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Abstract

In this paper, An efficient a priori model reduction strategy for fric-
tional contact problems is presented. We propose to solve this problem
by using the finite element method and the non-linear LATIN solver.
Basically, this non-linear solver assumes a space time separated repre-
sentation presaging nowadays PGD strategies. We extend this family of
solvers to frictional engineering applications with reduced subspaces and
no prior knowledge about the solution (contrary to a posteriori model
reduction techniques). Hereinafter, a hybrid a priori/a posteriori LATIN-
PGD formulation for frictional contact problems is proposed. Indeed, the
suggested algorithm may or may not start with an initial guess of the
reduced basis and is able to enrich the basis in order to reach a given level
of accuracy. Moreover, it provides progressively the solution of the con-
sidered problem into a quasi-optimal space-time separated form compared
to the singular value decomposition (SVD). Some examples are provided
in order to illustrate the efficiency and quasi-optimality of the proposed
a priori reduced basis LATIN solver.
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1 Introduction

Finite element simulations involving frictional contact dare the computational
mechanics community. In spite of sophisticated algorithms, such simulations
can lead to strong numerical difficulties and large computational cost. Contact
mechanics is a broad topic involving several geometrical, optimization and nu-
merical aspects relying on strong mathematical foundations. A great coverage
of computational contact mechanics with all its basic ingredients is available in
[80]: from contact detection to implementation of contact algorithms in a finite
element software.

Frictional contact leads to a strong non-linear problem on the contacting
interface. Indeed, such phenomenon is characterized by non-smooth constitu-
tive laws (for both normal and tangential components). From various com-
putational fields and over the last decade, numerous numerical methods were
proposed to solve such problems. Generally speaking, contact problems can
be formulated as an optimization problem subjected to constraints. Then, the
Lagrange multiplier method can be used. For frictionless cases, such a formu-
lation can be casted into a Linear Complementarity Problem and solved with
dedicated approaches (Lemke’s algorithm, projected successive over-relaxation,
active-set methods...). For frictional cases, [9] proposes a method based on a dis-
cretization of the Coulomb’s cone affecting toughly the precision of the solution.
Augmented Lagrangian approaches are the most widespread formulations and
many methods were proposed to solve both frictionless and frictional problems
with these approaches [42, 76, 60, 79, 48, 2, 22, 69]. Non-linear Gauss-Seidel
solvers are also developed and applied to problems involving multi-contact bod-
ies (rigid or flexible) [53, 51], but they are not usually the most efficient way to
solve large systems due to a somehow low convergence rate. Gradient methods
[11, 40, 71, 38] and generalized Newton’s methods [1, 63, 32] were also adapted
to contact problems to reproduce performances of these well-known techniques.
The non-smooth behavior of the frictional contact generally prevents to provide
a convergence proof of these algorithms. Finally, the bipotential method [34, 52]
provides a formulation and a suited algorithm allowing also some computer cost
reduction. In [78], main results on space discretization scheme and non-linear
solver for the solution of frictional contact problems are provided.

Usually and even within a quasi-static context, all these non-linear solvers
may lead to a prohibitive computing time for industrial purposes. To address
this computational issue, several acceleration methods can be used. First, an
acceleration strategy based on multigrid methods were proposed in [4, 61]. It
consists in computing cheaply corrections on coarser discretizations (grids) to
accelerate the convergence rate of a non-linear solver (e.g. non-smooth Newton
method) also called smoother on the finest description of the problem. Second,
domain decomposition techniques (FETI-based) were also proposed for frictional
contact problems [36, 37]. Such techniques aims at partitioning bodies into non-
overlapping sub-domains processed independently. Then, interesting scalability
property can be gained. On the other hand and over the last decade, model
reduction techniques surge in enthusiasm within the computational mechanics
field. For both linear and non-linear problems, impressive accelerations can be
obtained. Nevertheless, for frictional contact mechanics, the use of such reduced
basis methods seem to be difficult due the non-smoothness of the constitutive
laws. As proposed and claimed in [45], using a space-time approach allows
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Figure 1: Problem set.

to circumvent this difficulty and benefiting from computational gain of such
reduced basis approaches.

Classically, two different approaches are arising from model reduction tech-
niques. Both consist in solving a given large scale reference problem in a reduced
size subspace. The difference lies on the method providing the so-called Re-
duced Basis (RB). The first approach is called a posteriori method and consists
firstly in designing a Reduced Order Model (ROM) [8, 6, 7, 23, 7, 66]. This is
achieved by computing a RB with solution snapshots using e.g. Proper Orthog-
onal Decomposition (POD) or Singular Value Decomposition (SVD). Then, the
reference problem and its governing equations are projected into the subspace
engendered by a truncation of this RB. The ROM is built during an offline
phase and may be expensive. The online phase consists in computing approx-
imated solutions of the ROM. Such a technique aims to provide real-time and
on-board computations and address efficiently multiparametric problems. Nev-
ertheless, accuracy of the ROM depends strongly on the relevancy of the initial
RB [50, 49].

The second approach is the a priori method [73, 74]. Contrary to the pre-
vious one, it does not require solution snapshots. The RB generating the ap-
proximation for the solution is computed along the resolution process. The
best-known a priori method is the Proper Generalized Decomposition (PGD)
[28, 29, 26, 59, 16]. It consists in searching the solution in a separable form re-
ducing the computation cost. Moreover, the expensive offline phase is avoided.

In practice, a posteriori and a priori methods are complementary. The first
approach approximates efficiently a given reference problem. The second one
provides an efficient tool to adapt or enrich a given RB on-the-fly to generate
suited approximations for the solution [54, 50, 43, 44].

In the present article, the authors propose an a priori approach close to
the LATIN-PGD approach [57, 70, 49] allowing to address frictional contact
problems. This new non-linear solver uses ingredients from both the Large
Time INcrement method (LATIN) [56] and the PGD.



