisable values are considered easier to be 

elicited from expertsthan other FN types and they are widely 

used to represent uncertain parameters in reliability 

engineering [20, 24, 29, 41]. However, the proposed 

framework is generally suitable for fuzzy numbers with other 

types of membership functions. The values of 𝜔𝑏 , 𝛽𝑌𝑝  𝑡 
 , 𝜆32

 , 

𝜆21
  and 𝜆10

  are shown in Table II. The fuzzy numbers are 

assigned by considering a relative uncertainty of ±10% of the 

original parameters values.  

The initial state of the system is assumed as follows: 

𝑍0
     =  

𝐷𝑏 0 

𝑌𝑝 0 
 =  

0
‘3’

  

which means that the two components are both in their perfect 

state. The initial PDF of the processes (𝐷𝑏 𝑡 , 𝑌𝑝 𝑡 )𝑡≥0, 

𝑝0  𝑥, 𝑖 |𝜃𝐿
      

, 𝜃𝐾
      

 , hence equals to 1 if  𝑥, 𝑖 = (0, ‘3’) and to 0 

otherwise. 

 

VI. RESULTS 

A MC-based approach [33] can also be used to quantify the 

epistemic uncertainty, in alternative to the fuzzy arithmetic 

operations and fuzzy parameter programming procedure. The 

comparisons between the results of the reliability of the 

system at cut level 𝛼 = 1, i.e. without fuzziness in the 

parameters values, over a time horizon 1000s calculated by 

MC simulation and the FV scheme are shown in Fig. 5 and 

Fig. 6. In order to better understand the differences presented 

in Fig. 5 and Fig. 6, we have added below each original Figure 

one extra Figure, zooming on the time horizon between 800 s 

and 900 s to illustrate the results obtained by different 

methods. For the FV scheme, the state space ℝ+ of 𝐷𝑏 𝑡  has 

been divided into an admissible mesh 

ℳ =  [𝑛∆𝑥, (𝑛 + 1)∆𝑥[𝑛=0,1,2,…  where ∆𝑥 = 1𝑒 − 8 𝑚2/𝑠 

and the time space ℝ+ into small intervals ℝ+ =

 [𝑛∆𝑡, (𝑛 + 1)∆𝑡[𝑛=0,1,2,…  by setting the time step ∆𝑡 = 1 𝑠. 

All the experiments were carried out in MATLAB on a PC 

with an Intel Core 2 Duo CPU at 1.97 GHz and a RAM of 

1.95 GB. The MC simulation method with 105 and 106 

replications (named MC1 and MC2, respectively), and the 

proposed FV scheme are applied for the fuzzy reliability 

assessment of the system. The average computation time of 

MC1 and MC2 is respectively 0.94 s and 9.40 s, while that of 

the FV scheme is 0.20 s. The system reliability decreases more 

rapidly after around 885 s, because at that time the valve could 

fail, corresponding to the situation when the pump steps to the 

state „1‟ very quickly and stays there until the valve fails. 

The quantitative comparison of the results over a time 

horizon 1000 s is shown in Table III. Compared with the 

results of MC2, the mean absolute relative difference (MARD) 

of the results of MC1 is 0.40%, while that of the results of the 

FV scheme is 0.17%. It is observed that the results of the FV 

TABLE I 
PARAMETER DEFINITIONS AND VALUES 

Parameter – Definition Value 
𝑔 – acceleration due to gravity 9.8 m/s 

𝑃𝑠𝑢𝑝  – supply pressure 5.27e6 Pa 

𝑃𝑎𝑡𝑚  – atmospheric pressure 1.01e5 Pa 
𝑚 – mass of the moving parts of the 
valve 

50 kg 

𝑟 – coefficient of kinetic friction 6.00e3 Ns/m 
𝑘 – spring constant 4.80e4 N/s 
𝑘𝑐  – large spring constant associated 
with the flexible seals 

1.00e8 N/s 

𝑥0 – amount of spring compression 
when the valve is closed 

0.254 m 

𝑥𝑠  – fully open position of the valve 0.1 m 
𝐴𝑝  – surface area of the piston 8.10e-3 m2 

𝑉𝑡0 – minimum gas volume of the top 
chamber 

8.11e-4 m3 

𝑉𝑏0 – minimum gas volume of the 
bottom chamber 

8.11e-4 m3 

𝑅𝑔  – gas constant for the pneumatic gas 296 J/K/kg 

𝑇 – ideal gas temperature 293 K 
𝛾 – ratio of specific heats 1.4 
𝑧 – gas compressibility factor 1 
𝐴𝑠  – orifice area of the pneumatic port 1.00e-5 m2 
𝐶𝑠  – flow coefficient 0.1 

