
HAL Id: hal-01090154
https://hal.science/hal-01090154v1

Submitted on 3 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On facilitating the use of HARDI in population studies
by creating rotation-invariant markers

Emmanuel Caruyer, Ragini Verma

To cite this version:
Emmanuel Caruyer, Ragini Verma. On facilitating the use of HARDI in population stud-
ies by creating rotation-invariant markers. Medical Image Analysis, 2015, 20 (1), pp.87-96.
�10.1016/j.media.2014.10.009�. �hal-01090154�

https://hal.science/hal-01090154v1
https://hal.archives-ouvertes.fr


  

On Facilitating the use of HARDI in population studies
by creating Rotation-Invariant Markers

Emmanuel Caruyera,, Ragini Vermaa

aSection of Biomedical Image Analysis Department of Radiology University of
Pennsylvania 3600 Market street, Suite 380 Philadelphia, PA 19104

Abstract

We design and evaluate a novel method to compute rotationally invariant

features using High Angular Resolution Diffusion Imaging (HARDI) data.

These measures quantify the complexity of the angular diffusion profile mod-

eled using a higher order model, thereby giving more information than classi-

cal diffusion tensor-derived parameters. The method is based on the spheri-

cal harmonic (SH) representation of the angular diffusion information, and is

generalizable to a range of HARDI reconstruction models. These scalars are

obtained as homogeneous polynomials of the SH representation of a HARDI

reconstruction model. We show that finding such polynomials is equiva-

lent to solving a large linear system of equations, and present a numerical

method based on sparse matrices to efficiently solve this system. Among the

solutions, we only keep a subset of algebraically independent polynomials,

using an algorithm based on a numerical implementation of the Jacobian

criterion. We compute a set of 12 or 25 rotationally invariant measures rep-

resentative of the underlying white matter for the rank-4 or rank-6 spherical

harmonics (SH) representation of the apparent diffusion coefficient (ADC)
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profile, respectively. Synthetic data was used to investigate and quantify the

difference in contrast. Real data acquired with multiple repetitions showed

that within subject variation in the invariants was less than the difference

across subjects - facilitating their use to study population differences. These

results demonstrate that our measures are able to characterize white mat-

ter, especially complex white matter found in regions of fiber crossings and

hence can be used to derive new biomarkers for HARDI and can be used for

HARDI-based population analysis.

Keywords: Diffusion MRI, High Angular Resolution Diffusion Imaging,

Biomarkers, Quantitative MR Analysis

1. Introduction

High angular resolution diffusion imaging (HARDI) (Frank, 2001; Özarslan and Mareci,

2003; Tuch, 2004; Descoteaux et al., 2007) has emerged as a modality to

overcome the limitations of diffusion tensor imaging (DTI). The angular

structure of water diffusion reveals valuable information about the under-

lying tissue structure, notably in the brain white matter, especially in the

complex areas of fiber crossing, where HARDI shows better characterization.

This richer information comes at the price of a higher complexity, both for

data processing and for human interpretation. This has underlined the need

for a smaller set of relevant measures that quantify and summarize this high

dimensional information.

The data in HARDI are typically represented by a function on the

sphere, whether it is the raw diffusion signal, the orientation distribution

function (ODF), the apparent diffusion coefficient (ADC) profile, or any

other function derived from the diffusion signal. Natural mathematical rep-

resentations for the HARDI signal include the spherical harmonics (SH) ba-
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sis (Frank, 2002; Descoteaux et al., 2006) and high-order Cartesian tensors

(Özarslan and Mareci, 2003), possibly with positivity constraints (Barmpoutis et al.,

2012), which correspond to homogeneous polynomials on the sphere. An

alternative representation (Florack and Balmashnova, 2008) using hetero-

geneous polynomials was also proposed, and shown to be amenable to reg-

ularization. In this work, we are interested in measures that quantify the

angular complexity of the diffusion profile. For which it is important to

be rotationally invariant: from such measures, we can analyze the angular

complexity of white matter configurations, irrespective of the orientation of

the patient in the scanner, or the local direction of white matter pathways.

The derivation of rotational invariant measures is a first step towards the

creation of novel biomarkers of neurological pathologies using HARDI, by a

proper statistical analysis of patient versus control populations.