2 Reference problem

A flexible body is contacting a rigid basement (figure 1). We define 2, the
domain occupied by this solid whose boundary is 9 at time t € [0,T] C R.
This boundary can be split into three complementary parts:

e 010 the part of the boundary where displacements u,, are prescribed;
e 052 the part of the boundary where external loads f. are prescribed;

e 030 the part of the boundary where contact conditions may occur (po-
tential contact interface).

2.1 Strong formulation

Linear assumptions are assessed (small displacements, homogeneous-isotropic-
linear-elastic material, small sliding). External loads are time-dependent but
a quasi-static regime is assumed. The problem can be set as follows: find the
displacement field and the Cauchy’s stress field denoted respectively by u(x,t)
and o(x,t) satisfying:

e kinematic admissibility:
u(x,t) €U and YT = {u e H'(Q) with u |s,ax0, 1= up} (1)
the strain-displacement (in small perturbations) relationship reads:
V(x, ) €2 x[0, T] : e(u)=21(Vu+ VTu) (2)
and the trace of the displacement field on the contact interface is v =
u |agszx[0, T]-

e static admissibility: o(x,t) is balanced with external force and contact
forces A, i.e.

V(x, t) € 020 x [0, T]: on=~fu
V(x, t) €050 x [0, T]: on=A\ (3)
V(x, t) € Qx [0, T]: div(c) =0

where n is the local outward normal vector.

e constitutive laws:

— Hooke law for elasticity:
V(x, t) € Qx [0, T] : o =Ke(u) (4)

where K is the linear elasticity operator.

— Coulomb frictional law for contact. With v and A, the traces of
displacement field and contact force field (both normal and tangen-
tial) on the contacting interface 03€2, these conditions can be written
formally as in [35] as follows:

R(V,A) =0 (5)



The fields at the contacting interface 032 can be split into a normal and a
tangential part as:

A%

—~~

x,t) = uyn+ur

A(x,t) = Ayn+ Ar ©

V(x, t) € 051 x [0, T]: {

According to Signorini conditions and Coulomb law on the displacement field
and contact force field, operator R governs the contact behavior at the interface
V(x, t) € 05Q x [0, T):

e Normal contact with Signorini conditions given in [75],

uy=u-n<g Non-penetration condition
Ay =(on) - n<0 Compressive contact force (7)
Av(g—un)=0 Complementarity condition

where ¢ is the initial gap.
e Tangential contact with Coulomb friction law [31]:

IATll2 = —pAN if sliding: ||dur|2 # 0 and dur = —pAr with p >0
IAT]l2 < —pAN if sticking: ||dur|2 =0

(®)

where p € [0, +o0[ is the friction coeflicient and duy is the increment of
tangential displacement.

2.2 Weak formulation

We define the following set of homogeneous kinematically admissible functions
as:

u(x, ) €U with U = {ue H'(Q) and u |s,0xp0 =0}  (9)

Equilibrium (3) is equivalent to the following integral formulation with com-
patibility of contact force field and displacement field to contact conditions (7)
and (8):

vu* eyl /
Q

o:e(u”)dV 7/

foxtou*de/ A udS=0 (10)
OZQ 83Q

2.3 Semi-discretized and discretized weak formulations

Using Hooke law for o = Ke and the finite element approximation for displace-
ment field yield to the so-called equilibrium equation with respect to frictional
contact conditions at each contacting node:

Vu (¢) /O " T (B Ku(t) dr

T
:/ (1) (Foe(6) + fre(9) At with R=0 (11)
0



K is the stiffness matrix, foxt(t) and f.i.(t) (corresponding to A(t)) are gen-
eralized forces and B is a boolean matrix mapping the global vector of nodal
values to the values on contact boundary nodes. All in all, we have to find dis-
placement field u(t) and contact force field f.i.(¢) verifying (11) for all weighting
functions u*(t).

The time interval is discretized into a sequence of time steps t1<r<m de-
scribing a regular time stepping (i.e. tp+1 = tx + At). Then, the time-space
discretized reference problem is defined as follows:

Vi€ [t1,tm] 0 Ku=fou +fic with R=0 (12)

This system characterized by stiffness matrix K has a size n x n (number
of degrees of freedom) and has to be verified for m time steps. The boolean
mapping operator B is such that:

i 00 A
} ur p and fo = BTA = [1 0 {AT} (13)
uy 0 1 N

010

V:Bu:[0 0 1

Relationship 12 defines a general non-linear problem including a non-smooth
constitutive law which can be extended to other behaviors without much change
in the formulation (cohesive contact, etc.).

3 Reduced basis and adaptation

Reduced basis methods are attractive techniques to tackle computational cost
and data storage issues. They are related to numerous techniques (principal
component analysis, POD...) and are also precious tools for model reduction
techniques.

3.1 A posteriori approach and the LATIN/FAS principle

Given a reference problem, a posteriori strategies consist in using prior knowl-
edge about the solution to compute inexpensively other close solutions (e.g.
multiparametric approach). This knowledge is obtained from some solution
snapshots (or coarse meshes, analytic solutions...) and are compressed into a
small basis using for instance SVD or POD [12]). Taking into account the most
dominant directions, a RB is obtained. Then the equations of the problem can
be Galerkin-projected into the RB providing the ROM for the considered prob-
lem. Efficiency of the ROM depends strongly on the relevancy of the RB. Thus,
a compromise between precision and size of the ROM has to be reached.

In [45], analysis of RB provided by SVD are carried out for frictional contact
problems and the LATIN/FAS strategy is proposed. It is exemplified that the
RB has a multiscale content. First modes (the most energetic ones) are global
at the overall structural scale, whereas higher order modes are localized to the
contacting zone. The LATIN/FAS method proceeds as the non-linear FAS (Full
Approximation Scheme) multigrid solver considering the RB as a coarse “grid”.
This strategy is embedded into the LATIN non-linear solver considered as a
smoother. Coarse corrections are computed on the RB reducing error at the
structural scale. Thus, the computational effort is concentrated to solve the



localized frictional behavior. A consequent computational speedup is obtained
and this strategy is efficient for multiparametric studies. Nevertheless, and in
order to reach high levels of accuracy, the RB may not be able to produce
relevant corrections. So, additional vectors are computed and added along the
iterations to the RB (enrichment). Consequently, the main challenge of the
LATIN/FAS is to provide a suited RB to compute relevant coarse corrections
for iterated solution. Moreover, its suggested enrichment strategy may lead to
expensive computations.

