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Abstract-Components are often subject to multiple competing degradation processes. For multi-component systems, the degradation dependency within one component or/and among components need to be considered. Physics-based models (PBMs) and multi-state models (MSMs) are often used for component degradation processes, particularly when statistical data are limited. In this paper, we treat dependencies between degradation processes within a piecewise-deterministic Markov process (PDMP) modeling framework. Epistemic (subjective) uncertainty can arise due to the incomplete or imprecise knowledge about the degradation processes and the governing parameters: to take into account this, we describe the parameters of the PDMP model as fuzzy numbers. Then, we extend the finitevolume (FV) method to quantify the (fuzzy) reliability of the system. The proposed method is tested on one subsystem of the residual heat removal system (RHRS) of a nuclear power plant, and a comparison is offered with a Monte Carlo (MC) simulation solution: the results show that our method can be most efficient. Index Terms-Multiple dependent competing degradation processes, piecewise-deterministic Markov process (PDMP), epistemic uncertainty, fuzzy set theory, fuzzy reliability, finitevolume (FV) method.

I. INTRODUCTION

NDUSTRIAL components are often subject to multiple competing degradation processes, whereby any of them may cause failure [START_REF] Wang | Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[END_REF]. For multi-component systems, the dependency between degradation processes within one component (e.g. the wear of rubbing surfaces influenced by the environmental stress shock within a micro-engine [START_REF] Lei | Reliability and Maintenance Modeling for Dependent Competing Failure Processes With Shifting Failure Thresholds[END_REF]), or/and the degradation dependency among components (e.g. the degradation of the pre-filtrations stations leading to a lower performance level of the sand filter in a water treatment plant [START_REF] Rasmekomen | Maintenance Optimization for Asset Systems With Dependent Performance Degradation[END_REF]) need to be considered.

Physics-based models (PBMs) [START_REF] Daigle | A model-based prognostics approach to pneumatic valves[END_REF][START_REF] Daigle | Multiple damage progression paths in modelbased prognostics[END_REF][START_REF] Keedy | A physics-of-failure based reliability and maintenance modeling framework for stent deployment and operation[END_REF][START_REF] Reggiani | Physics-Based Analytical Model for HCS Degradation in STI-LDMOS Transistors[END_REF] and multi-state models
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Y.H.Lin and Y.F.Li are with the Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy-Electricite" de France, EcoleCentrale Paris-Supelec, 91192 Gif-sur-Yvette, France (e-mail: yanhui.lin@ecp.fr; yanfu.li@ecp.fr; yanfu.li@supelec.fr) E. Zio is with the Chair on Systems Science and the Energetic Challenge, European Foundation for New Energy-Electricite" de France, EcoleCentrale Paris-Supelec, 91192 Gif-sur-Yvette, France, and also with the Politecnico di Milano, 20133 Milano, Italy (e-mail: enrico.zio@ecp.fr; enrico.zio@supelec.fr; enrico.zio@polimi.it) (MSMs) [START_REF] Chryssaphinou | Multi-state reliability systems under discrete time semi-Markovian hypothesis[END_REF][START_REF] Giorgio | An age-and state-dependent Markov model for degradation processes[END_REF][START_REF] Li | Reliability modeling of multi-state degraded systems with multi-competing failures and random shocks[END_REF][START_REF] Lisnianski | Multi-state system reliability: assessment, optimization and applications[END_REF] are two modeling frameworks that can be used for describing the evolution of degradation in structures and components. The former uses physics knowledge that is implemented into mathematical equations for an integrated mechanistic description of the component behavior given the underlying degradation mechanisms (e.g. shocks, fatigue, wear, corrosion, etc.). The latter generally uses degradation and/or failure data from historical field collection or degradation tests, or material science knowledge (e.g. multistate physics model [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF]) to describe the degradation processes by a finite number of states of degradation severity and a set of transition rates (estimated from historical data) between the different degradation states.

To treat degradation dependencies in a system whose components are modeled by these two types of models, a piecewise-deterministic Markov process (PDMP) approach was employed in our previous work [START_REF] Lin | Modeling Multiple Dependent Competing Degradation via Piecewise Deterministic Markov Process[END_REF]. Monte Carlo (MC) simulation methods [START_REF] Labeau | A Monte Carlo estimation of the marginal distributions in a problem of probabilistic dynamics[END_REF][START_REF] Marseguerra | Monte Carlo approach to PSA for dynamic process systems[END_REF] can be used to solve PDMP, since the analytical solution is difficult to obtain due to the complex behavior of the system, resulting in the stochasticities of MSMs and time-dependent evolutions of PBMs. However, the major shortcoming is that MC can be quiet time-consuming [START_REF] Eymard | Comparison of numerical methods for the assessment of production availability of a hybrid system[END_REF]. The finite-volume (FV) scheme studied by Cocozza-Thivent et al. [START_REF] Cocozza-Thivent | A finite-volume scheme for dynamic reliability models[END_REF] and Eymard et al. [START_REF] Eymard | An implicit finite volume scheme for a scalar hyperbolic problem with measure data related to piecewise deterministic Markov processes[END_REF] appears to be more efficient, leading to comparable results as MC simulation with acceptable computing time [START_REF] Eymard | Comparison of numerical methods for the assessment of production availability of a hybrid system[END_REF].

Epistemic (subjective) uncertainty [START_REF] Laviolette | The efficacy of fuzzy representations of uncertainty[END_REF] can affect the analysis due to the incomplete or imprecise knowledge about the degradation processes of the components [START_REF] Ding | Fuzzy multi-state systems: general definitions, and performance assessment[END_REF][START_REF] Liu | Reliability and mean time to failure of unrepairable systems with fuzzy random lifetimes[END_REF]. For PBMs, the parameters (e.g. wear coefficient) and influencing factors (e.g. temperature and pressure) may be unknown [START_REF] Bazu | A combined fuzzy-logic and physics-of-failure approach to reliability prediction[END_REF] and elicited from expert judgment [START_REF] Sandri | Elicitation, assessment, and pooling of expert judgments using possibility theory[END_REF]; for MSMs, the state performances may be poorly defined due to the imprecise discretization of the underlying continuous degradation processes [START_REF] Liu | Reliability and performance assessment for fuzzy multi-state elements[END_REF] and the transition rates between states may be difficult to estimate statistically due to insufficient data, especially for those highly reliable critical components (e.g. valves and pumps in nuclear power plants or aircrafts, etc.) [START_REF] Li | A Multistate Physics Model of Component Degradation Based on Stochastic Petri Nets and Simulation[END_REF].

