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We demonstrate the role of proximity effect in the thermal hysteresis of superconducting con-
strictions. From the analysis of successive thermal instabilities in the transport characteristics of
micron-size superconducting quantum interference devices with a well-controlled geometry, we ob-
tain a complete picture of the different thermal regimes. These determine whether the junctions are
hysteretic or not. Below the superconductor critical temperature, the critical current switches from
a classical weak-link behavior to one driven by the proximity effect. The associated small amplitude
of the critical current makes it robust with respect to the heat generation by phase-slips, leading to
a non-hysteretic behavior.

Micron-size superconducting quantum interference de-
vices (µ-SQUID), consisting of two parallel weak links
(WLs) acting as Josephson junctions in a small super-
conducting (SC) loop, have been of interest for probing
magnetism at small scales [1–4]. One of the major obsta-
cles of a µ-SQUID proper operation is its hysteretic (or
bistable) current-voltage characteristic (IVC). When the
current is ramped up, it switches to a dissipative state
at the critical current Ic. When the current is ramped
down from above Ic, it comes back to a zero-voltage state
at a smaller current, called the re-trapping current Ir.
In conventional tunnel-barrier type Josephson-junctions,
the hysteresis arises from large junction capacitance [5].
In WLs or µ-SQUIDs, with negligible capacitance, hys-
teresis is found at low temperatures below a crossover
temperature Th < Tc [6], with Tc as the SC critical tem-
perature. Although it has been claimed that an effective
capacitance can arise from the recovery time of the SC
order parameter [7], it is now understood that hysteresis
in WLs is of thermal origin [9–11], similar to that ob-
served in superconductor-normal metal-superconductor
junctions [8]. Thermal hysteresis in SC-WLs and how
it affects the IVCs can be modeled by considering lo-
cal thermal balance which dictates the position of the
normal metal-superconductor (N-S) interface [9–11]. In
case of poor heat evacuation, phase fluctuations can trig-
ger a thermal run-away giving a large resistive hot-spot.
This topic is of great practical importance, in particu-
lar for SC-magnet wires and cables, helium level sen-
sors, bolometers [12], µ-SQUIDs and other nano-scale SC
structures [13]. A systematic understanding of various
thermal phases which a typical device exhibits is much
desired, in particular to make devices with intrinsic non-
hysteretic behavior.

In this Letter, we report on the transport characteris-
tics of Nb-film based µ-SQUIDs with a well-controlled
geometry and describe a complete picture of different
thermal regimes. The IVCs show a critical current and
two re-trapping currents that we describe using a ther-
mal instability model in SC leads. The critical current
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FIG. 1: (a) SEM image of the µ-SQUID µS1 with its current
and voltage leads. The zoomed-in image shows the SQUID
loop (with area 1×1 µm2) and the narrow leads. (b) Resis-
tance vs temperature (R-T) plot. (c) Low-temperature por-
tion of the R-T plot, showing multiple transitions, for µS1 at
a bias current of 0.01 mA.

Ic follows the theoretical expectation at low temperature
but changes its behavior while crossing the smaller re-
trapping current. In this hysteresis-free regime, the WLs
superconduct, despite being slightly heated by individual
phase slips, thanks to the proximity effect of the adjacent
superconductor.

We fabricated µ-SQUIDs from Nb films using common
techniques [2, 14–16]. After cleaning the Si substrate
with an oxygen plasma, we deposited a 31 nm thick Nb
film using e-beam evaporation in a UHV system. We
then patterned the structures with electron beam lithog-
raphy followed by deposition of a 20 nm thick Al film. A
lift-off then transferred the pattern to the Al film, which
acts as a mask during the reactive ion etching of Nb using
SF6 plasma. Finally, the Al film was removed chemically.
The transport measurements were carried out down to a
temperature of 4.2 K in a home-made liquid helium dip-
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per cryostat with built-in copper-powder filters [6]. We
have studied more than four devices with similar behav-
ior, but here we report on two typical devices denoted by
µS1 and µS2.