Several scalar indices have been proposed in this respect. For diffusion-

tensor MRI, invariants are calculated from the eigenvalues, such as the frac-

tional anisotropy (FA) and relative anisotropy (RA) (Basser and Pierpaoli,

1996), the linear, planar and spherical measures characterizing the shape of

the tensor (Westin et al., 2002). In HARDI, popular measures are the gen-

eralized fractional anisotropy (GFA) (Tuch, 2004), which can easily been

computed from the spherical harmonics (SH) representation of the ODF,

and the generalized anisotropy (Özarslan et al., 2005). Other groups have

proposed original contributions. In Zhan et al. (2006), the authors first

reorient the ODF to the orthogonal space defined by the local diffusion

tensor eigenvectors, and use the SH coefficients in this space as rotational

invariant measures. This method however suffers from the well-known in-

stability of diffusion tensor decomposition, especially for oblate tensors, typ-

ical in fiber crossing configurations. From a different perspective, starting
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from an SH representation of the ODF, the power spectrum is a rotation-

invariant measure (Kazhdan et al., 2003). This has been used successfully

for the registration of ODFs (Bloy and Verma, 2010) for instance. How-

ever, the power spectrum dramatically reduces the information, and it is

shown in (Kazhdan et al., 2003) that very different shapes can have the

same power spectrum. More recently, a method based on tensor contraction

(Gur and Johnson, 2014), which can be seen as a generalization of the power

spectrum, was presented to derive rotation invariant features computed from

a SH representation of the diffusion angular information. The authors show

that their invariants have a greater discriminative power, while being robust

to noise. However, there is no evidence that the invariants created with this

method are independent from each other, nor that they are exhaustive. An-

other recent approach uses the representation of a spherical function as a

4th-order tensor (Ghosh et al., 2012a). Using the analogy between 4th-order

tensors in R3 and 2nd-order tensors in R6, they derive a set of 6 rotation-

invariant scalars, called the basic invariants. Lately, a novel approach has

been proposed (Schwab et al., 2013), that uses the mapping between a trun-

cated SH series of a function, and the matrix representing the convolution

operator by this function. They show that the spectral decomposition of

this matrix provides rotational invariant measures related to this spherical

function. Finally, in Nagy et al. (2013), the authors propose a family of con-

tinuous operators on spherical functions, to derive novel rotation-invariant

measures, that they applied to HARDI data in the cerebral cortex.

While all these methods propose some rotational invariant measures,

none of them give a systematic characterization of all rotational invariant

features of a truncated SH representation of an ODF or an ADC. Yet, this

is an important problem to study, since by arbitrarily retaining a partial
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subset of the rotational invariant properties, we may loose important infor-

mation carried by the diffusion function. This loss of information is poten-

tially critical for the creation of new biomarkers, where pathology may be

characterized by subtle changes in white matter configuration.

Acknowledging that some known rotational invariants (Ghosh et al., 2012a;

Kazhdan et al., 2003) are based on homogeneous polynomials, a recent study

(Ghosh et al., 2012b) proposed to compute all rotation-invariant homoge-

neous polynomials of the 4th-order tensor coefficients, representing a spher-

ical function. In this work, we independently followed a similar objective,

but instead we investigate rotational invariant scalar functions in the spher-

ical harmonics (SH) coefficients. One of the advantages of using the SH

representation is that they form an orthonormal basis and naturally, increas-

ing SH rank captures increasing angular resolution features. Additionally,

we present results for up to rank-6 SH, whereas the work in Ghosh et al.

(2012b) is restricted to the 4th-order tensor. Our method can be applied to

the apparent diffusion coefficient (ADC) profile, the orientation distribution

function (ODF), or any spherical function, for any truncation order; in this

article, it is illustrated on rank-4 and rank-6 SH. Hence, it is therefore gener-

alizable to any HARDI model. The differences with prior work is presented

in more detail in the discussion section.

We show that the problem of finding rotational invariant homogeneous

polynomials of the spherical harmonic can be recast into solving a set of

large linear systems of equations. After solving these systems and after

eliminating redundant solutions, we get 12 rotational-invariant scalars rep-

resentative of the underlying white matter for the rank-4 SH basis, and 25

rotation-invariant for the rank-6 SH basis. We demonstrate the applicability

of these scalars on synthetic and real data, and their sensitivity to changes
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in white matter. In particular, we show that the scalars we compute pro-

vide new contrasts from diffusion-weighted images, especially in the regions

of complex white matter. These scalar measures can then be used in var-

ious combinations to produce biomarkers of pathology or for group-based

statistical analysis.

2. Theory

In this section we present the theoretical approach for a comprehensive

search for all rotation-invariant homogeneous polynomials. The section is

organized as follows: we first introduce the notations and the definitions for

the space of homogeneous polynomials, then we recall the concept of Wigner

rotation matrix, which is the cornerstone of the present method. Finally, we

show that the problem of finding all such invariants can be recast as a large

linear system. This theoretical section is general and can be applied to any

band-limited spherical function.