In literature, fuzzy reliability has been studied by many researchers to account for imprecision and uncertainty in the system model parameters. Tanaka et al. [START_REF] Tanaka | Fault-tree analysis by fuzzy probability[END_REF] have proposed the fuzzy fault tree for the fuzzy reliability assessment of binary-state systems and Singer [START_REF] Singer | A fuzzy set approach to fault tree and reliability analysis[END_REF] has assigned fuzzy
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Yan-Hui Lin, Yan-Fu Li, Member, IEEE and Enrico Zio, Senior Member, IEEE I probabilities to the basic events. Dunyak et al. [START_REF] Dunyak | A theory of independent fuzzy probability for system reliability[END_REF] have proposed another fuzzy extension to assign fuzzy probability to all events, which is consistent with the calculations from fuzzy fault trees. Ding et al. [START_REF] Ding | Fuzzy multi-state systems: general definitions, and performance assessment[END_REF] have developed fuzzy multistate systems (FMSS) models by considering the steady state probabilities, or/and steady state performance levels of a component as fuzzy numbers. Ding and Lisnianski [START_REF] Ding | Fuzzy universal generating functions for multi-state system reliability assessment[END_REF] have proposed the fuzzy universal generating function (FUGF) for the quantification of the fuzzy reliability of FMSS. Later, Li et al. [START_REF] Li | Random Fuzzy Extension of the Universal Generating Function Approach for the Reliability Assessment of Multi-State Systems UnderAleatory and Epistemic Uncertainties[END_REF] have developed a random fuzzy extension of the universal generating function and Sallak et al. [START_REF] Sallak | Reliability assessment for multistate systems under uncertainties based on the Dempster-Shafer theory[END_REF] have employed Dempster-Shafer theory to quantify the fuzzy reliability of MSS. Liu et al. [START_REF] Liu | Reliability and performance assessment for fuzzy multi-state elements[END_REF] have proposed a fuzzy Markov model with fuzzy transition rates for FMSS when the steady fuzzy state probabilities are not available. To the knowledge of the authors, none of the previous studies has considered epistemic uncertainty in PDMP system models. The contributions of the paper are twofold. First, we employ fuzzy numbers to represent various epistemic uncertainties in multiple dependent competing degradation processes modeled by PDMP. Second, we extend the FV scheme for the quantification of PDMP under epistemic uncertainty instead of using time-consuming MC simulation methods [START_REF] Baudrit | Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment[END_REF][START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF]. The reminder of the paper is structured as follows. Section 2 introduces the PDMP for multiple dependent competing degradation processes. Section 3 presents the FV scheme for PDMP. Section 4 presents the PDMP under uncertainty and the extended FV scheme for system reliability quantification. Section 5 presents a case study on one subsystem of the residual heat removal system (RHRS) [START_REF] Coudray | System reliability: An example of nuclear reactor system analysis[END_REF] of a nuclear power plant. Section 6 presents numerical results and analysis. Section 7 concludes the work.

II. PDMP FORSYSTEMS DEGRADATION CONSIDERING

DEPENDENCY

The following assumptions are made on the multiple dependent competing degradation processes of a system [START_REF] Lin | Modeling Multiple Dependent Competing Degradation via Piecewise Deterministic Markov Process[END_REF]:

 The system consists of two groups of components: the first group contains M components, 𝐿 = (𝐿 The evolution of the degradation processes 𝑍 𝑡 involves the stochasticbehavior of 𝑌 𝑡 and the deterministic behaviorof 𝑋 𝑡 , between two consecutive jumps of 𝑌 𝑡 , given 𝑌 𝑡 . Let 𝑌 𝑘 ∈ 𝑆, 𝑘 ∈ ℕ denote the state of the 𝑁 components in the second group after 𝑘 transitions (a transition occurs as long as any one of the 𝑁 components changes its state) and 𝑇 𝑘 ∈ ℝ + , 𝑘 ∈ ℕ denote the time of arrival at state 𝑌 𝑘 . 𝑌 𝑡 is written as follows:

𝑌 𝑡 = 𝑌 𝑘 , ∀𝑡 ∈ 𝑇 𝑘 , 𝑇 𝑘+1 (2) 
The probability that 𝑌 𝑡 will step to state 𝑗 from state 𝑖 in the next infinitesimal time interval 𝑇 𝑛 , 𝑇 𝑛 + ∆𝑡 , given (𝑍 𝑡 ) 0≤𝑡≤𝑇 𝑛 , is as follows:

𝑃 𝑌 𝑛+1 = 𝑗 , 𝑇 𝑛+1 ∈ 𝑇 𝑛 , 𝑇 𝑛 + ∆𝑡 (𝑍 𝑡 ) 0≤𝑡≤𝑇 𝑛 , 𝜃 𝐾 ] = 𝑃 𝑌 𝑛+1 = 𝑗 , 𝑇 𝑛+1 ∈ 𝑇 𝑛 , 𝑇 𝑛 + ∆𝑡 𝑍 𝑇 𝑛 = (𝑋 𝑇 𝑛 , 𝑖 ), 𝜃 𝐾 ] = 𝜆 𝑖 𝑗 , 𝑋 𝑇 𝑛 | 𝜃 𝐾 ∆𝑡, ∀ 𝑛 ≥ 0, 𝑖 , 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗 (3)
where𝜃 𝐾 represents the external influencing factorsof the components in the second group and the related coefficients to the transition rates, 𝜆 𝑖 𝑗 , 𝑋 𝑇 𝑛 | 𝜃 𝐾 represents the corresponding transition rate. Theevolution of𝑋 𝑡 ,when 𝑡 ∈ 𝑇 𝑘 , 𝑇 𝑘 +1 , 𝑘 ∈ ℕ, is deterministically described by a set of differential equations as follows: The reliability of the system at time t is defined as follows:

𝑋 𝑡 = 𝑋 𝐿
𝑅 𝑡 = 𝑃[𝑍 (𝑠) ∉ ℱ, ∀𝑠 ≤ 𝑡] (5) 
whereℱ = ℱ 𝑋 × ℱ 𝑌 ⊊ 𝐸 denotesthe space of the failure states of 𝑍 𝑡 , where ℱ 𝑋 denotes the sub-space of the states of𝑋 𝑡 and ℱ 𝑌 denotes the sub-space of the states of𝑌 𝑡 . Let 𝑝 𝑡 𝑥 , 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 , 𝑥 ∈ ℝ 𝑑 𝐿 , 𝑖 ∈ 𝑆 denote the probability density function (PDF) of processes (𝑋 𝑡 , 𝑌 𝑡 ) 𝑡≥0 being in state (𝑥 , 𝑖 ) at time 𝑡, which satisfies:

𝑝 𝑡 𝑥 , 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 𝑑𝑥 𝑖 ∈ 𝑆 ℝ 𝑑 𝐿 = 1 (6)
The reliability of the system can be calculated as:

𝑅 𝑡 = 𝑝 𝑡 𝑥 , 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 𝑑𝑥 𝑖 ∉ ℱ 𝑌 𝑥 ∉ ℱ 𝑋 (7)
The PDF 𝑝 𝑡 𝑥 , 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 obeys the Chapman-Kolmogorov equation [START_REF] Devooght | Probabilistic dynamics as a tool for dynamic PSA[END_REF] is the transition rate departing from the state 𝑖 . Among the right-hand parts of equation ( 8), the first two terms are due to the stochastic behavior of processes 𝑌 𝑡 : the first term accounts for the transition of processes 𝑍 𝑡 into state (𝑖 , 𝑥 ), the second term accounts for the transition of processes 𝑍 𝑡 out of state (𝑖 , 𝑥 ); the last term is due to the deterministic behavior of processes 𝑋 𝑡 , which represents the volume density of the outward flux of the probability field around the point (𝑖 , 𝑥 ). Given the initial probability distribution of the system 𝑝 0 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , its evolution in time and that of the system reliability can be obtainedsolving equations ( 8) and [START_REF] Reggiani | Physics-Based Analytical Model for HCS Degradation in STI-LDMOS Transistors[END_REF], respectively.

A challenging problem is to calculate the probability density function 𝑝 𝑡 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , because the analytical solutionis difficult to obtain due to the complex behavior of the processes [START_REF] Labeau | A Monte Carlo estimation of the marginal distributions in a problem of probabilistic dynamics[END_REF][START_REF] Marseguerra | Monte Carlo approach to PSA for dynamic process systems[END_REF]. MC simulation methods can be applied for such numerical computations, but the major shortcoming is that they are typically time-consuming [START_REF] Eymard | Comparison of numerical methods for the assessment of production availability of a hybrid system[END_REF]. FV methods is an alternative that can lead to comparable results as MC simulation,but within a more acceptable computing time [START_REF] Eymard | Comparison of numerical methods for the assessment of production availability of a hybrid system[END_REF].

III. FINITE-VOLUMESCHEMEFOR PDMP

Instead of directly solving the probability density function 𝑝 𝑡 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 through the Chapman-Kolmogorov equation ( 8), an approximate solution can be obtained by the FV scheme by discretizing the state space of the continuous variables and the time space of PDMP. The approximated solution converges towards the accurate solution under certain conditions. Here, we employ an explicit FV scheme to PDMP, developed by Cocozza-Thiventet al. [START_REF] Cocozza-Thivent | A finite-volume scheme for dynamic reliability models[END_REF].

A. Assumptions

This approach can be applied under the following assumptions [START_REF] Cocozza-Thivent | A finite-volume scheme for dynamic reliability models[END_REF]: 



B. Numerical scheme

For the ease of notation, first we let 𝑔 𝑖 The state space ℝ 𝑑 𝐿 of continuous variables 𝑋 𝑡 is divided into an admissible mesh ℳ, which is a family of measurable subsets of ℝ 𝑑 𝐿 (ℳ is a partition of ℝ 𝑑 𝐿 ) such that [START_REF] Cocozza-Thivent | A finite-volume scheme for dynamic reliability models[END_REF]:

(1) is the volume of the part of grid 𝐵, which will enter grid 𝐴 after time ∆𝑡 according to the deterministic evaluation of 𝑋 𝑡 . The first term of the right-hand parts of equation ( 13) accounts for the situation that processes 𝑌 𝑡 hold on state 𝑖 during time [𝑛∆𝑡, 𝑛 + 1 ∆𝑡], represented by "1" in an illustrated example in ℝ 2 (Fig. 1), where

𝐴 𝐴∈ℳ = ℝ 𝑑 𝐿 . ( 2 
1 1+∆𝑡𝑏 𝐴
𝑖 , ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ is the approximated probability that no transition happens from state 𝑖 for grid 𝐴 and the second term of the right-hand parts of equation ( 13) accounts for the situation that processes𝑌 𝑡 step to state 𝑖 from another state 𝑗 at time 𝑛 + 1 ∆𝑡, represented by "2" in an illustrated example in ℝ 2

(Fig. 1), where 𝑎 𝐴 𝑗 𝑖 ∆𝑡, ∀𝑖 , 𝑗 ∈ 𝑆, 𝐴 ∈ ℳ is the transition probability from state 𝑗 to state 𝑖 for grid 𝐴 (𝐵 1 , 𝐵 2 , 𝐵 3 and 𝐵 4 are the grids of which some parts will enter grid 𝐴 according to the deterministic evaluation of 𝑋 𝑡 at time 𝑛 + 1 ∆𝑡).

The approximated solution 𝑝 𝑛 𝐴, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 weakly converges towards the unique solution of equation ( 8) when ∆𝑡 → 0 and ℳ /∆𝑡 → 0where ℳ = 𝑠𝑢𝑝 𝐴∈ℳ 𝑑𝑖𝑎𝑚 𝐴 [START_REF] Cocozza-Thivent | A finite-volume scheme for dynamic reliability models[END_REF].

IV. PDMP UNDERUNCERTAINTY Fuzzy set theories and techniques introduced by Zadeh [START_REF] Zadeh | Fuzzy sets[END_REF][START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] 13) through the FV scheme. Then, the parametric programming algorithms [START_REF] Liu | Reliability and performance assessment for fuzzy multi-state elements[END_REF] can be applied to find the fuzzy probability in eq. [START_REF] Laviolette | The efficacy of fuzzy representations of uncertainty[END_REF].

The approximate solution for the 𝛼-cut of fuzzy reliability 𝑅 𝑡 of the system at time 𝑡 ∈ [𝑛∆𝑡, (𝑛 + 1)∆𝑡[ can, then, be obtained as follows: [START_REF] Ding | Fuzzy multi-state systems: general definitions, and performance assessment[END_REF] In most cases, the original 𝑅 𝑡 is monotonic with 𝜃 𝐿 and 𝜃 𝑘 ; then, we can directly obtain that instead of using eq. ( 19 [START_REF] Liu | Reliability and mean time to failure of unrepairable systems with fuzzy random lifetimes[END_REF] V. ILLUSTRATIVE CASE The illustrative case refers to one important subsystem of a residual heat removal system (RHRS) consisting of a centrifugal pump and a pneumatic valve. The definition of the system has been provided by Électricité de France (EDF). The degradation model of the pump is a modified MSM from the one originally supplied by EDF, while that of the valve is a PBM developed by Daigle and Goebel [START_REF] Daigle | A model-based prognostics approach to pneumatic valves[END_REF]. Upon discussion with the experts, a degradation dependency between the two components has been considered, as follows: the degradation of the pump will cause it to vibrate [START_REF] Zhang | Machinery condition prognosis using multivariate analysis[END_REF] which, in turn, will lead the valve to vibrate and therefore aggravate the degradation processes of the latter [START_REF] Moussou | Vibration investigation of a French PWR power plant piping system caused by cavitating butterfly valves[END_REF].

