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Abstract 

Short Term Load Forecasting (STLF) is essential for planning the day-to-day operation of an electric power system. 
As this forecasting leads to increased security operation’s conditions and economic cost savings, numerous 
techniques have been used to improve the STLF. We propose in this paper the comparison of two nonlinear 
regression techniques namely Gaussian Process (GP) regression models and Neural Network (NN) models.  While 
the Bayesian approach to NN modelling offers significant advantages over the classical NN learning methods, it will 
be shown that the use of GP regression models will improve the performances of the forecasting. The proposed 
techniques are applied to real load data. 

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer] 
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1. Introduction 

Short Term Load Forecasting (STLF) is essential for planning the day-to-day operation of an electric 
power system [1]. Accurate forecasts of the system load on an hour by hour basis from one day to a week 
ahead help the system operator to accomplish a variety of tasks like economic scheduling of generating 
capacity, scheduling of fuel purchases, etc… In particular, the forecasting of the peak demand is important 
as the generation capacity of an electric utility must meet this requirement. As this forecasting leads to 
increased security operation’s conditions and economic cost savings, numerous techniques have been used 
to improve the STLF [2]. Among these techniques, the use of Neural Networks (NNs) is particularly 
predominant in the load forecasting field [2]. Indeed, the availability of historical load data on the utility 
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databases and the fact that NNs are data-driven approaches capable of performing a nonlinear mapping 
between a set of input and output variables make this modelling tool very attractive. However, as stated 
by ([2], [3], NNs are such flexible models that the task of designing a NN for a particular application is far 
from easy. This statement stems from the fact that NNs are able to approximate any continuous function at 
an arbitrary accuracy, provided the number of hidden neurons is sufficient [4]. However, this ability has a 
downside that such close approximation can become approximation to the noise. As a consequence, the 
model yields solutions that generalize poorly when new data are presented. In the NN community, this 
problem is called overfitting and may come about because the NN model is too complex. In other words, 
conventional NN learning methods must be improved. For this purpose, we propose first a probabilistic 
interpretation of the NN learning by using Bayesian techniques. MacKay [5] originally developed 
Bayesian methods for NNs. The Bayesian approach to modelling offers significant advantages over the 
classical NN learning process. Among others, one can cite the automatic matching of complexity of the 
NN model to the problem being solved. However, many approximations must be done in the Bayesian NN 
context. Conversely, GPs [6] are powerful methods for regression where most of the computations are 
analytically tractable. In this survey, the two modeling techniques (NNs and GPs) are applied to real-load 
data. The data were provided by EDF, the French electricity utility. 

Nomenclature 

x1   Week-end or Holiday flag for day d-1 

x2  hour 

x3  Yesterday’s actual temperature at this hour 

x4  Yesterday’s actual global solar irradiance at this hour 

x5  Yesterday’s actual load at this hour 

x6  Week-end or Holiday flag for day d 

x7  Actual temperature at this hour 

x8  Actual global solar irradiance at this hour 

x9   Actual load at this hour  

x10  Temperature forecast for the next day at this hour 

2. Model description and context of study 

    In order to assess the feasibility of the proposed approaches, we designed a NN model and a GP model 
whose goal is to forecast the next day’s load at the same hour. Actually, the model constitutes an hourly 
module that consists in determining the nonlinear relationship between each hour’s load profile with past 
load and weather readings for the same hour. This hourly module is part of a global forecaster (that yields 
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the complete load profile for the next day) obtained by combining the 24 hourly modules. A bibliographic 
survey ([2], [7]) helps us to a priori retain the input variables x1 to x10  given in the nomenclature. The 
data were collected from a micro-region of the south of Reunion Island (21.06 S, 55.36 E) in 2001. The 
database contains up to 1074 hourly records. 