2.1. Spherical Fourier transform and Homogeneous polynomials

In the following, we consider a function, f , which has a finite represen-

tation in the spherical harmonics (SH) basis:

u ∈ S2, f(u) =
L∑

l=0

l∑
m=−l

f̂l,mYl,m(u), (1)

where L is the SH rank, and f̂l,m are its SH coefficients. In diffusion MRI, the

spherical functions of interest (ADC, ODF, FOD) are real and antipodally

symmetric, and we can restrict ourselves to the real, symmetric SH basis

Yl,m as introduced in Descoteaux et al. (2006). For a given rank L, this

basis has dimension

R =
(L + 1)(L + 2)

2
, (2)
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and the coefficients f̂l,m can equivalently be indexed by a single index, i,

and represented by the vector [f̂1 . . . f̂R]T .

A homogeneous polynomial of degree t in dimension R is a function of

the form

P (x) =
R∑

i1=1

R∑
i2=i1

. . .

R∑
it=it−1

ai1i2...it xi1xi2 . . . xit (3)

The polynomial P is uniquely determined by the t-th order, fully symmet-

ric tensor, A, in RR. The tensor A has full symmetry, which means that

ai1i2...it = aiσ(1)iσ(2)...iσ(t)
for any permutation σ of {1, 2, . . . , t}. The space of

t-th order fully symmetric tensors in RR has dimension

D(R, t) =
(

t + R− 1
R− 1

)
. (4)

For convenience, the indices i1, i2, . . . , it can be contracted, and the polyno-

mial P [a] is represented by its vector of coefficients, a = [a1 . . . aD]T .

The problem of finding a homogeneous polynomial, P [a], that is invariant

to rotation of the coordinate axis of the function f , can be rewritten as

∀R ∈ SO(3), P [a](f̂) = P [a](R̂ · f), (5)

where the rotated function, R · f , is defined by

∀u ∈ S2, R · f(u) = f(RTu). (6)

In the next section, we show how Wigner matrices help in rewriting the

initial problem in Eq. 5.

2.2. Rotation and Wigner matrices

One of the mathematical properties of spherical harmonics is that ap-

plying a rotation, R, to the coordinate system, is equivalent to applying a
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linear transform to the coefficients. This linear transform is known as the

Wigner matrix, W(R), which is a block matrix (Blanco et al., 1997):

R̂ · f = W(R)f̂ . (7)

Therefore, the initial problem in Eq. 5 is equivalent to finding a homogeneous

polynomial, P [a], verifying

∀f̂ ∈ RR, ∀R ∈ SO(3), P [a](f̂) = P [a](W(R)f̂). (8)

In what follows, we show that the function on the right-hand side of Eq. 8

is also a polynomial in f̂ , and give the expression of the coefficients of this

transformed polynomial.

2.3. Homogeneous polynomial and Linear transform

If we consider the polynomial P [a] applied to the vector x that underwent

a linear transform W, we have

P [a](Wx) =
∑

i1i2...it

ai1i2...it(Wx)i1(Wx)i2 . . . (Wx)it = P [b](x), (9)

where

bj1j2...jt =
∑

i1i2...it

ai1i2...itWi1j1Wi2j2 . . .Witjt . (10)

In short, this means that applying a linear transform W to the vector

x, is equivalent to applying a linear transform to the coefficients of the

polynomial. We note T(W) the transform derived in Eq. 10, such that

b = T(W)(a).

The problem of finding a polynomial P [a] verifying Eq. 8 is therefore

equivalent to finding a vector of coefficients a such that

∀R ∈ SO(3), a = T (W(R))a. (11)

In what follows, we introduce a theorem which permits to rewrite the con-

ditions in Eq. 11 into a single linear system of equations in a.
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2.4. Linear system and sufficient condition

Theorem 1. A homogeneous polynomial P [a] applied to the SH coefficients

of a spherical function, f , is unchanged after applying any rotation R to the

coordinate axis if and only if it is unchanged by both rotations of 1rad about

x and about z.

The proof of theorem 1 is presented in Appendix A. Combined with the

previous developments, and in particular with the conditions in Eq. 11, the

problem is finally equivalent to the following linear system solving,

find a ∈ RD(R,t) such that Ma = 0, where M =

⎡
⎣ T (W(Rx(1)))− I

T (W(Rz(1)))− I

⎤
⎦

(12)

where I is the D(R, t) × D(R, t) identity matrix, and Rx(1) and Rz(1)

represent the rotations of 1rad about x and z axes, respectively. For a given

degree t, the set of solutions, a, to this linear system defines the rotationally

invariant polynomials.

2.5. Independence of solutions

Solving the linear system in Eq. 12 will provide a family of polynomial

solutions that are linearly independent in R[X1, . . . , XR]. However, at this

stage, it is not guaranteed that the solutions are algebraically independent,

since for instance the product of two solutions is also a solution. In this sec-

tion, we recall how algebraic independence is defined and present a practical

way to test that it is satisfied.