For all devices, the patterned SQUID-loop area is 1
µm2 and the width of its arms is 0.3 µm. The designed
WL length is 150 nm while the WL width is 70 and 50
nm in µS1 and µS2, respectively. Fig. 1(a) shows the
SEM image of the device µS1. The pattern includes four
different parts contributing to the electrical character-
istics. The first part is the two WLs, each of normal
resistance RWL. The second one is the SQUID loop with
normal resistance as RL including the resistance of the
parallel WLs. The third part comprises the narrow leads
of width 0.3 µm and length 1.7 µm on either side of the
SQUID loop, each with a resistance R1. Finally, each nar-
row lead meets a wider lead of width 2 µm, length 27.5
µm and normal resistance R2. From the geometry, var-
ious resistances can be expressed in terms of the films’s
square resistance R� so that the total normal-state resis-
tance between the voltage leads is RN = RL+2R1+2R2

= 40.3R�+0.5RWL.

Figure 1(b) and (c) show temperature dependence of
the four-probe resistance R for µS1. Multiple supercon-
ducting transitions are observed. The resistance jumps
from its residual value 128 Ω down to about 40 Ω at Tc2

= 8.7 K, jumps further down from 38 to 8 Ω at Tc1 = 8.35
K, and finally decreases smoothly to zero. We attribute
the first transition at Tc2 to the wide leads, the second
one at Tc1 to both the narrow leads and the SQUID loop.
From IVC in non-hysteretic regime, discussed later [see
Fig. 3(f)], we deduce RWL ≃ 8 Ω. This analysis is consis-
tent with R� = 3.1 Ω, giving a resistivity of 9.5 µΩ.cm.

Next we discuss a one-dimensional model of thermal
instability in long current-biased SC leads. This is simi-
lar to Broom and Rhoderick [17] model, which analyzes
the dynamics of an N-S interface under the influence of an
electrical current. Thus a critical magnitude of current
is found at which the N-S interface changes its direction
of motion. Here we consider a SC lead with normal state
resistivity ρn, uniform thickness t and width w, and car-
rying an electrical current I as shown in Fig. 2(a). The
heat transfer with the substrate at a bath temperature
Tb writes α(T − Tb)/t, where the coefficient α is charac-
teristic of the interface. The thermal conductivity κ is
constant and uniform. An N-S interface exists at x = 0,
so that the temperature T is equal to Tc at this point.
A heat current flows from x < 0 due to the resistance of
this lead portion plus possibly a device at the end of the
lead. With the boundary condition T = Tb at x → ∞,
the heat equation solution in the SC portion of the lead
is T = Tb + (Tc − Tb) exp(−x/lth). The thermal heal-
ing length lth(=

√

κt/α) is a crossover length-scale such
that for ∆x ≫ lth substrate heat-loss dominates and for
∆x ≪ lth conduction dominates. The heat current at the
N-S interface (x = 0) is then Q̇0 = wαlth(Tc−Tb), which
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FIG. 2: (a) Schematic of the semi-infinite (in +x direction)
lead of SC material on a substrate at bath temperature Tb

with N-S interface at x = 0. (b) shows the region near the N-
S interface with three differential elements of length dx when
the N-S interface stabilizes near the heat source on left.

implies an effective thermal resistance of (wαlth)
−1 as

seen from the N-S interface. It is important to realize
that the N-S interface will shift to the right (left) if more
(less) than Q̇0 heat is incident on the lead at x = 0.
For analyzing the stability of the N-S interface, we look

into the effect of fluctuations on a differential element
(from x = 0 to x = dx) at this interface in a quasi-static
approximation. If this element turns resistive, see Fig.
2(b), an additional power I2ρndx/(wt) is generated. This
extra heat is shared equally between the left and right
interfaces to the lead, while the substrate receives a neg-
ligible amount [18]. The heat current across the new N-S
interface is Q̇′

1 = Q̇0 − α(Tc − Tb)wdx + I2ρndx/(2wt).
As pointed out before, if this heat is more (less) than Q̇0,
the N-S interface will shift to the right (left) implying in-
stability (stability). Thus the maximum current that the
lead can carry without causing a thermal instability is
given by α(Tc − Tb)wdx = I2maxρndx/(2wt) or

Imax = w
√

2α(Tc − Tb)/R�. (1)

This expression is consistent with Ref. [9] results in the
limiting case of a very long SC lead and equal thermal
conductivities of SC and normal metal, which is valid
close to the N-S interface. In this model, the lead needs
to be much longer than lth so that the overall thermal
resistance as seen from the N-S interface does not depend
on its position. When I exceeds Imax, the N-S interface
will runaway to a large x location where the lead joins
a thermal bath (or a much wider lead) as the thermal
resistance to the thermal bath will be less there. By
analyzing the stability of a small resistive element against
an incursion to the SC state, one finds as expected the
same expression for the re-trapping current. It would be
more appropriate to call Imax as the ‘instability current’
as it describes both the runaway and re-trapping of the
N-S interface. We will use the term ‘re-trapping’ current,
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as it has been done in most earlier works.