[𝑅 𝑡 ] 𝛼 = [𝑝 𝑛 𝐴, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 ] 𝛼 𝑖 ∉ ℱ 𝑌 𝑑𝑥 𝑥 ∈𝐴 𝑥 ∉ ℱ 𝑋 } 𝐴∈ℳ
Given its series logic structure, the subsystem is considered failed when one of the two components is failed.

A. Centrifugal pump

The multi-state model of the degradation processes of the centrifugal pump is a continuous-time homogeneous Markov chain with constant transition rates as shown in Fig. 2.

There are four degradation states for the pump, from the perfect functioning state "3" to the complete failure state "0". Due to the degradation, the pump can vibrate when it reaches the degradation states "2" and "1". The intensity of the vibration of the state "2" is assigned as "smooth" and that of the state "1" is assigned as "rough" by the experts. Let 𝑌 𝑝 𝑡 denote the degradation state of the pump at time 𝑡 and 𝑆 𝑝 = {'0', '1', '2', '3'} denote the degradation states set. The pump is functioning until it reaches the complete failure state "0"; 𝜆 32 , 𝜆 21 and 𝜆 10 are the transition rates of the degradation process.

B. Pneumatic valve

The simplified scheme of the pneumatic valve is shown in Fig. 3.

The pneumatic valve is a normally-closed and gas-actuated valve with a linear cylinder actuator. Top chamber and bottom chamber are separated by the piston, and are connected to a top pneumatic port and a bottom pneumatic port, respectively. The position of the piston between fully closed position "0" and fully open position "𝑥 𝑠 " can be controlled by regulating the pressure of the pneumatic ports to fill or evacuate the two chambers. A return spring is linked with the piston to ensure that the valve will close when pressure is lost, due to the spring force.

There are several common degradation mechanisms of the valve (e.g. sliding wear, internal leaks, external leaks, etc.). In this case study, as degradation mechanism we have chosen the external leak at the actuator connections to the bottom pneumatic port due to corrosion and other environmental factors, for two reasons: 1) it is more significant than the other degradation mechanisms according to the results shown in [START_REF] Daigle | A model-based prognostics approach to pneumatic valves[END_REF]; 2) the uncertainty associated with the wear coefficient estimated from a limited amount of data should be taken into account. The leak will lead the valve to be more difficult to open but easier to close. The threshold of the area of leak hole 𝐷 𝑏 * is defined as the value above which (𝐷 𝑏 𝑡 > 𝐷 𝑏 * ) the valve cannot reach the fully open position within the 15s time limit from the fully closed position, after an opening command is executed.

Let 𝐷 𝑏 (𝑡) denote the area of the leak hole at the bottom pneumatic port at time t, the development of the leak size is described by: 𝐷 𝑏 𝑡 = 𝜔 𝑏 (1 + 𝛽 𝑌 𝑝 𝑡 ) (22) where 𝜔 𝑏 is the original wear coefficient and where 𝛽 𝑌 𝑝 𝑡 is the relative increment of the developing rate of the external leak at the bottom pneumatic port caused by the vibration of the pump at the degradation state "2" or "1" (if we ignore the degradation dependency, then 𝛽 𝑌 𝑝 𝑡 = 0).

The function command of the valve cycle is a 30s-periodicsignal and the valve is commanded to open in the first halfperiod and to close in the second half by changing the pressure of the top bottom pneumatic port 𝑢 𝑡 𝑡 and that of the bottom pneumatic port 𝑢 𝑏 𝑡 (opening command: 𝑢 𝑡 𝑡 = 𝑃 𝑎𝑡𝑚 and 𝑢 𝑏 𝑡 = 𝑃 𝑠𝑢𝑝 ; closing command: 𝑢 𝑡 𝑡 = 𝑃 𝑠𝑢𝑝 and 𝑢 𝑏 𝑡 = 𝑃 𝑎𝑡𝑚 ). At the beginning, the valve is set to the fully closed position.

Let 𝑥 𝑡 denote the position of the valve at time 𝑡, whose evolution in time is described by the following equations: 

𝑥 𝑡 = 𝑎 𝑡 (23) 
is the gas pressure of the bottom of the piston,

𝑝 𝑡 𝑡 = 𝑚 𝑡 (𝑡)𝑅 𝑔 𝑇 𝑉 𝑡0 +𝐴 𝑝 (𝑥 𝑠 -𝑥 𝑡 ) (26) 
is the gas pressure of the top of the piston and where 

are respectively the masses of the gas in the top chamber and bottom chamber at time 𝑡, and where

𝑓 𝑔 𝑝 1 , 𝑝 2 , 𝐴 = 𝜀𝑃𝐶 𝑠 𝐴 𝛾 𝑧𝑅 𝑔 𝑇 ( 2 𝛾 + 1 ) 𝛾 +1 𝛾 -1 , 𝑖𝑓 𝛿 ≤ ( 2 𝛾 + 1 ) 𝛾 𝛾 -1 𝜀𝑃𝐶 𝑠 𝐴 𝛾 𝑧𝑅 𝑔 𝑇 ( 2 𝛾 -1 )(𝛿 2 𝛾 -𝛿 𝛾 +1 𝛾 ) , 𝑖𝑓 𝛿 > ( 2 𝛾 + 1 ) 𝛾 𝛾 -1 with 𝑃 = 𝑚𝑎𝑥 (𝑝 1 , 𝑝 2 ) 𝛿 = 𝑚𝑖𝑛 (𝑝 1 ,𝑝 2 ) 𝑚𝑎𝑥 (𝑝 1 ,𝑝 2 ) 𝜀 = 𝑠𝑔𝑛(𝑝 1 -𝑝 2 ) (29) 
defines the gas flow through an orifice, and

𝐹 𝑐 𝑥 𝑡 = 𝑘 𝑐 (-𝑥 𝑡 ), 𝑖𝑓 𝑥 𝑡 < 0 0, 𝑖𝑓 0 ≤ 𝑥 𝑡 ≤ 𝐿 𝑠 -𝑘 𝑐 𝑥 𝑡 -𝑥 𝑠 , 𝑖𝑓 𝑥 𝑡 > 𝐿 𝑠 (30) 
is the contact force exerted on the piston by the flexible seals.