Hereinafter, the authors propose a robust PGD method consisting in solving
the considered problem with an appropriate and evolving RB along iterations.
Contrary to the LATIN/FAS method, the suggested a priori method does not
require prior knowledge to design a suited RB which is computed on-the-fly and
possibly from scratch. Furthermore, the strategy employed to achieve enrich-
ment of the RB is far less expensive than the one proposed for the LATIN /FAS.
In addition, it will be shown that the designed on-the-fly reduced basis has a
quasi-optimal property. In other word, the computed RB is close to the best
that one can compute for iterated solutions. Furthermore, as the PGD method
is employed, a low rank approximation for the solution has to be handled. Con-
sequently, a great computational work and huge memory requirements can be
spared.

3.2 A priori LATIN-PGD method

Solution fields defined in (11) for all time steps can be collected into a n-by-m
snapshot matrix. For example, a snapshot matrix of the discretized displace-
ment field is:

Ulgh; U1Et2§ ulgtm)

ug(ty) wua(te) -+ ua(lm

U= : : : = [u(t)) u(tz) - ult,)] (14)
Un(t1) wnp(te) - up(tm)

The snapshot matrix (14) can be approximated using a separated form (or
a low-rank approximation) as follows:
U=Vi®] +Vy®] + - +V, & (15)
u(t) = Vigi(t) + Vada(t) + -+ + V()

The vectors Vi, (respectively ®y) of size n (respectively m) are associated to
spatial modes (respectively temporal modes ¢x(t)). The number of pairs of
space-time modes (or dyads) is denoted by p. Consequently, a basis can be
computed (e.g. a spatial basis) to approximate U. Such a basis can be con-
sidered as a RB for U. In the following, we denote by (Vk)f the p-tuple of

space vectors and by (<I>k)11] the p-tuple of time vectors. If p < 1, p-tuples is
the empty set. The amount of data to store for (14) is of order n x m whereas
for the low-rank form (15) it is p(n +m). If p < 22 then low-rank form is
advantageous. Generally speaking, p has to be chosen such that the low-rank
form (15) generates an accurate approximation for (14) keeping an attractive

size for the expansion (15).




The PGD method is introduced in [28]. It consists in building (15) with
progressive enrichment stages (i.e. given an approximation U, new vectors
V and @ are sought and added to the expansion) making U more accurate
and close to U. This way and due to the fact that only vectors have to be
computed and stored, computational work and memory usage is drastically
reduced. Interested readers can also refer to [67] for exhaustive reviews and
details.

3.3 Optimality issues and downsizing

Intrinsically, the PGD method does not ensure the optimality of the separated
form (15) (i.e. it is a non-unique form and the optimal one is such that p
is minimal). According to [41] and considering the Frobenius norm, the best
separated form is provided by the SVD (the so-called optimality property).
To reach a certain level of accuracy for U, PGD process may need numerous
enrichment stages leading to large values for p (with potentially memory overflow
and computational cost issues). So for the sake of numerical efficiency, the size
p of (15) has to be controlled during the PGD process.

To enforce optimality property, a brute force solution is to perform a full
SVD computation on U after each enrichment step [46, 10]. A less expansive
method consists in deploying SVD updating techniques [21, 18]. Nevertheless,
all of those lies on burdensome methods to compute precisely the SVD of the
approximation U. This high computational effort is not worthwhile knowing
that U may be an inaccurate relatively to the solution of the reference problem.

This lead to assume that optimality property is useless and a soft downsizing
approach suffices (i.e. maintain the quality of U while decreasing p). To design
a suited algorithm, in a first step, an orthogonality property for (Vk)f is con-
sidered (i.e. VI'V; = §;; with §;; the Kronecker symbol). Then, the amplitude
of each mode is attributed to the corresponding time vector (<I>k)11’ . To preserve
this orthonormality property at each enrichment stage, one can use algorithm
1.

Algorithm 1: Orthogonal enrichment.

Input:
Preexisting p-tuples: {(Vk)f, (<I>11’)117} with VI'V, = §;;
New pair of modes: {V, <I>}
Output:

Enriched (p + 1)-tuples: {(Vy)

for k=1 to p do
Projection on existing space modes: o = VIV
Update corresponding time modes: ®;, = ®; + a®P
Subtract projected component: V < V — aVy

end

Norm of remaining space mode: 8 = ||V||2

Normalize space mode: V11 <~ V/f

Amplify time mode: ®,; < 5P

p+1

1 5 (i’k)?lﬂrl} With V;TV] - 5”

® N O oA W N =

Notwithstanding orthonormality for (Vk)zl), numerical experiments show

that the inflation of the PGD basis is not stemmed, and a redundancy also



occurs for the time modes (<I>k) To compress time vectors, the authors pro-
pose the following dyad to dyad projection strategy. In order to illustrate it, we
consider an application for an approximation U written with two dyads:

V@] + V@l with V)V, =4 (16)

U=
Equation (16) can be rewritten con51der1ng that @9 has a redundant com-
(ie

ponent with &4 = a®; + P, and <I>2 P, =0) as follows:

U= (Vi+aVy)dT + V&, =V, 87 + V, 8, (17)

_ Rewriting (17) does not respect orthogonality for space vectors (i.e. Vg =
BV1+Vy and VIV, = 0). Applying a orthonormalization yields:

U=V, (@7 +88,) + V&) = \71<1’>1T + V.3
V(8T + v
||V | V2]l

(V2] ®3) (18)

This process does not change U and preserves orthogonality property for
space vectors but does not ensure it for time vectors. The first projection step
(17) allows to compress redundancy between ®; and ®, into a new vector ®;
but looses the orthogonality for space vectors, therefore justifying step (18).
Incidentally, enforcing this property makes ®; and ®, no longer orthogonal.
This process can be repeated until having ®; and ®, orthogonal (i.e. having
produced the SVD of U).