Definition 1. A set of k polynomials P1, . . . , Pk of R[X1, . . . , XR] are called

algebraically independent if

∀Q ∈ R[Y1, . . . , Yk], Q(P1, . . . , Pk) = 0 ⇒ Q = 0.
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Although an upper bound is known for the degree of the annihilating

polynomial, Q (when it exists), the computation of such a polynomial is

known to be an NP hard problem (Kayal, 2009). Therefore it is not com-

putationally efficient to try to show algebraic dependence or independence

by searching for an annihilating polynomial.

However, the theorem (see Ehrenborg and Rota (1993), Th. 2.3 for a

proof), known as the Jacobian criterion, states that P1, . . . , Pk are alge-

braically independent if and only if the Jacobian matrix (∂Pi/∂Xj)1≤i≤k,1≤j≤R

has full rank. In order to compute this, we can use the Schwartz-Zippel poly-

nomial identity testing lemma (Schwartz, 1980; Zippel, 1979; DeMillo and Lipton,

1978), which states that for some random x ∈ RR, the Jacobian matrix has

the same rank as (∂Pi/∂Xj)|Xj=xj with high probability.

3. Material and methods

In what follows, we describe the method to solve the linear system of

equations in Eq. 12, and subsequently extract a family of independent in-

variant polynomials. Finally, we relate some well-known measures to the

invariants obtained with this method.

3.1. Solving the linear system

As reported in Table 1, the dimension of the linear system of Eq. 12

rapidly increases with the maximum rank of the spherical harmonics, L,

and the polynomial degree, t. Therefore, the complexity of general-purpose

linear solvers does not scale to the size of the problem. However, it is worth

observing that the structure of the problem is inherently sparse.

Indeed, due to the definition of spherical harmonics, the Wigner matrices

corresponding to pure rotation about one of the Cartesian axes are sparse.
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L R(L) D(R, t)

t = 1 t = 2 t = 3 t = 4

0 1 1 1 1 1

2 6 6 21 56 126

4 15 15 120 680 3060

6 28 28 406 4060 31465

Table 1: Dimension of the linear system of Eq. 12. The dimension increases rapidly with

the truncation rank, L, and the polynomial degree, t.

As a consequence, the corresponding transform matrices T (W(Rx(1))) and

T (W(Rz(1))) are sparse too, as reported in Fig. 1. This facilitates the use

of adapted algorithms for solving sparse linear systems. We implemented

the construction of these sparse matrices in C/Cython (Behnel et al., 2011),

and we solved the linear system with ARPACK (Lehoucq et al., 1997), for

which SciPy (Jones et al., 2001–) conveniently offers a Python wrapping.

3.2. Solutions pruning

We propose a method, described in Algorithm 1, to keep only alge-

braically independent polynomials. The procedure AlgebraicIndependent

tests whether a set of polynomials are algebraically independent or not,

using the Jacobian criterion (see Sec. 2.5).

This pruning step greatly simplifies the set of solutions. We report in

Table 2 the number of solutions before and after the pruning step. As a

result, we found for rank-4 SH a total of 12 independent parameters, while

the linear space of functions has dimension R = 15. Similarly, for rank-6

SH, we found a total of 25 independent invariants, whereas the dimension
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Figure 1: The Wigner matrices and the corresponding linear system of Eq. 12 are sparse.

Hence they can be efficiently represented in memory, and most importantly, the system

of Eq. 12 can be efficiently solved.

Algorithm 1 SolutionsPruning(solutions)
Require: solutions[L, t] contains the solutions of Eq. 12.

indep polys ← []

for L ∈ {0, 2, . . . , Lmax} do

for t = 1 to tmax do

for all P ∈ solutions[L, t] do

if AlgebraicIndependent(indep polys ∪ P) then

indep polys[L, t] ← indep polys[L, t] ∪ P

end if

end for

end for

end for

return indep polys

12



  

L Number of invariants

t = 1 t = 2 t = 3 t = 4 t = 5

0 1 (1) 1 (0) 1 (0) 1 (0) 1 (0)

2 1 (0) 2 (1) 3 (1) 4 (0) 5 (0)

4 1 (0) 3 (1) 7 (3) 15 (5) 31 (0)

6 1 (0) 4 (1) 13 (5) 46 (7) N/A

Table 2: The number of invariants before and after solution pruning (the latter appears

boldface and in brackets). As a result of this simplification, the total number of invariants

found for rank-4 SH went from 77 to 12, and from 141 to 25 for rank-6 SH.

of the space is 28. We recall that a rotation in R3 has 3 degrees of freedom,

therefore this result strongly suggests that the 12 (respectively 25) invariants

we found fully characterize the shape of a spherical function up to rank-4

(respectively rank-6), irrespective of its orientation. For the sake of clarity,

the different steps needed to construct the set of solutions are summarized

in Appendix B. Some of the solutions are reported in Appendix C.