In order to quantify in our case the relevant parame-
ters, we use the Wiedemann-Franz law to estimate the
thermal conductivity as κ = LT/ρ with L = 2.44×10−8

W.Ω/K2 as the Lorenz number. Using T = Tc = 8.5 K
and ρ = 9.5 µΩ.cm, we get κ = 2.4 W/cm.K. Typical
values of α that have been used in literature [9, 11] range
in 1 to 10 W/cm2.K. We use α = 5.3 W/cm2.K as found
from the temperature dependence of a re-trapping cur-
rent as discussed later. From these values, we estimate
the thermal healing length for our devices as lth = 1.6
µm. The length of the wide leads, i.e. 27.5 µm, is thus
much longer than lth while that of the narrow leads, i.e.
1.7 µm, is only comparable to lth.

Fig. 3 shows IVCs of µS1, depicting sharp jumps in
voltage at three different currents, namely Ir1, Ir2 and
Ic. The critical current Ic is defined by the first jump
seen while ramping the current up from zero. It shows
a distribution of values with, for µS1, a width of about
40 µA for a mean value of 1.3 mA at 4.2 K [18]. From
the IVC slope, the resistance just above Ir1 is about 48
Ω. This value is close to the sum RL+2R1 = 40 Ω of
the resistances of the SQUID loop and the narrow leads,
which means that the latter are heated to above Tc for
I > Ir1. The observed extra resistance indicates that a
portion of the wide leads is also heated to above Tc, thus
contributing to the resistance. The second re-trapping
current Ir2 arises from a thermal instability in the long
and wide leads. The IVC slope above Ir2 is 140 Ω, which
is close to the normal-state resistance value 128 Ω, in-
dicating a thermal runaway till the voltage leads. The
slightly larger value seen here is due to the heating in
the central portion to more than 50 K as estimated from
a thermal model. At higher temperatures when Ir2 is
much less and thus the heating is also reduced, the re-
sistance above Ir2 is found to be exactly 128 Ω. In this
regime, Fig. 3(f) shows that the resistance just above Ic
is about 4 Ω from which we deduce RWL as 8 Ω. Only the
critical current Ic was found to oscillate with the mag-
netic flux [18] as expected for a SQUID. The retrapping
currents Ir1,2 do not, which confirms that they are not
dependent on the SC of the WL.

The three currents Ir1, Ir2 and Ic evolve differently
with temperature. Near 5.7 K, Ic crosses Ir2 [see Fig.
3(b)] and at T = Th = 7.25K, Ic crosses Ir1 [see Fig.
3(e)], so that hysteresis is absent at higher temperature
[see Fig. 3(f)]. We observe sharp voltage changes corre-
sponding to the three currents, making them distinguish-
able from each other. With increasing temperature, while
the IVC near Ic becomes relatively smooth, the voltage
jump corresponding to Ir1 remains sharp and evolves over
this smooth feature. Also, the hysteresis does not dis-
appear untill Ir1 fully crosses this smooth feature [see
Fig.3(e)]. This confirms that the two transitions have
distinct origins.