Algorithm 2 generalizes this dyad to dyad process for larger expansions for
U. The process (17), (18) is applied in a certain sorting of modes, selected with
time vectors amplitudes (i.e. the dyad with the weakest amplitude is projected
on the one with the largest amplitude).



Algorithm 2: Downsizing stage

Input:

Existing p-tuples: {(V’f)[;’ (@k)f} such that VIV, = §;;
Max iterations: &max

Cut-off amplitude: ¢

Output:

Downsized g-tuples: {(V’C)(j7 (@k)(i} such that Vij =0y

1 for £ =1 to &ax do

2 Index p-tuples such that: ||®1]j2 > --- > ||®p]|2

3 for i = p down to 2 do

4 for j=1uptoi—1do

5 Projection of time mode: a = &7 ®;/(®] ®;)

6 Update corresponding space mode: V; < V; +aV;
7 Subtract projected component: ®; < ®; — aP;
8 Projection of space mode: 5 =VIV,;/(VIV})
9 Update corresponding time mode: V; <= V; — 8V
10 Subtract projected component: ®; < ®; 4 3P,
11 Norm of the j*™ space mode: ¢ = || V][>
12 Normalization: V; < V;/¢ and ®; < (P,
13 end
14 Norm of the i** space mode: v = ||Vl
15 Normalization: V; < V; /vy and ®; < P,
16 end
17 end
18 for i = p down to 1 do

19 if ||®;]|2 < € then
20 Elimination of V; and ®;
21 Decrement basis size: p+ p—1
22 end
23 end
24 ¢q=1p

A complexity estimation, denoted by ¢ (floating operations), of algorithm
2is ¢/&max = n(5p? — 3p—2) + m(3p* — 3p— 1) + 3p* - %? — 1. A cut-off
amplitude € can be fixed relatively to a desired accuracy for U. Embedded in
the PGD process, the downsizing algorithm 2 stems efficiently the inflation of
the expansion U. In practice, a very few iterations &max (1 or 2 iterations) is suf-
ficient. More iterations allow to make U converge to its SVD. To compare with
classical and widespread techniques: Lanczos thin-SVD method has a O(nmp?)
complexity [47] and fastest SVD updating methods have a complexity O(nmp)
[17].

4 Formulation of the LATIN-PGD for frictional
contact problems

One of the major ingredients of the proposed strategy is the LATIN method
[56]. This innovative non-incremental approach is well known for its ability to

10



solve efficiently various non-linear time dependent problems such as frictional
contact problems [24, 25, 45], large displacement [15], non-linear materials [13,
30, 70], transient dynamics [58, 62, 68]. The non-incremental LATIN method
was initially proposed as a commitment of three principles:

(P1) Separation of the linear and non-linear behaviors. A denotes the set of
solutions s = (v, )\) satisfying linear constitutive law, kinematic admissi-
bility and static admissibility. These are defined on the whole space-time
domain Q x [0, T]. T denotes the set of solutions § = (\7,5\) verifying
frictional contact conditions and are defined locally at the contacting in-
terface and on the whole time interval 93 x [0,7]. The solution of the
problem is s € ANT.

(P2) A two-staged iterative algorithm. The solution of the problem is searched
with the construction of two sequences of approximations belonging alter-
natively to A and T'. At the i*" iteration, the local stage consists in finding
§; = (\71-, 5\1) € T’ with a search direction (él — Si—l) = (\‘fi —Vi_1, i —
>\z‘—1) € ET. Note that s;_1 = (\71_1,5\1_1) is known from the previous
iteration. Then, the global stage consists in finding s; = (vi, )\i) € A with
another search direction (si — éz) = (vi — Vi, A — 5\1) € E~. Note that

§; = (\71-, 5\1) is known from the previous local stage.

(P3) Radial approximation or space-time separation. Unknowns are repre-
sented as a sum of products between a space function and a time function.
This supplementary constraint makes the problem over-determined. In or-
der to enforce the constraints in (P1), the search direction equation E~
is then verified in a weak sense. It was initially stated to limit memory
usage.

These principles are illustrated on figure 2. For certain cases and for sake
of simplicity, the LATIN method can be formulated without the space-time
separation stated in (P3). In this case several similarities can be stated with
augmented Lagrangian methods [3].

Local stage Given a solution s = (v, )\) verifying the internal balance, kine-
matic admissibility and static admissibility, the local stage is an updating stage
occurring at the contacting interface. At each node, non-linear frictional contact
conditions and search direction equation have to be verified. The nodal search
direction equations for both normal and tangential components reads:
()« 3 ov = v = (o =) (19

er =Ar — Ap =k (Y7 — vr)

kx and kr are parameters of the method defined at each node. It is similar to the
penalty parameter in an augmented Lagrangian formulation. Different values for
the normal and tangential problem can be chosen. These values influence only
the convergence rate and optimal values are related to mechanical properties of
the studied body [56, 25, 14, 77]. According to [14], close-to-optimum values
are searched as follows:

ky =EL. and kp =FEL. (20)

11



rx|o, T]

AX[0,T]
so = (vo, o)
si—1 = (Vi—1,Ai—1)
s si = (v, As)
(a)
I'x[o0, T]
8 =
AX[0,T]
so = (vo, o)

Asi = (Aui, A}\,)

(b)

Figure 2: Tllustration of LATIN non-linear iterative solver. (a) using (P1) and
(P2) principles — (b) using (P1), (P2) and (P3) principles: dashed arrows
symbolize exact search directions whereas waving line are approximated search
directions.