3. Neural network: a parametric approach to STLF 

3.1. Classical NN  

The most popular form of NN is the so-called Multi-Layer Perceptron (MLP) structure. The MLP 
structure consists of an input layer, one or several hidden layers and an output layer. The input layer 
gathers the model’s inputs vector x while the output layer yields the model’s output vector y. In our case, 
y is reduced to the scalar y which is the corresponding forecast of the next day’s load at the same hour. 
Fig. 1 represents a one hidden layer MLP. 

Fig. 1.  Sketch of a MLP with d inputs and h hidden units, in our case, d=10. The output y is the next day’s load at the same hour 

The hidden layer is characterized by several nonlinear units (or neurons). The nonlinear function f is
usually the tangent hyperbolic function 

.

Therefore, an NN with d inputs, h hidden neurons and a single linear output unit defines a nonlinear 
parameterized mapping from an input x to an output y given by the following relationship 

.The NN parameters  and , aggregated in the parameter vector w, govern the nonlinear 
mapping. The NN parameters w are estimated during a phase called the training or learning phase. The 
second phase, called the generalization phase, consists in evaluating the ability of the NN to generalize, 
that is to say, to give correct predictions when it is confronted with new input examples. Careful attention 
must be taken during the learning process as the NN model will overfit easily (i.e. will give poor 
predictions on unseen data) if the model is too complex. One means to controlling this complexity is to 
make use of Bayesian inference.  

3.2. Bayesian NN  

The Bayesian approach considers a probability density function (pdf) over weight space. This pdf 
represents the degrees of belief taken by the different values of the weight vector. This pdf is set initially 
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to some prior distribution and converted into a posterior distribution once the data have been observed 
through the use of Bayes’ rule 

���|�� � ���|�����������,
which can be also formulated as ��������� � ������������� ������ �������������������⁄ . So, 

instead of the single ‘best’ set of weights computed by the classical approach of maximum likelihood 
(through minimization of an error function), Bayesian methods yield a complete distribution for the NN 
parameters. This posterior weight distribution can then be used to infer predictions of the network for new 
values of the input variables. In such a supervised parametric learning, Bayesian inference is based on the 
ingredients depicted in Table 1. 

Table 1. Bayesian NN inference 

Item  Formulation  Remarks 

Data � � ���� �������  and �� � ����� ���������  Training set ( n samples) and test set ( n* samples)

Model 

�� � ����� �� � ��
The formulation of the Gaussian noise can also be given as: 

�� � ���� ��� i.e. �� follows a Gaussian distribution with mean 
zero and variance �� .

We assume that the ith target variable ti   is given 
by some deterministic function of input vector x
with added independent Gaussian noise εi .

Likelihood ���|�� �� � � �
����� ��� ��

�
������� � ��������

�

���
�

Since we chose a Gaussian noise, the likelihood is 
also Gaussian.   

Prior ����   

Posterior ���|�� �� � ���|�������� ���|��⁄  By applying Bayes’ rule 

Predictions ����|��� �� �� � �����|�� �������|�� ����
Make predictions for a test case x* by averaging 
over all parameter values weighted by their 
posterior probability. 

It is important to note that in a multi-parameter context such as NN learning (the dimension of w is large), 
the evaluation of integrals over weight space cannot be analytically performed. MacKay [5] proposed a 
specific numerical approximation scheme called the evidence framework in order to overcome this 
problem. For more details about the implementation of Bayesian NN, the interested reader should also 
refer to [8]. 

4. Gaussian process: A non parametric approach to STLF 

GPs are a relatively recent development in non-linear modeling [6]. GPs are well suited to regression 
problem as the inference can be done analytically as opposed with NN models where approximations are 
needed in order to evaluate the integrals. An alternative way of reaching identical (or even better) results 
to the previous section is possible by considering inference directly in function space (whereas, regarding 
NN, inference is taking place in the weight space). A GP is a generalization of a multivariate Gaussian 
distribution to infinitely many variables. A multivariate Gaussian distribution is fully specified by a mean 
vector μ and covariance matrix ∑  e.g. � � ���� ��� ��� � � ��� � ���� ��. Similarly, a GP is fully specified 
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by a mean function ���� and covariance function ���, ��� e.g ���� � �������, ���, ���.The covariance 
function specifies the covariance between pairs of random variables namely 

cov ������, ������ � cov���, ��� � ��� ���
���� � �����.