The parameters definitions and values (except for 𝜔 𝑏 and 𝛽 𝑌 𝑝 𝑡 ) of the valve are presented in Table I.

With the given values, the threshold of the area of leak hole 𝐷 𝑏 * = 1.06𝑒 -5 𝑚 2 (maximum damage) can be calculated: once exceeded, the valve will not reach the fully open position within the 15s limit, as shown in Fig. 4.

C. PDMP for the system under uncertainty

The degradation processes of the whole system are modeled by PDMP as follows: The initial state of the system is assumed as follows:

𝑍 𝑡 = 𝐷 𝑏 𝑡 𝑌 𝑝 𝑡 ∈ ℝ + × 𝑆 𝑝 (31) 
𝑍 0 = 𝐷 𝑏 0 𝑌 𝑝 0 = 0 '3' which means that the two components are both in their perfect state. The initial PDF of the (𝐷 𝑏 𝑡 , 𝑌 𝑝 𝑡 ) 𝑡≥0 , 𝑝 0 𝑥, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , hence equals to 1 if 𝑥, 𝑖 = (0, '3') and to 0 otherwise.

VI. RESULTS

A MC-based approach [START_REF] Baudrit | Representing parametric probabilistic models tainted with imprecision[END_REF] can also be used to quantify the epistemic uncertainty, in alternative to the fuzzy arithmetic operations and fuzzy parameter programming procedure. The comparisons between the results of the reliability of the system at cut level 𝛼 = 1, i.e. without fuzziness in the parameters values, over a time horizon 1000s calculated by MC simulation and the FV scheme are shown in Fig. 5 and Fig. 6. In order to better understand the differences presented in Fig. 5 by setting the time step ∆𝑡 = 1 𝑠. All the experiments were carried out in MATLAB on a PC with an Intel Core 2 Duo CPU at 1.97 GHz and a RAM of 1.95 GB. The MC simulation method with 105 and 106 replications (named MC1 and MC2, respectively), and the proposed FV scheme are applied for the fuzzy reliability assessment of the system. The average computation time of MC1 and MC2 is respectively 0.94 s and 9.40 s, while that of the FV scheme is 0.20 s. The system reliability decreases more rapidly after around 885 s, because at that time the valve could fail, corresponding to the situation when the pump steps to the state "1" very quickly and stays there until the valve fails.

The quantitative comparison of the results over a time horizon 1000 s is shown in Table III. Compared with the results of MC2, the mean absolute relative difference (MARD) of the results of MC1 is 0.40%, while that of the results of the FV scheme is 0.17%. It is observed that the results of the FV (2.7e-3, 3e-3, 3.3e-3) s-1 𝜆 [START_REF] Liu | Reliability and mean time to failure of unrepairable systems with fuzzy random lifetimes[END_REF] (2.7e-3, 3e-3, 3.3e-3) s-1 𝜆 10

(2.7e-3, 3e-3, 3.3e-3) s-1 scheme are closer to those of MC2, which is more accurate than that of MC1 because of the larger number of simulations.

The results of the fuzzy reliability of the system at cut levels 𝛼 = 0 and 𝛼 = 1 over a time horizon 1000 s obtained by MC2 and FV scheme are shown in Fig. 8. The lower bound of the fuzzy reliability of the system at cut level 𝛼 = 0decreases more sharply after around 790 s, earlier than the fuzzy reliability at 𝛼 = 1. It is seen that the system fails after around 964 s, because at that time the valve is completely failed. The upper bound of the fuzzy reliability at 𝛼 = 0 does not experience a rapid decrease because the valve is mostly functioning over the time horizon.

The membership function of fuzzy reliability 𝑅 𝑡 at mission time 𝑡 = 800 𝑠 at different cut levels 𝛼 ∈ [0, 1] obtained by MC simulation methods and FV scheme are illustrated in Fig. 9 and Fig. 10 (we have uniformly chosen 51 points in [0, 1] with a step equal to 0.02 assigned to 𝛼). The average computation times of MC1 and MC2 are 20.19 s and 201.94 s respectively, while that of FV scheme is 15.91 s.

The quantitative comparison of the results of the membership functions obtained by the MC simulation methods and FV scheme is shown in Table IV. Compared with the results of MC2, the MARDof the results of MC1 is 0.38% while that of the FV scheme is 0.27%.

The above results show that the FV scheme achieves comparable results as MC2, withless computational burden. In system reliability modeling, it is important to be able to describe multiple dependent degradation processes, while including the uncertainty in their quantitative evaluation. In this work, we have consideredthe degradation dependencies among different system components and within one component in the framework of PDMP modeling. Both PBMs and MSMs are used to describe the components degradation behavior. Epistemic Uncertainty due to the incomplete or imprecise knowledge about the degradation processes and the governing parameters is included by describing the model parameters as fuzzy numbers. For the calculation of the system (fuzzy) reliability, the FV method has been extended and shown to lead to comparable results as MC simulation,but with reduced computing time.

In future research, it will be interesting to consider the situation when aleatory uncertainty is associated with the parameters in the PDMP model. focuses on the characterization and modeling of the failure/repair/maintenance behavior of components, complex systems and their reliability, maintainability, prognostics, safety, vulnerability and security, Monte Carlo simulation methods, soft computing techniques, and optimization heuristics.

  ) ∀𝐴, 𝐵 ∈ ℳ, 𝐴 ≠ 𝐵 ⇒ 𝐴 ∩ 𝐵 = ∅. (3) 𝑚 𝐴 = 𝑑𝑥 𝐴 > 0, ∀𝐴 ∈ ℳ, where 𝑚 𝐴 is the volume of grid 𝐴. (4) 𝑠𝑢𝑝 𝐴∈ℳ 𝑑𝑖𝑎𝑚 𝐴 < +∞where 𝑑𝑖𝑎𝑚 𝐴 = 𝑠𝑢𝑝 ∀𝑥 ,𝑦 ∈𝐴 𝑥 -𝑦 . Additionally, the time space ℝ + is divided into small intervals ℝ + = [𝑛∆𝑡, (𝑛 + 1)∆𝑡[ 𝑛=0,1,2,… by setting the time step ∆𝑡 > 0 (the length of each interval). The numerical scheme aims at giving an approximate value for the probability density function 𝑝 𝑡 𝑥 , 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 on each {𝑖} × [𝑛∆𝑡, (𝑛 + 1)∆𝑡[× 𝐴, ∀𝑖 ∈ 𝑆, 𝑛 ∈ ℕ, 𝐴 ∈ ℳ denoted by 𝑝 𝑛 𝐴, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , by assuming that:

+

  𝑚 𝑡 𝑡 = 𝑚 𝑡 0 + 𝑓 𝑔 𝑢 𝑡 𝑡 , 𝑝 𝑡 𝑡 , 𝐴 𝑠 𝑑𝑡 = 𝑚 𝑏 0 + 𝑓 𝑔 𝑢 𝑏 𝑡 , 𝑝 𝑏 𝑡 , 𝐴 𝑠 𝑡 0 𝑓 𝑔 𝑃 𝑎𝑡𝑚 , 𝑝 𝑏 𝑡 , 𝐷 𝑏 (𝑡) 𝑑𝑡 with𝑚 𝑏 0 = 𝑃 𝑎𝑡𝑚 𝑉 𝑏 0 𝑅 𝑔 𝑇

Fig. 2 .Fig. 3 .