12



Normal components
Sw=lew) b " few)
= {c oy =g—— {c
N N)_ N =4 kn N)y+
Tangential components
Sliding: ||CTH2 > M‘S\Nl StiCkil’ng ||CT||2 < /.L|5\N‘
t =cr/[lerll:
XT:,LL'j\N‘t AT:CT
sk _ ak—1
~ e 1 ~ T = VT
o =947 — = (lerl — nln] )t

Table 1: Solutions of the local stage.

with E the Young’s modulus and L. contact characteristic dimensions. ky 1
have the dimension of a stiffness. Search direction equations can be equivalently
rewritten introducing the gap parameter (for the normal component) and the
displacement of the previous time step (for the tangential component, with a
superscript k — 1). This yields to the following equations:
ey = én + kg = An — kn(on — 9) = Ay — kn(in — g) (21)
cr =& + kit = Ap — kp(VE —VETY) = Ap — kp(VE — VAT

vk refers to the nodal displacement on the contacting interface in the tangential
plane at time step t;. Then, contact conditions can be easily applied on each
term of ¢y and cr.

Explicit solutions of the local stage are given in table 1 and have to be
computed for each node belonging to the contacting interface and for each time
step. Hence, the solution of the local stage § = (\7, 5\) verifies strictly frictional
contact conditions and gives a prediction/correction given a solution s = (v7 /\)
verifying internal balance. Moreover, § is computed explicitly.

Global stage Given a solution § = (\7, 5\) issued from the previous local stage
and verifying frictional contact conditions. The global stage consists in finding
a space-time solution defined on the whole space domain and time interval
verifying the linear constitutive law, kinematic admissibility, static admissibility.
We introduce an additional search direction equation to introduce the local stage
frictional contact prediction. This stage consists in finding a displacement field
and a contact force field s = (v, A) defined over 950 x [0, T'. These fields have
to verify the admissibility equations:

(22)

Ku = fext + BTA
v = Bu

v is the trace of the displacement field over 93 x [0, T whereas u is defined
over the whole space-time domain. According to the second principle of the
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LATIN method, the search direction has to be verified as well. Let us write
search direction equations for the whole contacting interface (with Ig the iden-
tity matrix):

e - L () e

All in all, taking into account only the first and the second principle of the
LATIN method leads to solve the following linear system for each time step:

[K + BTkBJu = f + BT (A + k¥)
v =Bu (24)
A=X+k(V-v)

Note that the operator [K + BTkB] is symmetric definite positive and remains
constant along the iterations.

K is the stiffness matrix, taking into account the Dirichlet boundary con-
ditions (1). If these last conditions are not sufficient, K is only semi-definite
positive. If the genuine problem is well-posed, the active and /or sticking contact
conditions for the solution are sufficient to prevent any undefined rigid body mo-
tion. The full matrix [K +B7kB] is the previous stiffness matrix completed by
a Robin-like boundary condition (with stiffness k) on the whole potential con-
tact area. This last term is therefore sufficient to get a regular left hand side.
Nevertheless, one has to take care of its condition number to solve efficiently
such a linear system.

Initialization and stopping criterion Assuming that s € A, so does the
initial guess sg. Consequently, the iterative process is initialized with the linear
contactless elastic solution:

I<uO = fext

Ao = 0 (25)

sy = (uo,)\o) such that {

We also use the convergence indicator (26) introduced in [72]. Iterations are
stopped once a threshold is reached: 7 < e.

T — max [sn — 8~ st —87l1%
- ~ b) A~
IswllZ + lIswlliZ "\ lszllZ + lIszllZ

. 1
with ||SN7TH20 = max {A?\, r+ k:N,Tu?V | (26)
xi kg ,

where k7 is the search direction parameter. Note that subscripts NV and T re-
fer respectively to normal and tangential components at a given node belonging
to the contacting interface. Using maximum norms, the convergence criterion
(26) is a very tough criterion. A comparison with an other far less restrictive
indicator is available in [45].
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Global stage with space-time separation The third principle consists in
searching the solution of the reference problem (both displacement field and
contact force field) under a separated form. Using the finite element framework,
it reads:

u(t) = uo(t) + Y Vidrl(t)
et (27)

A(t) = Xo(t) + ) Luoi(t)
k=1

Vectors Vi, (resp. L) are space vectors associated to the displacement field
defined over Q (resp. contact force field defined over 052) and functions ¢ (t)
(resp. ¥i(t)) are time functions associated to Vy, (resp. Ly) and defined on
[0,T]. Vectors ug and Ag are initial guesses (which can be also provided as
low rank approximations). The approximation (27) can be written equivalently
using a matrix notation as follows:

P
u=ug+ Z Vi @g
o (28)
A=Xo+ ) Ly¥f
k=1
First, we reformulate equations of the global stage with a corrective scheme.
At a given iteration (indexed by i), the correction As = (Au, A) is computed
and added to the solution of the previous global stage s;_1, so that the quality

of the updated solution s = s;_; + As improves. Subtracting appropriate
quantities to equations (24) yields to the following problem to solve:

KAu=BTAM
Av =BAu (29)
AN +kAvVv —res,g =0

where ressq = X — X\j_1 + k(¥ — v;_1) is known at this stage.
Second, we introduce the separated representation for corrective increments:

{Au =Vo(t) onQx[0,T] (30)

AX=Ly(t) on d50 x [0,T]
Substituting representations (30) in the internal balance equation of (29) yields
to a relationship between space and time functions:
KV = BTL
o(t) = ¥(t)
The problem (29) including representation (30) respecting (31) (i.e. internal
balance equation) is over-constrained. As a consequence, search direction equa-

tions are verified at best (i.e. in a weak sense) by solving the following general
minimization problem:

{W,¢(t)} = arg_min [[W¢(t) - resur (32)
W.,b(t)

Vte€[0,7T): KVo(t)=BTLy(t) <« { (31)
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with W = L + kBV. The auxiliary space unknown W defined on 05 is
introduced to take into account the linear relationship (31) between V and L
ensuring the internal balance. To compute them, the following relationships can
be used:

K + B7kB]V = BTW

L=W -kBV

4.1 Find time functions with fixed space functions

In this stage, one looks for solving global stage defined in (32) with given space
functions (W)} provided by an initial guess or by the previous iterations. Cor-

rections ($k)’1’ for time functions are sought according the following optimization
problem: _ B
¢ = argmin |[Wro —ressd||r (34)
é

A Galerkin method is applied with the trial function w* = Wj¢*(t) and yields
to:
¢r = Wi resy (35)

Consequently, updated time modes are (¢x)] < (¢x + (Ek)f . The corresponding
pseudo-code is given in algorithm 3.

