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Proximity-Effect Driven Reversibility in Superconducting Constrictions

We demonstrate the role of proximity effect in the thermal hysteresis of superconducting constrictions. From the analysis of successive thermal instabilities in the transport characteristics of micron-size superconducting quantum interference devices with a well-controlled geometry, we obtain a complete picture of the different thermal regimes. These determine whether the junctions are hysteretic or not. Below the superconductor critical temperature, the critical current switches from a classical weak-link behavior to one driven by the proximity effect. The associated small amplitude of the critical current makes it robust with respect to the heat generation by phase-slips, leading to a non-hysteretic behavior.

Micron-size superconducting quantum interference devices (µ-SQUID), consisting of two parallel weak links (WLs) acting as Josephson junctions in a small superconducting (SC) loop, have been of interest for probing magnetism at small scales [1][2][3][4]. One of the major obstacles of a µ-SQUID proper operation is its hysteretic (or bistable) current-voltage characteristic (IVC). When the current is ramped up, it switches to a dissipative state at the critical current I c . When the current is ramped down from above I c , it comes back to a zero-voltage state at a smaller current, called the re-trapping current I r . In conventional tunnel-barrier type Josephson-junctions, the hysteresis arises from large junction capacitance [START_REF] Tinkham | Introduction to Superconductivity[END_REF]. In WLs or µ-SQUIDs, with negligible capacitance, hysteresis is found at low temperatures below a crossover temperature T h < T c [START_REF] Hazra | Hysteresis in superconducting weak links and micron size superconducting interference devices[END_REF], with T c as the SC critical temperature. Although it has been claimed that an effective capacitance can arise from the recovery time of the SC order parameter [START_REF] Song | [END_REF], it is now understood that hysteresis in WLs is of thermal origin [9][10][11], similar to that observed in superconductor-normal metal-superconductor junctions [8]. Thermal hysteresis in SC-WLs and how it affects the IVCs can be modeled by considering local thermal balance which dictates the position of the normal metal-superconductor (N-S) interface [9][10][11]. In case of poor heat evacuation, phase fluctuations can trigger a thermal run-away giving a large resistive hot-spot. This topic is of great practical importance, in particular for SC-magnet wires and cables, helium level sensors, bolometers [12], µ-SQUIDs and other nano-scale SC structures [13]. A systematic understanding of various thermal phases which a typical device exhibits is much desired, in particular to make devices with intrinsic nonhysteretic behavior.

In this Letter, we report on the transport characteristics of Nb-film based µ-SQUIDs with a well-controlled geometry and describe a complete picture of different thermal regimes. The IVCs show a critical current and two re-trapping currents that we describe using a thermal instability model in SC leads. The critical current I c follows the theoretical expectation at low temperature but changes its behavior while crossing the smaller retrapping current. In this hysteresis-free regime, the WLs superconduct, despite being slightly heated by individual phase slips, thanks to the proximity effect of the adjacent superconductor.

We fabricated µ-SQUIDs from Nb films using common techniques [2,[14][15][START_REF] Kumar | AIP Conference Proceedings[END_REF]. After cleaning the Si substrate with an oxygen plasma, we deposited a 31 nm thick Nb film using e-beam evaporation in a UHV system. We then patterned the structures with electron beam lithography followed by deposition of a 20 nm thick Al film. A lift-off then transferred the pattern to the Al film, which acts as a mask during the reactive ion etching of Nb using SF 6 plasma. Finally, the Al film was removed chemically. The transport measurements were carried out down to a temperature of 4.2 K in a home-made liquid helium dip-per cryostat with built-in copper-powder filters [START_REF] Hazra | Hysteresis in superconducting weak links and micron size superconducting interference devices[END_REF]. We have studied more than four devices with similar behavior, but here we report on two typical devices denoted by µS1 and µS2.

For all devices, the patterned SQUID-loop area is 1 µm 2 and the width of its arms is 0.3 µm. The designed WL length is 150 nm while the WL width is 70 and 50 nm in µS1 and µS2, respectively. Fig. 1(a) shows the SEM image of the device µS1. The pattern includes four different parts contributing to the electrical characteristics. The first part is the two WLs, each of normal resistance R W L . The second one is the SQUID loop with normal resistance as R L including the resistance of the parallel WLs. The third part comprises the narrow leads of width 0.3 µm and length 1.7 µm on either side of the SQUID loop, each with a resistance R 1 . Finally, each narrow lead meets a wider lead of width 2 µm, length 27.5 µm and normal resistance R 2 . From the geometry, various resistances can be expressed in terms of the films's square resistance R so that the total normal-state resistance between the voltage leads is R

N = R L +2R 1 +2R 2 = 40.3R +0.5R W L .
Figure 1(b) and (c) show temperature dependence of the four-probe resistance R for µS1. Multiple superconducting transitions are observed. The resistance jumps from its residual value 128 Ω down to about 40 Ω at T c2 = 8.7 K, jumps further down from 38 to 8 Ω at T c1 = 8.35 K, and finally decreases smoothly to zero. We attribute the first transition at T c2 to the wide leads, the second one at T c1 to both the narrow leads and the SQUID loop. From IVC in non-hysteretic regime, discussed later [see Fig. 3(f)], we deduce R W L ≃ 8 Ω. This analysis is consistent with R = 3.1 Ω, giving a resistivity of 9.5 µΩ.cm.