 

 

 
 

Fig. 4.Valve behavior with different sizes of the external leak. 
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TABLE II 
THE VALUES OF THE FUZZY PARAMETERS IN PDMP 

Parameter Value 
𝜔𝑏  (9e-9, 1e-8, 1.1e-8) m2/s 

𝛽2
  (9%, 10%, 11%) 

𝛽1
  (18%, 20%, 22%) 

𝜆32
  (2.7e-3, 3e-3, 3.3e-3) s-1 

𝜆21
  (2.7e-3, 3e-3, 3.3e-3) s-1 

𝜆10
  (2.7e-3, 3e-3, 3.3e-3) s-1 
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scheme are closer to those of MC2, which is more accurate 

than that of MC1 because of the larger number of simulations.  

The results of the fuzzy reliability of the system at cut levels 

𝛼 = 0 and 𝛼 = 1 over a time horizon 1000 s obtained by MC2 

and FV scheme are shown in Fig. 8. The lower bound of the 

fuzzy reliability of the system at cut level 𝛼 = 0decreases 

more sharply after around 790 s, earlier than the fuzzy 

reliability at 𝛼 = 1. It is seen that the system fails after around 

964 s, because at that time the valve is completely failed. The 

upper bound of the fuzzy reliability at 𝛼 = 0 does not 

experience a rapid decrease because the valve is mostly 

functioning over the time horizon. 

The membership function of fuzzy reliability 𝑅  𝑡  at 

mission time 𝑡 = 800 𝑠 at different cut levels 𝛼 ∈ [0, 1] 
obtained by MC simulation methods and FV scheme are 

illustrated in Fig. 9 and Fig. 10 (we have uniformly chosen 51 

points in [0, 1] with a step equal to 0.02 assigned to 𝛼). The 

average computation times of MC1 and MC2 are 20.19 s and 

201.94 s respectively, while that of FV scheme is 15.91 s. 

The quantitative comparison of the results of the 

membership functions obtained by the MC simulation 

methods and FV scheme is shown in Table IV. Compared with 

the results of MC2, the MARDof the results of MC1 is 0.38% 

while that of the FV scheme is 0.27%. 

The above results show that the FV scheme achieves 

comparable results as MC2, withless computational burden. 

 

 

 
 

Fig. 5. Fuzzy reliability at cut level 𝛼 = 1 (no fuzziness) obtained by MC1 

and MC2. 

 

 

 
 

Fig. 6. Fuzzy reliability at cut level 𝛼 = 1 (no fuzziness) obtained by MC2 
and FV scheme. 

 
 

 
 

Fig. 7. Fuzzy reliability at cut level 𝛼 = 1 (no fuzziness) obtained by MC1, 
MC2 and FV scheme of time horizon between 800 s and 900 s. 
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TABLE III 
THE VALUES OF THE FUZZY PARAMETERS IN PDMP 

Method 
Time   

MC2 MC1 Relative 
difference 

FV 
scheme 

Relative 
difference 

100s 0.9965 0.9966 0.01% 0.9964 -0.01% 
200s 0.9769 0.9766 -0.03% 0.9773 0.04% 
300s 0.9372 0.9364 -0.09% 0.9379 0.07% 
400s 0.8799 0.8780 -0.22% 0.8805 0.07% 
500s 0.8094 0.8063 -0.38% 0.8102 0.10% 
600s 0.7305 0.7283 -0.30% 0.7321 0.22% 
700s 0.6496 0.6469 -0.42% 0.6513 0.26% 
800s 0.5696 0.5664 -0.56% 0.5714 0.32% 
900s 0.4873 0.4839 -0.70% 0.4874 0.02% 
1000s 0.1801 0.1778 -1.28% 0.1811 0.56% 

 
 

 
 

Fig. 8. Fuzzy reliability at cut levels 𝛼 = 0 and 𝛼 = 1 obtained by MC2 and 

FV scheme. 
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VII. CONCLUSION 

In system reliability modeling, it is important to be able to 

describe multiple dependent degradation processes, while 

including the uncertainty in their quantitative evaluation. In 

this work, we have consideredthe degradation dependencies 

among different system components and within one 

component in the framework of PDMP modeling. Both PBMs 

and MSMs are used to describe the components degradation 

behavior. Epistemic Uncertainty due to the incomplete or 

imprecise knowledge about the degradation processes and the 

governing parameters is included by describing the model 

parameters as fuzzy numbers. For the calculation of the 

system (fuzzy) reliability, the FV method has been extended 

and shown to lead to comparable results as MC simulation,but 

with reduced computing time. 

 In future research, it will be interesting to consider the 

situation when aleatory uncertainty is associated with the 

parameters in the PDMP model. 
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