Algorithm 3: Time modes update.

Input:

resyq

p-tuple of existing space modes: (W;C)Zl7
p-tuple of existing time modes: (qbk)f
Output:

p-tuple of updated time modes: (qﬁk)i)

1 for k=1 to pdo
2 ‘ Update time modes: ¢ < ¢r + W{ressd
3 end

Because space functions are fixed, convergence may be slow and accuracy for
the solution depends the given space basis. Usually, this stage is only deployed
to update time functions and does not suffice to solve the considered problem.

To make the space basis more relevant, extra space modes have to be computed
and added.

4.2 Enrichment stage

The enrichment stage consists in generating a new pair of space-time functions
extending the basis and making the iterated solution more accurate. So, the
following optimization problem for the global stage defined on (32) has to be
solved:

{W,¢(t)} = argmin [[W¢(t) — resq| r (36)
Wa(t)
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Based on a space-time weak form modeling method as (11), a Galerkin method
is applied with the trial function w* = W*¢(t) + W¢*(¢) and yields to:

/0 o (W¢(t) - ressd) dt =0 (37)

The non-linear system (37) is solved with a robust iterative strategy [27]. It
proceeds in two steps, repeated until convergence. The first step consists in
computing vector W knowing ¢(t) from the previous step. Then, the second
step consists in updating ¢(t) knowing W from the first step. The process is
stopped when W and ¢(t) are no more significantly updated.

First step Space vector W is updated knowing ¢(¢) from the previous step:
T T
W — / ress(t) dt / / P2 () dt (38)
0 0

Second step Time function ¢(t) is searched knowing W from the first step:
¢(t) = W'resyq /(WT'W) (39)

In practice, a very few iterations are needed and a normalization condition is
applied for one of the two vectors. The pseudo-code of this method is given in
the algorithm 4.

Algorithm 4: Enrichment stage.

Input:

resgq

Max subiterations: &pax
Output:

New space vector: W

New time mode: ¢(t)
Initialize ¢(t) (e.g. ¢(t) =1)
for £ =1 to &ax do

3 | Compute space mode: W = fOT ressqP(t) dt/ fOT o> (t)dt

N =

4 Compute time mode: ¢(t) = W'resy/(WTW)
5 Space mode amplitude: a = ||[W]|2

6 Normalize space mode: W = W/«

7 Amplify time mode: ¢(t) = ad(t)

8 end

Once the new pair is found, space and time basis are enriched using algorithm

4.3 Preliminary stage

In [13], the preliminary stage consists in updating time functions as described
in 4.1. Then, the enrichment stage is used only if the convergence criterion
stagnates (e.g. if the error indicator decreases by a factor less than 10%). We
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propose herein to enhance the preliminary stage by updating space modes as
well with corrections (Wk)zf for fixed time modes. This new updating phase
is defined from the global stage equation (32) and the following optimization
problem: .
W, = argmin [[W¢y(t) — ressl|r (40)
W

A Galerkin method with the trial function w* = W} (t) is used and yields to:

T T
W), = / ressaox (1) dt// G2 (t) dt (41)
0 0
Because of orthonormality condition, space modes (Wk)zlj can not be updated

directly and each correction Wk has to be projected in the spatial basis. The
corresponding pseudo-code is given in algorithm 5.

Algorithm 5: Space modes update

Input:

resgq

p-tuple of existing space modes: (Wy)}
p-tuple of existing time modes: ((bk):z;
Output:

p-tuple of updated space modes: (Wk)f

1 fori=1to pdo
Space mode correction: W; = fOT resg¢;(t)dt/ fOT o2 (t) dt

2
3 Update: resyq < resgq + Wi@-(t)

4 for j=1topdo

5 Projection of the correction: a = Wijvl

6 Update corresponding time modes: ®; = ®; + a®;
7 Subtract projected component: V\c — WZ —aW;
8 end

9 Correction of space mode: W; + W, + \NNl

10 Norm of space mode: 8 = ||W,||2

11 Normalization: W,; + W,/

12 Amplification: ®; + P;

13 end

After the two updating stages for time and space modes, the enrichment
stage is eventually used according to the decreasing of the convergence indicator.
These stages fulfill the global stage and provide a kinematically and statically
admissible solution. In addition, and once a global stage is solved, a downsizing
stage defined with algorithm 2 is used in order to control the basis size.

4.4 The quasi-optimal LATIN-PGD algorithm for frictional
contact

The whole pseudo-code of the quasi-optimal LATIN-PGD is given in algorithm
6. Note that, the cut-off amplitude criterion of the downsizing stage is choosen
in relation to the LATIN-PGD convergence indicator.
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Algorithm 6: Quasi-optimal LATIN algorithm for frictional contact
Data:
Precisions &,emax
Enriching criterion 0 < 0 < 1

1 Compute linear elastic solution Kug = fext and Ao = 0
2 Initialization of the PGD basis p = 0, (Wk)f = () and (d)k)f =0
3 while Z > ¢ do
4 ** Local stage *x*
5 Build interface solution — (v, X)
6 Solve local stage — (¥, A)
7 ** Extended preliminary stage **
8 if p > 1 then
9 Compute res.q = (A + kit) — (Ao + kBup) + > Wior(t)
10 Time modes update — (qﬁk)f
11 Update ressa = (A + kit) — (Ao + kBuo) + 37, Wioy(t)
12 Space modes update — (Wk)ll’
13 end
14 ** Enrichment stage *x*
15 if (1 —7/7° < 6) then
16 Compute ressq = (5\ +kit) — (Ao + kBug) + > 7, Wior(t)
17 Enrichment stage — {W, ¢}
18 Orthogonal enrichment — {(VV;C)I;H7 (qﬁk)zljﬂ}
19 Increment basis size p < p+ 1
20 end
21 ** Downsizing stage *x*
22 if p > 1 then
23 Downsizing stage with {max = 1 and € = emax — {(Wk)(ll, (¢k)(11}
24 Update basis size p = ¢
25 end
26 ** Convergence check *x*
27 Save previous convergence criterion 7o T
28 Compute convergence criterion Z
29 end