One can see that the covariance is almost unity between variables whose corresponding inputs are very 
close, and decreases as their distance in the input space increases. The specification of a covariance 
function implies a distribution over functions. Indeed, one can draw samples from the distribution of 
functions by first, calculating the covariance matrix �  (whose elements are given by ����, ��� �
cov���, ��� and second, by generating a random vector  � � ���, ��. One can then plot the generated 
values as a function of the inputs. Table 2 gives an overview of the different calculations.  

Table 2. GP calculations 

Item  Formulation  Remarks 

Data 
� � ���, �����

�  the column vector inputs for all n cases can are aggregated in the so-called d × n design
matrix X  and the targets are collected in the vector t , so we can write � � ��, ��. Similarly, we have 
�� � ���� ���

Training 
set and test 
set

Predictions ��|��, �, � �  � � y�� � ����, ������, �� � �������,
cov���� � ����, ��� � ����, ������, �� � ���������, ����

Gaussian
predictive
distribution 
over the 
test set 

Covariance
matrix 

���, ��� If there are n training points and n*  test points then ���, ��� represents the 

n × n*  matrix of the covariances evaluated at all pairs of training and test points. The same procedure is 
used to calculate ���, ��, ����, ���and ���, ���

5. Results  

We chose contiguous range of data for training and testing i.e. n=693 hourly values were used for the 
NN and GP training. The rest of the data were used for testing (n* =381 samples). The performance of the 
models was assessed by reporting their MAPE and RMSE errors. In order to illustrate the overfitting 
problem and to highlight the benefits of the Bayesian approach, we chose deliberately to model the 
electric load with a (relatively large) classical NN of 32 hidden units. Table 3 lists the performance of the 
models obtained on the training and test sets. As one can see, the fit is very good on the training set but 
the performance degrades on the test set (line 1 of Table 3). This type of results is a sign of overfitting. 
Here, the model is too complex and one has to employ techniques, which could decrease this complexity. 
Therefore, we took the same NN structure but used the Bayesian approach to forecasting the electric load. 

Table 3. Results 

Model RMSE Training set (MW) MAPE Training set (%) RMSE Test set (MW) MAPE Test set (%)  CPU time (s)

Classical NN 3.27 1.08 21.34 6.95 410.2 

Bayesian NN 6.69 1.97 13.49 4.27 1099.2 

GP model 9.58 2.92 10.34 3.22 184.7 
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Table 3 (line 2) shows clearly the improvement brought by the Bayesian method. However, the Bayesian 
approach is computationally demanding as the numerical framework needs more iterations to find the 
optimal complexity. Finally, the GP model (line 3 of Table 3) led to improved performance. In addition of 
being more straightforward to build, the GP model is computationally less demanding. Fig. 2 shows the 
predictions of the GP model on the test set.  

Fig. 2. Predictions of the GP model. The solid line indicates an estimation of the mean of y* . 95% confidence intervals are shaded 

6. Conclusion 

In this work, we have proposed a comparison of different approaches to STLF. It has been shown that, 
unlike the traditional NN techniques, the Bayesian NN method is able to deal quite efficiently with model 
complexity (and therefore with the problem of overfitting). The main drawback of the Bayesian NN 
approach stems from the fact that many approximations must be done in order to evaluate numerically the 
integrals over the weight space. Conversely, GPs offer another point of view by making Bayesian 
inference in the function space and therefore make the computations tractable. Future work will be 
devoted to the design of robust models those which, in particular, will take into account uncertainties in 
the model’s inputs. 
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