 23 Fig. 2. Degradation processes of the pump.

  and Fig. 6, we have added below each original Figure one extra Figure, zooming on the time horizon between 800 s and 900 s to illustrate the results obtained by different methods. For the FV scheme, the state space ℝ + of 𝐷 𝑏 𝑡 has been divided into an admissible mesh ℳ = [𝑛∆𝑥, (𝑛 + 1)∆𝑥[ 𝑛=0,1,2,… where ∆𝑥 = 1𝑒 -8 𝑚 2 /𝑠 and the time space ℝ + into small intervals ℝ + = [𝑛∆𝑡, (𝑛 + 1)∆𝑡[ 𝑛=0,1,2,…

Fig. 5 .

 5 Fig. 5. Fuzzy reliability at cut level 𝛼 = 1 (no fuzziness) obtained by MC1 and MC2.

Fig. 6 .

 6 Fig.6. Fuzzy reliability at cut level 𝛼 = 1 (no fuzziness) obtained by MC2 and FV scheme.

Fig. 7 .

 7 Fig.7. Fuzzy reliability at cut level 𝛼 = 1 (no fuzziness) obtained by MC1, MC2 and FV scheme of time horizon between 800 s and 900 s.

Fig. 8 .

 8 Fig.8. Fuzzy reliability at cut levels 𝛼 = 0 and 𝛼 = 1 obtained by MC2 and FV scheme.

Fig. 9 .

 9 Fig. 9.Membership function of fuzzy reliability 𝑅 𝑡 at mission time t = 800 s obtained by MC1 and MC2.

Fig. 10 .

 10 Fig. 10.Membership function of fuzzy reliability 𝑅 𝑡 at mission time t = 800 s obtained by MC2 and FV scheme.

  𝑁 denotes the degradation state of component 𝐾 𝑛 at time 𝑡, 𝐸 is a hybrid space ofℝ 𝑑 𝐿 (𝑑 𝐿 = 𝑑 𝐿 1 + 𝑑 𝐿 2 + … + 𝑑 𝐿 𝑀 ) and 𝑆(𝑆 = 𝑆 𝐾 1 × 𝑆 𝐾 2 … × 𝑆 𝐾 𝑁 ).

	of first-order differential equations mathematically
	representing the underlying physical processes. The
	component 𝐿 𝑚 fails when one variable of the first type
	𝑥 𝐿 𝑚 𝑖 failure threshold, denoted by 𝑥 𝐿 𝑚 𝐷 𝑡 reaches or exceeds its corresponding 𝑡 ∈ 𝑋 𝐿 𝑚 𝑖 * ; the set of failure
	states of 𝐿 𝑚 is denoted by ℱ 𝐿 𝑚 .	
	 For a generic component 𝐾 𝑛 , 𝑛 = 1, 2, … , 𝑁, in the
	second group, its discrete degradation state space is
	denoted by 𝑆 𝐾 𝑛 = {0 𝐾 𝑛 , 1 𝐾 𝑛 , … , 𝑑 𝐾 𝑛 }, ranging from
	perfect functioning state"𝑑 𝐾 𝑛 " to complete failure
	state"0". The component is functioning or partially
	functioning in all generic intermediate states. The
	transition rates between two different degradation states
	are used to describe the speed of reaching another
	degradation state. The performance level of one
	component (e.g. vibration of the valve due to
	degradation) at each degradation state and the impact on
	the other components are considered as deterministic.
	The failure state set of 𝐾 𝑛 is denoted by ℱ 𝐾 𝑛 = {0 𝐾 𝑛 }.
	The degradation condition of the whole system is, then,
	represented as follows:		
		𝑋 𝐿 1 𝑡	
	𝑍 𝑡 =	𝑋 𝐿 2 𝑡 ⋮	= 𝑋 𝑡
		𝑋 𝐿 𝑀 𝑡	
	𝑌 𝐾 1 𝑡 , 𝑌 𝐾 2 𝑡 , … , 𝑌 𝐾 𝑁 𝑡 = 𝑌 𝑡
			∈ 𝐸 = ℝ 𝑑 𝐿 × 𝑆 (1)
	where𝑌 𝐾 𝑛 𝑡 , 𝑛 = 1, 2, … ,		
	1 , 𝐿 2 , … ,		
	𝐿 𝑀 ), whose degradation processes are modeled by		
	PBMs; the second group contains N components,		
	𝐾 = (𝐾 1 , 𝐾 2 , … , 𝐾 𝑁 ), whose degradation processes are		
	modeled by MSMs including MSPM.		
	 All degradation processes of the system follow the		
	PDMP, taking into account the degradation dependency		
	of components within each group and between the		
	groups.		
	 For a generic component 𝐿 𝑚 , 𝑚 = 1, 2, … , 𝑀, of the first		
	group, 𝑑 𝐿 𝑚 time-dependent continuous variables are used		
	to describe the degradation process; the variables		
	vector𝑋 𝐿 𝑚 𝑡 = (𝑋 𝐿 𝑚 𝐷 𝑡 , 𝑋 𝐿 𝑚 𝑃 𝑡 ) contains (1) non-		
	decreasing degradation variables 𝑋 𝐿 𝑚 𝐷 𝑡 (e.g. crack		
	length) and (2) physical variables 𝑋 𝐿 𝑚 𝑃 𝑡 (e.g. velocity		
	and force), whoseevolution in time is described by a set		

  𝑀 are the set of physics equations, given the influence of the degradation state 𝑌 𝑘 of the second group components, 𝜃 𝐿 𝑚 , 𝑚 = 1, 2, … , 𝑀represents the external influencing factorsof the component 𝐿 𝑛 and the physical parameters used in the physics equations. Mathematically, the dependency within each group and between two groups is treated in the framework of a piecewise-deterministic Markov process (PDMP) modeling, where the physics equations in the