5 Two-dimensional numerical application

The proposed LATIN-PGD method is applied to the two dimensional frictional
model illustrated in figure 3 with numerical properties given in Table 2. It is a
flexible indenter subject to prescribed displacements. These are designed such
that boundary 05 is contacting a rigid part with successively different regimes
(active contact or not, sliding, sticking) within the studied time interval.

To solve the initial reference problem, the LATIN non-linear solver is used.

5.1 A posteriori analysis of the reference solution
As in [45], a posteriori analyses can be carried out to exemplify the reducibility of
the space-time reference solution (u”, ") and its multiscale content. Moreover,

a SVD basis of reference vectors (WZ)P can be extracted from the following

1
singular values decomposition:
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Figure 3: (a) Model — (b) Prescribed displacement evolution — (c) Mesh —
(d) Shape of the deformed body at t150.

Number of time steps m 200
Number of dofs n 1194
Number of contacting nodes | n¢ 41
Young modulus E 105 Pa
Poisson ratio v 0.3
Friction coefficient 7 0.15
Final time T 1s
Search direction kr | 40000 N/m
Search direction knx | 20000 N/m

Table 2: Simulation parameters.
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Figure 4: Errors of rebuilt solution taking into account a given number of modes.

Wivi(t) + - + Wi (t) = svd (A" — Ag) + kB(u" — uy)) (42)
Associated vectors (Vi)f and (L’,;)f
also computed and an approximated solution (@, S\T) can be rebuilt taking into
account only P modes. The larger is P, the more accurate is the solution (if
P = K the solution is exactly recovered). On figure 4 different error indicators
are provided to illustrate the reducibility of the solution. For instance, if one
takes into account 10 modes, the error on the displacement field is 2.7 x 1074,
on the contact force field 4.8 x 10~2 and the LATIN error measure is 3.3 x 1074,
All in all, depending on the field of interest, very few modes are sufficient to
generate the solution. Usually, the displacement field needs less modes than the
contact force field to be recovered.

A few space modes for both displacement and contact force field and as-
sociated time modes are given on figure 5. The same observations as in [45]
can be made as far as the scale separability of a frictional contact problem is
concerned: First modes (the most energetic ones) depict a global scale of the
solution (scale of the structure and spread over the whole time interval) whereas
higher order modes bring corrections localized at the contacting interface and
at specific time steps.

correcting the elastic solution can be

5.2 Application of the quasi-optimal LATIN-PGD method

In this section, performances are compared between the LATIN method (with-
out separated representation) and the LATIN-PGD (see figure 6). To reach the
same level of precision, the LATIN-PGD requires less iterations than the LATIN
method. Moreover, note that the complexity of one LATIN-PGD iteration is
far less than one of the LATIN method. So the computation cost is reduced
drastically using the LATIN-PGD.

A very interesting point is the evolution of the PGD basis. As the LATIN-
PGD converges to the solution of the reference problem, the PGD basis has to
span the same subspace as the one given by (42). Remarkably, the size of the
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PGD basis grows up until reaching, after a certain number of iterations, the size
of the reference SVD basis.

The behavior of the PGD basis along iterations can be illustrated using
Modal Assurance Criterion (MAC) diagrams [5]. Given two sets of vectors of
same dimension (X;)} and (Y;)?, the MAC matrix M is defined as follows:

X7Y;?

M)i<i<p = T3y 2
<o IXalPIY )2

<i € [0,1] (43)
<j

The coefficient M;; measures the correlation between modes X; and modes Y.
If M;; =1, then X; and Y; are colinear (highly correlated). On the contrary,
M;; = 0 means that X; and Y; are orthogonal (uncorrelated). In practice
MAC matrix is plotted using gray scale or 3D histogram to visualize correlation
between a given set of modes and a reference one. Figure 7 reports the MAC
matrices between the first 30 reference SVD modes and iterated PGD ones. The
main observations can be pointed out:

e The PGD modes are clearly correlated to the corresponding SVD modes
(according their order and depending on the precision of the solution).

e The PGD modes are computed hierarchically: structural modes are found
at first.

e The larger the number of iterations is, the more accurate the solution is
and the more correlations between PGD modes and SVD modes appear.

Thanks to the downsizing stage, iterated solutions are provided in a quasi-
optimal separated form (i.e. close to the SVD). To make it even more close
to the reference SVD basis, the parameter &,.x can be set to a higher value.
But and as it was explained in section 3.3, the strict optimality property is
superfluous.

This observation emphasizes and exemplify a multiscale approach within
the LATIN-PGD. The problem is firstly solved on the structural scales. Then,
the problem is solved locally at the contacting interface. This strengthens the
approach developed in [45] and fosters multiscale methods.

5.3 Imitialization using coarse computations

In this section, a pre-computation method is proposed to initialize the PGD basis
to accelerate convergence of the LATIN-PGD. It consists in finding global scale
PGD modes (both in space and time) using a coarse space-time discretization
(see figure 8). Indeed, the global scale behavior of the structure can be tracked
using a coarse mesh and larger time steps. This pre-computation (less expensive
than the reference model) allows to give a first guess of PGD modes. For the
present example, we propose to use the coarse model described in the figure 9
and in the table 3.