3.3. Relation to known invariants

In this section, we provide evidence that the proposed invariants encom-

pass widely used scalar measures, namely fractional anisotropy (FA) and

mean diffusivity (MD) in DTI, and generalized fractional anisotropy (GFA)

in HARDI. We recall that the MD and FA of a diffusion tensor D can be

computed as

MD =
1
3
Tr(D), and FA =

(
3Tr(D2)− Tr(D)2

2Tr(D2)

)1/2

. (13)

The expressions in Eq. 13 only involve Tr(D) and Tr(D2), that are homo-

geneous polynomials in the coefficients of the tensor. There is an isomor-
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phism between the set of symmetric Cartesian tensors, and the SH basis

(Özarslan and Mareci, 2003). So in essence, representing the ADC profile

with its SH series coefficients, c, with a truncation rank L = 2 is equivalent

to using a second-order diffusion tensor model. Using this isomorphism and

Eq. 13, we can write

MD =
P0,1

2
√

π
, and FA =

(
15P2,2 − 12P0,1

2

2 (2P0,1
2 + 5P2,2)

)1/2

. (14)

This means that FA is obtained from the SH coefficients of the ADC as a

simple function of two second-order polynomials.

As for the GFA of the ADC, we recall that the definition is

GFA =

⎛
⎜⎜⎜⎝

∫
S2

(
ADC−

∫
S2

ADC
)2

∫
S2

ADC2

⎞
⎟⎟⎟⎠

1/2

(15)

=
(

P2,2 + P4,2

P0,1
2 + P2,2 + P4,2

)1/2

(16)

where the expression in Eq. 16 can be written as a simple combination of

second-order polynomials in the SH coefficients.

4. Experiments and Results

In this section, we present the 12 rotation invariant measures computed

from the ADC profile expressed in the SH basis, truncated to rank L = 4,

on synthetic and in vivo human brain data. The invariant measures are

presented together with FA and GFA. Nest, we present a statistical analysis

to investigate the reproducibility of the proposed measures on a test-retest

dataset.
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4.1. Experimentation on synthetic dataset

We computed the scalars for a synthetic configuration of two fiber popu-

lations crossing in a voxel. Water diffusion in this configuration is modeled

by a discrete mixture of two Gaussian distributions, each of which is fully

described by a tensor. In this setting, the fractional anisotropy of each

compartment is set to 0.7, while the crossing angle increases from 0 to 90◦.

Diffusion-weighted signal was simulated, and we estimated the apparent

diffusion coefficient (ADC) profile from the noise-free measurements. We

report in Fig. 2 the values of the 25 invariants computed from the ADC

profile. As expected, the scalars associated with higher spherical harmonic

rank (L = 4 and L = 6) vanish whenever the crossing angle goes to zero,

as this corresponds to a single fiber configuration. Besides, the curves re-

ported in Fig. 2 suggest that the 25 invariants carry significantly different

information.

In order to show that the measures are sensitive to the different config-

urations of white matter fiber bundles, and can characterize the complex

crossing white matter, we computed the invariants on a synthetic phantom

of diffusion. We created the digital phantom using Phantomas1, with an

arrangement of 5 cylindrical fiber bundles as illustrated on Fig. 3. The dif-

fusion within each bundle is modeled by a restricted compartment with cylin-

drical boundary, and a hindered compartment. The signal for the hindered

compartment is computed on the lines of Söderman and Jönsson (1995),

while the hindered compartment is modeled by an anisotropic Gaussian dif-

fusion as in the CHARMED model (Assaf and Basser, 2005). We further

assume that the diffusion outside the bundles is slow (D = 0.2mm2 · s−1)

1http://www.emmanuelcaruyer.com/phantomas.php
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Figure 2: Top: Fiber Orientation Distribution for a synthetic configuration of crossing

fibers, with increasing angle. Bottom: the corresponding ADC-based scalars, plotted

against the crossing angle. The y-axis represents the value of each scalar (normalized by

its maximum absolute value). The FA of each compartment is set to 0.7. We report the

invariants for SH ranks L = 2, 4, 6 each on a separate plaot, for clarity.
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and isotropic, similar to what found in brain gray matter. The partial vol-

ume and fiber orientation distributions were computed on a subdivision of

9×9×9 of each voxel. We estimated the ADC profile from the noise-free sig-

nal attenuation. The 12 invariants for rank-4 SH are reported in Fig. 3. Also

shown are the tensor-based fractional anisotropy (FA), as well as ADC-based

generalized fractional anisoptropy (GFA), generalized anisotropy (GA) and

scaled entropy (SE) (Özarslan et al., 2005) for comparison on the amount

of information that is conveyed.