		1 𝑡		𝑓 𝐿 1	𝑌 𝑘 𝑋 𝑡 , 𝑡 𝜃 𝐿 1
		𝑋 𝐿 2 𝑡 ⋮	=	𝑓 𝐿 2	𝑌 𝑘 𝑋 𝑡 , 𝑡 𝜃 𝐿 2 ⋮
		𝑋 𝐿 𝑀 𝑡		𝑓 𝐿 𝑀	𝑌 𝑘 𝑋 𝑡 , 𝑡 𝜃 𝐿 𝑀
					= 𝑓 𝐿	𝑌 𝑘 𝑋 𝑡 , 𝑡 𝜃 𝐿 (4)
	where𝑓 𝐿 𝑚	𝑌 𝑘 , 𝑚 = 1, 2, … ,		

first group, denoted by 𝑓 𝐿 𝑌 𝑘 𝑋 𝑡 , 𝑡 𝜃 𝐿 , are dependent on the states (𝑌 𝑘 ) of the components in the second group and the transition rates in the second group, denoted by 𝜆 𝑖 𝑗 , 𝑋 𝑡 | 𝜃 𝐾 , are dependent on the evolution of the variables (𝑋 𝑡 ) in the first group.

  𝑝 𝑡 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 = 𝑝 𝑛 𝐴, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , ∀𝑖 ∈ 𝑆, 𝑥 ∈ 𝐴, 𝑡 ∈ [𝑛∆𝑡, (𝑛 + 1)∆𝑡[(11) 𝑝 0 𝐴, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 = 𝑝 0 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 𝑑𝑥 𝑝 𝑛 +1 𝐴, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ, 𝑛 ∈ ℕ can be calculated considering the deterministic evaluation of 𝑋 𝑡 and the stochastic evolution of 𝑌 𝑡 based on 𝑝 𝑛 ℳ, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 by the Chapman-Kolmogorov forward equation [36], as follows:

	Given	the	initial	probability	density	function
	𝑝 0 𝑥 , 𝑖 | 𝜃 𝐿 , 𝜃 𝐾	of the	system at	time	𝑡 = 0,
	𝑝 𝑝 𝑛+1 𝐴, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 =	1 1 + ∆𝑡𝑏 𝐴 𝑖 𝑝 𝑛+1 𝐴, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾
				+∆𝑡	𝑗 ≠ 𝑖 𝑗 ∈𝑆	𝑗 𝑖 𝑎 𝐴 1+∆𝑡𝑏 𝐴 𝑗 𝑝 𝑛 +1 𝐴, 𝑗 | 𝜃 𝐿 , 𝜃 𝐾	(13)
	where					
		𝑎 𝐴 𝑗 𝑖 = 𝜆 𝑗 𝑖 , 𝑥 | 𝜃 𝐾 𝑑𝑥 𝐴	𝑚 𝐴 , ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ(14)
	is the average transition rate from state 𝑗 to state𝑖 for grid 𝐴,
			𝑏 𝐴 𝑗 =	𝑖 ≠ 𝑗	𝑎 𝐴 𝑗 𝑖	, ∀𝑗 ∈ 𝑆, 𝐴 ∈ ℳ	(15)
	is the average transition rate out of state 𝑖 for grid 𝐴,
	𝑝 𝑛+1 𝐴, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 =	𝐵∈ℳ	𝑚 𝐵𝐴 𝑖	𝑝 𝑛 𝐵, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 𝑚 𝐴	,
							∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ(16)
	is the approximate value for probability density functionon
	𝑖 × [(𝑛 + 1)∆𝑡, (𝑛 + 2)∆𝑡[× 𝐴according	to	the
	deterministic evaluation of 𝑋 𝑡 ,
		𝑚 𝐵𝐴 𝑖 =					𝑑𝑦

0 𝐴, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , ∀𝑖 ∈ 𝑆, 𝐴 ∈ ℳ can be obtained as: 𝐴 /𝑚 𝐴 (12) Then, {𝑦 ∈𝐵 | 𝑔 𝑖 𝑦 ,∆𝑡 | 𝜃 𝐿 ∈𝐴}

, ∀𝑖 ∈ 𝑆, 𝐴, 𝐵 ∈ ℳ

[START_REF] Cocozza-Thivent | A finite-volume scheme for dynamic reliability models[END_REF] 

  have been employed in reliability models under epistemic uncertainty when the crisp values are insufficient to capture the actual behavior of components. In this work, the following assumptions are madetoextend the previous PDMP model with the consideration of epistemic uncertainty: The values of the external influencing factors and physical parameters 𝜃 𝐿 in the physics equations ,changed from crisp values to fuzzy numbers, denoted by 𝑝 𝑡, 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 and 𝑅 𝑡 respectively. In the next section, we extend the approach presented in Section 2 to quantify the dependent degradation processes modeled by PDMP under uncertainty.A. Quantification of PDMP under uncertaintyLet 𝑎 𝛼 = [𝑎 𝛼 , 𝑎 𝛼 ] denote the α-cut of a fuzzy number 𝑎 , where 𝑎 𝛼 and 𝑎 𝛼 are the bounds;then, the 𝛼-cut of 𝑝 𝑡, 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ 𝑑 𝐿 , 𝑡 ∈ ℝ can be obtained based on the extension principle[START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] as: 𝑛 𝐴, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 is obtained by eq. (

	𝑝 𝑡, 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 𝛼 𝑝 𝑡, 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , 𝑚𝑎𝑥 𝜃 𝐿 ∈ 𝜃 𝐿 𝛼 = 𝜃 𝐾 ∈ 𝜃 𝐾 𝛼 The approximate solution for 𝑝 𝑡, 𝑥 , 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 𝛼 𝑚𝑖𝑛 𝜃 𝐿 ∈ 𝜃 𝐿 𝛼 𝜃 𝐾 ∈ 𝜃 𝐾 𝛼 𝑝 𝑡, 𝑥 , 𝑖 |𝜃 𝐿 , 𝜃 𝐾 (18) , ∀𝑖 ∈ 𝑝 𝑛 𝐴, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 𝛼 = 𝑚𝑖𝑛 𝜃 𝐿 ∈ 𝜃 𝐿 𝛼 𝜃 𝐾 ∈ 𝜃 𝐾 𝛼 𝑝 𝑛 𝐴, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 , 𝑚𝑎𝑥 𝜃 𝐿 ∈ 𝜃 𝐿 𝛼 𝜃 𝐾 ∈ 𝜃 𝐾 𝛼 𝑝 𝑛 𝐴, 𝑖 |𝜃 𝐿 , 𝜃 𝐾 (19) where𝑝	𝑓 𝐿 𝑔 𝑖 𝑥 , 𝑡 | 𝜃 𝐿 , ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ 𝑑 𝐿 , 𝑡 ∈ ℝfor the deterministic 𝑖 (𝑥 , 𝑡 |𝜃 𝐿 ), ∀𝑖 ∈ 𝑆, 𝑥 ∈ ℝ 𝑑 𝐿 and equations processes 𝑋 𝑡 can be fuzzy numbers, denoted by 𝜃 𝐿 .  The values of the external influencing factors and the "1" related coefficients 𝜃 "2"