Once the coarse problem is solved (i.e. the solution s = (u®, AY) is known),
the displacement field is interpolated (using [39] or a trilinear interpolation ...)
on the reference space-time discretization providing u. Then, a first guess of
the PGD basis can be deduced easily using the following formula:

W = svd(BK(ii — ug) + kB(ii — up)) (44)
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Figure 7: MAC diagrams after a certain number of iterations for both space
modes and time modes.

Number of time steps m | 50
Number of dofs n | 586
Number of contacting nodes ne | 26
Final time T | 1s

Number of reduced SVD modes 40

Table 3: Simulation parameters for the coarse model.
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Figure 9: Coarse mesh used for pre-computation.

Only first modes of (44) are considered (global modes) because higher order
ones may be irrelevant (dependence on the discretization and the interpolation
method). This initialization (see figure 10) provides interesting features. First,
the initial solution is more accurate than the elastic solution (roughly 3 decades
are gained). Second, the error of the initialized LATIN-PGD decreases rapidly
during first iterations until recovering the same convergence rate as the unini-
tialized LATIN-PGD (pre-computed coarse modes are rapidly corrected on the
fine discretization). In practice, to reach a very high-level of accuracy (says
10~%), this initialization allows to divide by 2 the number of iterations (global
modes are already found and few iterations are needed to capture the local be-
havior) relatively to the standard LATIN-PGD and by 4 relatively to the LATIN
method. Nevertheless for higher levels of accuracy, more computational work is
needed to describe precisely the local behavior diminishing relatively the gain
of this initialization method. Of course, the gain of the initialization depends
on the quality of the displacement projector from coarse to fine mesh.

6 Three-dimensional numerical application

The previous example can be easily transposed to a three dimensional case as
described in the figure 11 and in the table 4.

Same a posteriori analyses can be carried out for the solution to exhibit the
multiscale content of the SVD basis (see figures 12 and 13). As the previous
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Evolution of the error versus iterations
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Figure 10: Convergence plots with an initial guess for the PGD basis.
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Figure 11: (a) Model — (b) Prescribed displacement evolution — (c) Shape of
the deformed body (fine mesh) at 150 — (d) Fine mesh — (e) Coarse mesh.
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Fine model | Coarse model
Number of time steps m 200 50
Number of dofs n 12099 7920
Number of contacting nodes ne 385 172
Young modulus E 10° Pa 10° Pa
Poisson ratio v 0.3 0.3
Friction coefficient I 0.15 0.15
Final time T 1s 1s
Number of reduced SVD modes 160 44
Search direction kr | 3000 N/m 3000 N/m
Search direction kn | 1000 N/m 1000 N/m

Table 4: Simulation parameters.
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Figure 12: Errors of rebuilt solution taking into account a given number of
modes for the 3D problem.

two-dimensional problem, a scale separability phenomenon can be pointed out
as far as spatial and time modes are concerned.

The LATIN method, the LATIN-PGD and the LATIN-PGD initialized with
10 coarse space-time modes are compared on figure 14. LATIN-PGD overtakes
again the LATIN method in terms of iterations. In addition, a LATIN-PGD
iteration is less costly than one of the LATIN method. The initialization of the
PGD basis allows to gain roughly one decade which is limited in comparison to
the two dimensional previous example. To achieve it and for sake of simplic-
ity, the authors use a collocation projection which is simpler but less accurate
than [39]. Nevertheless, the LATIN-PGD shows a great potential to solve 3D
frictional problems well-known for their toughness.
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Figure 13: Space-time modes Vi 35 (displacement field), Ly 35 (contact force
field) computed from Wi 35 and ¢q 3 5(¢) for the 3D problem.
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Evolution of the error versus iterations
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Figure 14: Convergence plots with an initial guess for the PGD basis for the 3D
problem.

7 Conclusion and perspectives

This article provides the formulation of the quasi-optimal LATIN-PGD solver
dedicated to frictional contact problems. This new a priori reduced basis strat-
egy converges faster compared to classic LATIN solver and requires less compu-
tational effort and memory usage. Moreover, the quasi-optimality property is a
striking observation. The solution is found progressively according to its optimal
modes provided by the SVD. This is achieved by a enhanced preliminary stage
increasing the convergence rate and an efficient downsizing stage awarding the
suggested approach a quasi-optimality property for PGD basis. At convergence,
the solution of the considered problem is provided into a separated space-time
form close to the SVD.

Numerical applications illustrate the ability of the suggested approach to
solve two-dimensional and three-dimensional problems. In addition and to take
advantage of the scale separability of the space-time basis, an initialization
method was proposed. Global and structural modes of the solution are com-
puted on coarse space-time discretizations. Then, they are reused to provide
an initial guess for the space-time basis on reference discretizations sparing a
consequent computational effort.

In this paper, the tackled problem involves a single flexible body contacting
a rigid basement for the sake of simplicity. Nonetheless, multibody system can
be easily implemented by considering appropriate frictional contact conditions
between a couple of flexible bodies. So, the local stage has to be generalized
to these new conditions. But, the overall of the approach remains the same.
The global stage aims still at solving internal balance with PGD space-time
representation but different approaches are possible. The first consists in tack-
ling globally all solids with a single family of space-time functions wherein whole
unknowns are assembled. The second consists in tackling each solid individually
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with a dedicated family of space-time functions. This last approach is suited
for parallel computing but harder to implement.

Furthermore, the LATIN method provides also a framework to take into ac-
count other kind of non-linearities such as finite strains, non-linear material such
as plasticity accounting the space-time separation. Then, it would be possible
to take into account those supplementary non-linearities in the presented work
with the developed method.

This strategy can be easily extended to the multiparametric framework as
introduced in [26, 49]. For that purpose, a parameter of the reference problem
(e.g. frictional coefficient) may considered as a variable of the problem. Then,
the approximated displacement field solution is still sought as a separated form
solution u(x,t; 1) = u(x,t, 1) = ug(x,t, 1) + >, V(x)p(t) f(1). Nevertheless,
downsizing approaches and compression techniques such as PARAFAC [19, 20]
or promising HOSVD [64, 55, 33, 65] remain challenging.
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