4.2. Validation on a human brain dataset

The aim of this experiment was to show that these invariants can be

consistenly computed on the same person and the variability is low compared

to the variability between different people. As such they are sensitive enough

for finding group differences. A group of 9 healthy subjects (6 males, 3

females, aged 31.2±4.2 years) were scanned three times with a two weeks

interval between two consecutive scans. HARDI images were acquired on

a Siemens 3T VerioTM scanner using a monopolar Stejskal-Tanner diffusion

weighted spin-echo, echo-planar imaging sequence (TR/TE=14.8s/111ms,

2mm isotropic voxels, b = 3000s · mm−2, 64 evenly distributed diffusion

directions, 2 b0 images, scan time 18 minutes).

In order to correct for Rician noise, we first applied the joint linear

minimum mean squared error filter (Tristán-Vega and Aja-Fernández, 2010)

(using 3d Slicer (Pieper et al., 2004)) to the diffusion-weighted images. We

reconstructed the ADC profile in the SH basis up to rank L = 6, and

computed the 25 invariants, for each subject and each time step. We report

on Fig. 4 the invariants for one of the subjects in the study (we only reported

3 of the 13 invariants associated with rank-6 SH, to save space on the figure).
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Figure 3: ADC-based invariants computed on a synthetic phantom of diffusion. Left:

fiber configurations and computed fiber orientation distributions (FOD) of the tissue com-

partment. For visualization, the FODs have been normalized. For completeness, we also

report the tensor-based fractional anisotropy (FA), the ADC-based generalized fractional

anisotropy (GFA), generalized anisotropy (GA) and scaled entropy (SE). Right: the ADC-

based invariants, complete up to L = 4; for L = 6, we only report 3 out of the 13 that

we computed. We use gray scale for FA, GFA, GA and SE, and a color map ranging

from dark red (low/negative values) to light yellow (high/positive values) for the invariant

measures.
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Visually, the scalar maps reported on Fig. 4 provide a set of very different

images, showing contrast different from classical FA, GFA, GA and SE maps.

To analyze and compare intra-subject variability versus inter-subject

variability, we performed a one-way ANalysis Of VAriance (ANOVA) test

on a set of 95 regions of interest (ROI) in deep white matter from the JHU

”Eve” atlas (Mori et al., 2008). To define these ROIs in subject space, we

first performed a non-linear registration of the template FA to the subject

FA image using DRAMMS (Ou et al., 2011). The deformation field was sub-

sequently applied to the label map, using nearest neighbour interpolation.

A visual quality check was performed on the registration results. We then

computed the mean of the scalars over each ROI and performed ANOVA

test on the means, where the three repetition of each subject was considered

as a group. This ANOVA test is helping us to find statistical difference be-

tween subjects. The ANOVA is performed for each invariant independently,

and corrected for multiple comparison over the regions using the Bonferroni

method. Results of the corrected p-values per ROI are reported in Fig. 5.

5. Discussion

We presented a novel method to compute rotationally invariant measures

from HARDI measurements. Although we reported ADC-based invariants

throughout the Results section, the method is generalizable to compute the

invariants for the ODF, or the FOD. The main reason for choosing the ADC

model is that it can be seen as a higher-order extension of the second-order

diffusion tensor, and therefore, the measures we compute are in a sense

extensions of the FA, MD and other DTI scalars.

The method we propose here differs significantly from these previous
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FA (Tensor) GFA (ADC) GA (ADC) SE (ADC)

Figure 4: ADC-based invariants on a human brain. For completeness, we also report

Tensor-based FA and ADC-based GFA, GA and SE. Color map range from dark red

(low/negative scalar) to bright yellow (high/positive scalar). The ADC-based scalar maps

show contrast different from classical FA, GFA, GA and SE maps.
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Figure 5: Results of the ANOVA test on each of the 95 ROIs in deep white matter, to

compare inter-subject versus intra-subject variability on a test-retest dataset. We report

the Bonferroni-corrected p-values for the ANOVA on each of the 12 invariants, as well as

on the FA and GFA. The p-values represent the statistical significance of differences across

subjects. The p-values maps are overlaid on FA for reference. The results show that the

computed invariants provide measures which are significantly subject-specific in a number

of regions.
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studies (Ghosh et al., 2012a; Schwab et al., 2013; Gur and Johnson, 2014).