Figure 4(a) summarizes the bath-temperature depen-
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FIG. 3: (a) - (d) IVCs in hysteretic regime for µS1 at different
temperatures. A large hysteresis is seen at 4.25 K with two
re-trapping currents, Ir1 and Ir2. Ic crosses Ir2 near 5.7 K
and Ir1 around 7.25 K as seen in (e). (f) shows the IVC of
µS1 in the non-hysteretic regime above Th = 7.25 K. The
inset of (e) shows a larger bias-current range plot to show the
Ir2 transition.

dence of Ic, Ir1 and Ir2 for µS1. Fig. 4(b) shows the same
for the device µS2, which has narrower WLs as compared
to µS1, leading to a smaller critical current, and thus a
smaller crossover temperature and a wider temperature
range of non-hysteretic IVCs. The retrapping currents
Ir1,2 are the same in the two samples, which confirms
that these are independent of the WL structure. With
increasing bath temperature, the critical current Ic de-
creases linearly in both devices up to Th, where it shows
a marked change in behavior. For both devices, Ic and
Ir1 go to zero at the temperature Tc1, while Ir2 van-
ishes at Tc2. This is consistent with the R-T behavior
of Fig. 1(c) for µS1. In both plots, we also indicate the
state (resistive or SC) of different portions of the device
when the current is ramped down, which constitutes a
kind of a phase diagram, or more appropriately, state
diagram. The light gray-shaded area shows the bistable
region where the whole device is in the fully SC state
during the current ramp-up from zero. In the dark gray-
shaded region, only the WLs are resistive. No hystere-
sis is observed in the related temperature range [Th,Tc1].
This is the most desirable mode for a SQUID, but it oc-
curs in quite a limited temperature window. At a fixed
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FIG. 4: Variation of Ic, Ir1 and Ir2 with bath temperature
for (a) µS1 and (b) µS2. The symbols are the data points.
The continuous lines are fits given by (in mA and K), (a)
Ic = 0.42(7.4 − Tb) and (b) Ic = 0.29(7.4 − Tb) while the
other two are described by Ir1 = 0.17(8.4− Tb)

0.43 and Ir2 =
0.37(8.7 − Tb)

0.5 for both the devices. The cartoon pictures
of the device shown in different regions depict the state of
the device during current ramp-down with blue as SC and
red as resistive portions. The light gray-shaded area shows
the bistable region where the whole device is in the fully SC
state during the current ramp-up from zero. In the dark gray-
shaded region, only WLs are resistive.

current bias, we do see the expected voltage oscillations
with flux in this regime [18].

Using the long lead approximation for the wide leads,
we can fit Ir2 with Eq. 1 which writes here Ir2 =
w
√

2α(Tc2 − Tb)/R�. We obtain a very good fit, see Fig.
4 with the only free parameter being α = 5.3 W/cm2.K,
in good agreement with reported values [9, 11]. With
the same parameters, except w = 0.3 µm, Eq. 1 predicts
for the narrow leads a current Ir1 significantly smaller
than observed. This is expected as the presence of wide
leads at a short distance makes the heat evacuation more
efficient, leading to a higher run-away current.

In a short WL, i.e. with dimensions less than the SC
coherence length, we expect, close to its critical temper-
ature, a linear decrease of Ic with temperature so that

IcRWL = β(Tc − Tb) with β = 0.635 mV/K [3]. From
the Ic slope in Fig. 4(a) for µS1 at temperatures below
Th, we find a RWL/2 value of 3 Ω, which agrees with
our earlier findings. In this same regime, the extrapo-
lated critical temperature value of 7.4 K is related to the
intrinsic superconductivity of the WLs. Above Th, the
temperature dependence of Ic changes slope and goes
down to zero precisely at the critical temperature Tc1

of the SQUID loop. From this observation, we conclude
that the WLs are SC above Th owing to proximity effect
from the adjacent SC with a higher critical temperature.