𝐾 in the transition rates for the stochastic processes 𝑌 𝑡 between two different states 𝜆 𝑖 𝑗 , 𝑥 | 𝜃 𝐾 , ∀ 𝑡 ∈ ℝ + , 𝑥 ∈ ℝ 𝑑 𝐿 , 𝑖 , 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗 can be fuzzy numbers, denoted by 𝜃 𝐾 . The values of the probability density function 𝑝 𝑡, 𝑥 , 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 and reliability function 𝑅 𝑡 have, Fig.1.The evolution of degradation processes during [𝑛∆𝑡, 𝑛 + 1 ∆𝑡]. therefore𝑆, 𝑥 ∈ 𝐴, 𝑡 ∈ [𝑛∆𝑡, (𝑛 + 1)∆𝑡[ denoted by 𝑝 𝑛 𝐴, 𝑖 | 𝜃 𝐿 , 𝜃 𝐾 can be obtained by varying 𝜃 𝐿 in 𝜃 𝐿 𝛼 and 𝜃 𝐾 in 𝜃 𝐾 𝛼 as follows:

  where

			-𝑘 𝑥 𝑡 + 𝑥 0 -𝑟𝑣 𝑡 + 𝐹 𝑐 𝑥 𝑡 ]	(24)
			is the valve acceleration, where
			𝑝 𝑏 𝑡 =	𝑚 𝑏 (𝑡)𝑅 𝑔 𝑇 𝑉 𝑏 0 +𝐴 𝑝 𝑥 𝑡
	𝑎 𝑡 =	1 𝑚	[ 𝑝 𝑏 𝑡 -𝑝 𝑡 𝑡 𝐴 𝑝 -𝑚𝑔 +

  We have 𝜃 𝐿 = (𝜔 𝑏 , 𝛽 𝑌 𝑝 𝑡 ) and 𝜃 𝐾 = The values of 𝜔 𝑏 , 𝛽 𝑌 𝑝 𝑡 , 𝜆 32 , 𝜆 21 and 𝜆 10 are shown in TableII. The fuzzy numbers are assigned by considering a relative uncertainty of ±10% of the original parameters values.

	λ 32	λ 21	λ 10	
	3	2	1	0
			Top	
			pneumatic port	types of membership functions.
	Top chamber		Return Spring
	Bottom		Bottom chamber
	pneumatic port			
	Fluid			
	The space of the failure states of 𝑍 𝑡 is ℱ = ℱ 𝐷 𝑏 × ℱ 𝑌 𝑝 =
	𝐷 𝑏 * , +∞ × {'0'}. (𝜆 32 , 𝜆 21 , 𝜆 10 ) which are the uncertain parameters due to the
	fact that their values are estimated from insufficient
	degradation data or elicited from expert judgment. Epistemic
	uncertainty associated to them, hence, needs to be taken into
	account and a proper mathematical representation of
	uncertainty of this nature is by fuzzy numbers (FNs). We
	choose triangular fuzzy numbers (TFNs) [41] to represent the
	uncertain parameters because their boundary values and most
	probable or most advisable values are considered easier to be
	elicited from expertsthan other FN types and they are widely
	used to represent uncertain parameters in reliability
	engineering [20, 24, 29, 41]. However, the proposed
	framework is generally suitable for fuzzy numbers with other

  Fig. 4.Valve behavior with different sizes of the external leak.

				TABLE I		
			PARAMETER DEFINITIONS AND VALUES	
		Parameter -Definition		Value	
		𝑔 -acceleration due to gravity		9.8 m/s
		𝑃 𝑠𝑢𝑝 -supply pressure		5.27e6 Pa
		𝑃 𝑎𝑡𝑚 -atmospheric pressure		1.01e5 Pa
		𝑚 -mass of the moving parts of the	50 kg	
		valve					
		𝑟 -coefficient of kinetic friction	6.00e3 Ns/m
		𝑘 -spring constant			4.80e4 N/s
		𝑘 𝑐 -large spring constant associated	1.00e8 N/s
		with the flexible seals			
		𝑥 0 -amount of spring compression	0.254 m
		when the valve is closed			
		𝑥 𝑠 -fully open position of the valve	0.1 m	
		𝐴 𝑝 -surface area of the piston		8.10e-3 m2
		𝑉 𝑡0 -minimum gas volume of the top	8.11e-4 m3
		chamber					
		𝑉 𝑏0 -minimum gas volume of the	8.11e-4 m3
		bottom chamber				
		𝑅 𝑔 -gas constant for the pneumatic gas	296 J/K/kg
		𝑇 -ideal gas temperature		293 K	
		𝛾 -ratio of specific heats		1.4	
		𝑧 -gas compressibility factor		1	
		𝐴 𝑠 -orifice area of the pneumatic port	1.00e-5 m2
		𝐶 𝑠 -flow coefficient			0.1	
		0.12					
						Maximum Damage
		0.1				No Damage
	(m)	0.08					
	Valve Postion	0.02 0.04 0.06					
		0					
		0 -0.02	5	10	15	20	25	30
				Time (s)		

TABLE III THE

 III VALUES OF THE FUZZY PARAMETERS IN PDMP

	Method	MC2	MC1	Relative	FV	Relative
	Time			difference	scheme	difference
	100s	0.9965 0.9966 0.01%	0.9964	-0.01%
	200s	0.9769 0.9766 -0.03%	0.9773	0.04%
	300s	0.9372 0.9364 -0.09%	0.9379	0.07%
	400s	0.8799 0.8780 -0.22%	0.8805	0.07%
	500s	0.8094 0.8063 -0.38%	0.8102	0.10%
	600s	0.7305 0.7283 -0.30%	0.7321	0.22%
	700s	0.6496 0.6469 -0.42%	0.6513	0.26%
	800s	0.5696 0.5664 -0.56%	0.5714	0.32%
	900s	0.4873 0.4839 -0.70%	0.4874	0.02%
	1000s	0.1801 0.1778 -1.28%	0.1811	0.56%
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