These prior works share the common fact that they propose some rotation

invariant features, whereas our method presents a systematic way to look

for all rotation invariant features expressed as homogeneous polynomials

up to a given degree. The first method (Ghosh et al., 2012a) starts from

a 4th-order tensor representation of the HARDI function, and rewrites the

4th-order tensor as a 2nd-order tensor in R6. The authors use the fact that

this transform preserves rotations, which means that a rotation applied to

the original 4th-order tensor transposes into a rotation in R6. However,

this mapping has no inverse, which means that there are rotations in R6

which have no transposition in the original R3 representation. Therefore,

by imposing the solutions to be invariant to any rotation in R6, one may be

over-restricting the solutions, and as a result, one is likely to find only a sub-

set of the solutions of the problem of interest. This explains why the study

in (Ghosh et al., 2012a) finds only 6 rotation invariant measures, whereas

we report 12 of them for the equivalent, rank-4 SH basis, which is the ex-

pected number based on the dimension of the truncated SH space, R = 15,

and the number degrees of freedom of a rotation, dof = 3. In the second

method (Schwab et al., 2013), the authors use the mapping between a trun-

cated SH series of a function, and the matrix representing the convolution

operator by this function (Shirdhonkar and Jacobs, 2005). They show that

a rotation in R3 transposes into a rotation in the space of this matrix, and

subsequently find rotation-invariants measures of f as rotation-invariants of

this matrix, using spectral decomposition. Similarly to Ghosh et al. (2012a),

the mapping they exploit between rotation matrices has no inverse, which

means that the problem they solve is more constrained than the original

problem, and hence they may lose some important solutions. In contrast, in
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our study, we start from a rotation in R3, and derive its expression in the

target space of invariant measures. The linear problem we solve is strictly

equivalent to the original problem of finding rotationally invariant measures

expressed as homogeneous polynomials in the SH coefficients. Finally, in

Gur and Johnson (2014), the authors used a method of tensor contraction

and Clebsch-Gordan coefficients to construct a family of rotation invariants

based on the SH coefficients. They showed that this method generalizes the

well-known power spectrum, but offers a greater discriminative power and

higher robustness to noise. In essence, the invariants they construct are de-

rived from tensor contraction and can be seen as polynomials, similarly to

our study. However, in contrast to the present work, there is no claim that

the invariants in Gur and Johnson (2014) are exhaustive, nor independent

from each other.

Finally, our method is different from Ghosh et al. (2012b) in several the-

oretical and practical aspects. The first difference lies in the choice of the

SH basis to represent the diffusion signal, where Ghosh et al. (2012b) uses a

4th-order tensor. We first outline that our method is generalizable to differ-

ent SH ranks and maximum polynomial degree, and is illustrated on rank-4

as well as rank-6 SH bases. Besides, while it is true that there is an isomor-

phism between rank-L SH and tensors of the same order, L, there are several

mathematical properties in favor of SH basis. Most importantly, they form

an orthonormal basis of functions, where the sub-domains spanned by the

increasing ranks L = {0, 2, 4, . . .} are nested. The projection of a spherical

function onto these domains provides a natural decomposition where the

coefficients associated with the low-rank SH represent the smooth part of

the function, and the higher rank capture the details. When they represent

the apparent diffusion coefficient (ADC) profile for instance, truncated SH
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to rank L = 0 correspond to the measurement of the isotropic ADC coeffi-

cient, truncation to rank L = 2 is equivalent to the diffusion tensor model,

while higher ranks capture non-Gaussian diffusion. As a consequence, the

scalar invariants we compute inherit from these properties and can be sorted

by increasing SH rank, as well as increasing polynomial degree (see Fig. 4

for instance). Finally, the contribution in Ghosh et al. (2012b) proposes a

verification of independence of the polynomial solutions up to a given degree

(up to degree 6 in this case). In contrast, in this work we construct a set of

algebraically independent polynomials, using the Jacobian criterion.

The synthetic phantom and the scalar measures reported in Fig. 3 present

a range of complex white matter bundles configurations, including bending,

splitting and crossing with various angles. Among the 12 invariants, some

capture subtle differences that are not visible on FA and GFA maps. For

instance, there is no difference between the bending configuration in A and

the crossing in B in FA and GFA map, while most scalars can differentiate

these configurations. This is also the case for the three crossing configura-

tions in B, C and D. In general, the 12 invariants together are more specific

than the FA and GFA.

The results reported in Fig. 5 show that the computed invariants provide

measures that are significantly subject-specific in a number of ROIs. Note

that we restricted this study to rank-4 SH, since the data were relatively

noisy, and consequently computing rank-6 SH representation and further

computing the invariants did not bring statistically significant differences

in this particular dataset. Interestingly, higher-order invariants show sig-

nificant differences across subjects only in the crossing bundle area of the

pyramidal tract with the corpus callosum. This suggests, as expected, that

the higher order invariants may capture subtle changes in these regions of
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complex white matter. Although the number of samples in this population

study is relatively small here (9 subjects, 3 repetitions, therefore a total of

27 samples for each ROI and each subject), these results suggest that the

invariants capture individual characteristic measures in white matter. This

will facilitate population analysis of HARDI data.

6. Conclusions

We have proposed a general method to find rotationally invariant mea-

sures of the ADC profile, based on homogeneous polynomials in the SH

coefficients. As shown on synthetic and real data, these scalar measure-

ments provide a range of new contrasts, different from FA and GFA. A

study of these scalars across repeated scans shows significantly higher vari-

ability across subjects than within subject, which suggests that these scalars

may be suitable for capturing group differences.