Finally, we elaborate on how the behavior change of
Ic coincides with its crossing with Ir1 at Th. Below the
crossover temperature Th, the critical current Ic exceeds
the stability (retrapping) current Ir1. In this case, a sin-
gle phase-slip event induced by thermal fluctuations in
the WL can cause a thermal runaway [13]. IVCs thus
exhibit a sharp voltage jump at Ic, see Fig. 3(a-d). A
distribution of Ic values is obtained, since a phase slip-
induced transition is stochastic [20]. Above the crossover
temperature Th, the critical current Ic is smaller than
the stability (runaway) current Ir1, so that no thermal
runaway can happen at Ic: the reversible (mono-stable)
regime is obtained. Due to phase-slips proliferation near
Ic, the transition to the resistive state (at Ic) is then
smeared, see Fig. 3(e). The related non-zero dissipa-
tion just below Ic also heats some portion of the device
above the bath temperature Tb. Assuming that the whole
SQUID loop is at nearly uniform temperature, which is
justified since the loop size is comparable to lth, we es-
timate that the power generated just below Ic of 72 nW
for Tb = 7.25 K brings the SQUID loop to a temperature
of about 7.8 K. Because of this and of the fact that the
WL region is actually a SC with a lower critical temper-
ature, the temperature dependence of Ic between Th and
Tc1 cannot be simply described by that of S-N-S WLs
[19]. Due to their respective temperature dependence, Ic
and Ir1 are expected to cross at some temperature even
if the WL Tc is same as that of the adjacent SC. But then
the hysteresis-free regime would have existed over a much
narrower temperature range. Thus the smaller Tc of the
WL and the proximity SC plays crucial role in widening
this hysteresis-free temperature range. Finally, SQUID
devices with lower Ic or higher Ir1 values will help widen
this temperature range even further.

In conclusion, we present the complete device-state
diagram of Nb based µ-SQUIDS. We highlight a non-
classical weak link behavior which is understood in the
framework of a thermal instability picture. The non-
hysteretic high temperature regime of the weak-links is
shown to benefit from proximity superconductivity. The
present new understanding of the physical mechanisms at
the origin of a non-hysteretic behavior is key to further
developments in µ-SQUID magneto-sensors for which the
suppression of hysteresis represents a key issue.

Samples were fabricated at the platform Nanofab,
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Supplementary Information

SQUID oscillations with magnetic flux

Figure 5 below shows the oscillations in Ic for µS1 at
4.25 K (below Th) and in voltage at 7.4 K (above Th)
with external magnetic flux. The voltage oscillations are
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FIG. 5: Ic oscillations in hysteretic regime for µS1 at 4.25K
(Red curve) and the voltage oscillations (at 0.17mA current)
in non-hysteretic regime at 7.4K (Blue curve).

acquired at a bias current of 0.17 mA, which is close to
the critical current at this 7.4 K. The SQUID oscillations
with magnetic field are seen only in Ic and not in Ir1
and Ir2. The temperature dependent Ic values have been
extracted from these Ic-Vs-B plots at all temperatures by
selecting maximum Ic at each temperature. In the non-
hysteretic regime Ic was found from the maximum slope
of the IVC. This is found to coincides with the current
at which the voltage modulation in V-Vs-B peaks. In
both cases, the magnetic field periodicity is found to be
1.5 mT, which defines an effective SQUID loop area as
Aeff = φ0

∆B
= 1.3µm2, which is larger than the actual

patterned (internal) area of 1 µm2.

Heat sharing during resistive fluctuation

In order to elaborate on the sharing of the extra re-
sistive heat, when the differential element becomes nor-
mal, by the three interfaces, we also consider two neigh-
boring differential elements of the same length dx as
shown in Fig. 2(b) of the main paper. The one on the
left (i.e. from x = −dx to x = 0) is at temperature
Tc + dT1 and the one on the right (i.e. from x = dx to
x = 2dx) is at temperature Tc − dT2. The left one gives
heat Q̇0 = κwtdT1

dx
to the middle one, which gives heat

Q̇1 = κwtdT2

dx
to the element on right and thus we get,

κwt
dT1

dx
= α(Tc − Tb)wdx + κwt

dT2

dx
(2)

When the middle element becomes resistive due to fluc-
tuations its temperature increases to Tc + dT . In this
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case the above equation gets modified to

κwt
dT1 − dT

dx
= α(Tc + dT − Tb)wdx

+ κwt
dT2 + dT

dx
− I2

ρn
wt

dx (3)

Subtracting eq. 2 from eq. 3 we get 2κwtdT
dx

= I2 ρndx
wt

−

αdTwdx. Neglecting the higher order second term on the

right, we get κwtdT
dx

= I2 ρndx
2wt

. Thus the heat current

incident from the left interface, i.e. Q̇′

0 = κwtdT1−dT
dx

=

Q̇0 − I2 ρndx
2wt

and the heat current incident at the right

interface, i.e. Q̇′

1 = κwtdT2+dT
dx

= Q̇1 + I2 ρndx
2wt

. Thus
the extra heat generated is equally shared across the two
interfaces.