One of the possible future directions for this study is to identify which

scalar, or what combination of these, can show differences between patients

and controls. and therefore is suitable to build new biomarkers in HARDI. In

addition, as there are a large number of features available, they can be used

to train pathology specific classifiers using support vector machine, that may

gain from the variation in contrast that is provided by these invariants and

therefore prove suitable for building new HARDI-based pathology biomark-

ers. We expect that the description of a large number of scalars will pave

the way for increased use of HARDI in the clinic, as it provides enhanced

information over diffusion tensor imaging.
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Appendix A. Proof of Theorem 1

In this section, we will prove Theorem 1, using two intermediate lemmas.

Lemma 1. A homogeneous polynomial, P , applied to the SH coefficients of

a spherical function, f , is invariant to any rotation in SO(3) if and only if

it is invariant to any rotation about x, and any rotation about z.

Proof The proof of this lemma is immediate: knowing that any rotation R

can be written as a decomposition of three rotations:

R = Rz(α)Rx(β)Rz(γ), (A.1)

where α, β and γ are the Euler angles.

Lemma 2. A homogeneous polynomial, P , applied to the SH coefficients of

a spherical function, f , is invariant to any rotation Ru(ϑ) about a given

axis u if and only if it is invariant to any rotation about the rotation Ru(1).

Proof To prove this lemma, we first show that if the property is true for an

angle of 1rad, then by recurrence, it is also true for any integer angle ϑ ∈ N .

Besides, as the set of integers is dense in [0, 2π] mod 2π (a property

known as the Jacobi-Kronecker theorem), then for any ϑ ∈ [0, 2π], we can

find two sequences of natural numbers ϑn and kn ∈ N such that

∀n ∈ N , 0 ≤ ϑn − 2knπ ≤ 2π, and lim ϑn − 2knπ = ϑ. (A.2)
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Finally, it is easy to see that the application ϑ 	→ P ( ̂Ru(ϑ) · f) is continuous,

which means that

P (f̂) = P ( ̂Ru(ϑn) · f) n→∞−−−→ P ( ̂Ru(ϑ) · f), (A.3)

which concludes the proof of Lemma 2.

Appendix B. Pipeline to compute algebraicallty independent rotation-

invariant polynomials

Here is a summary of the different steps to construct a family of alge-

braically independent rotation-invariant polynomials corresponding to rank-

L SH, up to a polynomial degree, t.

• Compute the Wigner matrices associated with rotations about x and

z axes of 1rad. This is presented in Sec. 2.2.

• Compute the associated linear transform T for both matrices, as de-

fined in Eq. 10, Sec. 2.3.

• Solve the linear system of Eq. 12 to find all linearly independent poly-

nomial invariants of degree t, as presented in Sec. 2.4.

• Using Alg. 1 (Sec. 3.2), prune the solutions to keep only the polynomi-

als which are algebraically independent with the solutions associated

with lower SH rank L′ < L, or with the same SH rank L′ = L but

smaller polynomial degree t′ < t.

Appendix C. Invariant polynomial solutions

Here are some of the solutions found after the pruning step. We denote

by P i
L,t the ith solution of degree t, corresponding to rank-L SH. We omit
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the superscript i when there is no ambiguity (i.e. there is only one solution

for this rank L and this degree t).

P0,1 = c0,0

P2,2 =
2∑

m=−2

c2
2,m

P2,3 = c20(6c2
2−2 − 3c2

2−1 − 2c2
20 − 3c2

21 + 6c2
22)

−5.196
(
c2−2(c2

2−1 − c2
21) + 2c2−1c21c22

)

P4,2 =
4∑

m=−4

c2
4,m

P 1
4,3 = −2.646(c2

2−2c4−4 + c2
22c4−4 + 2c2−2c22c44)

−3.742(c2−2c2−1c4−3 + c21c22c4−3) + c2−2c21c43 + c2−1c22c43)

−3.464(c2−2c20c4−2 + c20c22c42)

+1.414(c2−2c2−1c4−1 + c21c22c4−1 − c2−2c21c41 + c2−1c22c41)

−4.899(c2−1c20c4−1 + c20c21c41)

−0.447(c2
2−2c40 + 4c2

2−1c40 − 6c2
20c40 + 4c2

21c40 − c2
22c40)

−2c2
2−1c4−2 + 2c2

21c4−2 − 4c2−1c21c42
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- A general method to extract rotation-invariant measures in HARDI 

- These measures capture subtle differences not shown on FA or GFA maps 

- The invariants are shown to be reproducible across scan repetitions 

- The invariants are able to capture subject-specific information. 

 