Next we discuss a one-dimensional model of thermal instability in current-biased SC leads. This is similar to Broom and Rhoderick [START_REF] Broom | [END_REF] model, which analyzes the dynamics of an N-S interface under the influence of an electrical current. Thus a critical magnitude of current is found at which the N-S interface changes its direction of motion. Here we consider a SC lead with normal state resistivity ρ n , uniform thickness t and width w, and carrying an electrical current I as shown in Fig. 2(a). The heat transfer with the substrate at a bath temperature T b writes α(T -T b )/t, where the coefficient α is characteristic of the interface. The thermal conductivity κ is constant and uniform. An N-S interface exists at x = 0, so that the temperature T is equal to T c at this point. A heat current flows from x < 0 due to the resistance of this lead portion plus possibly a device at the end of the lead. With the boundary condition T = T b at x → ∞, the heat equation solution in the SC portion of the lead is T = T b + (T c -T b ) exp(-x/l th ). The thermal healing length l th (= κt/α) is a crossover length-scale such that for ∆x ≫ l th substrate heat-loss dominates and for ∆x ≪ l th conduction dominates. The heat current at the N-S interface implies an effective thermal resistance of (wαl th ) -1 as seen from the N-S interface. It is important to realize that the N-S interface will shift to the right (left) if more (less) than Q0 heat is incident on the lead at x = 0. For analyzing the stability of the N-S interface, we look into the effect of fluctuations on a differential element (from x = 0 to x = dx) at this interface in a quasi-static approximation. If this element turns resistive, see Fig. 2(b), an additional power I 2 ρ n dx/(wt) is generated. This extra heat is shared equally between the left and right interfaces to the lead, while the substrate receives a negligible amount [18]. The heat current across the new N-S interface is Q′ 1 = Q0 -α(T c -T b )wdx + I 2 ρ n dx/(2wt). As pointed out before, if this heat is more (less) than Q0 , the N-S interface will shift to the right (left) implying instability (stability). Thus the maximum current that the lead can carry without causing a thermal instability is given by α(T c -T b )wdx = I 2 max ρ n dx/(2wt) or

(x = 0) is then Q0 = wαl th (T c -T b ), which w t x z y I x=0, T=T c T c T c +dT 1 T c -dT 2 dx dx dx normal superconducting 0 Q & 0 Q & 1 Q & T=T b x=0 (a) (b) 
I max = w 2α(T c -T b )/R . ( 1 
)
This expression is consistent with Ref. [9] results in the limiting case of a very long SC lead and equal thermal conductivities of SC and normal metal, which is valid close to the N-S interface. In this model, the lead needs to be much longer than l th so that the overall thermal resistance as seen from the N-S interface does not depend on its position. When I exceeds I max , the N-S interface will runaway to a large x location where the lead joins a thermal bath (or a much wider lead) as the thermal resistance to the thermal bath will be less there. By analyzing the stability of a small resistive element against an incursion to the SC state, one finds as expected the same expression for the re-trapping current. It would be more appropriate to call I max as the 'instability current' as it describes both the runaway and re-trapping of the N-S interface. We will use the term 're-trapping' current,

as it has been done in most earlier works.

In order to quantify in our case the relevant parameters, we use the Wiedemann-Franz law to estimate the thermal conductivity as κ = LT /ρ with L = 2.44×10 -8 W.Ω/K 2 as the Lorenz number. Using T = T c = 8.5 K and ρ = 9.5 µΩ.cm, we get κ = 2.4 W/cm.K. Typical values of α that have been used in literature [9,11] range in 1 to 10 W/cm 2 .K. We use α = 5.3 W/cm 2 .K as found from the temperature dependence of a re-trapping current as discussed later. From these values, we estimate the thermal healing length for our devices as l th = 1.6 µm. The length of the wide leads, i.e. 27.5 µm, is thus much longer than l th while that of the narrow leads, i.e. 1.7 µm, is only comparable to l th .

Fig. 3 shows IVCs of µS1, depicting sharp jumps in voltage at three different currents, namely I r1 , I r2 and I c . The critical current I c is defined by the first jump seen while ramping the current up from zero. It shows a distribution of values with, for µS1, a width of about 40 µA for a mean value of 1.3 mA at 4.2 K [18]. From the IVC slope, the resistance just above I r1 is about 48 Ω. This value is close to the sum R L +2R 1 = 40 Ω of the resistances of the SQUID loop and the narrow leads, which means that the latter are heated to above T c for I > I r1 . The observed extra resistance indicates that a portion of the wide leads is also heated to above T c , thus contributing to the resistance. The second re-trapping current I r2 arises from a thermal instability in the long and wide leads. The IVC slope above I r2 is 140 Ω, which is close to normal-state resistance 128 Ω, indicating a thermal runaway till the voltage leads. The slightly larger value seen here is due to the heating in the central portion to more than 50 K as estimated from a thermal model. At higher temperatures when I r2 is much less and thus the heating is also reduced, the resistance above I r2 is found to be exactly 128 Ω. In this regime, Fig. 3(f) shows that the resistance just above I c is about 4 Ω from which we deduce R W L as 8 Ω. Only the critical current I c was found to oscillate with the magnetic flux [18] as expected for a SQUID. The retrapping currents I r1,2 do not, which confirms that they are not dependent on the SC of the WL.

The three currents I r1 , I r2 and I c evolve differently with temperature. Near 5.7 K, I c crosses I r2 [see Fig. 3(b)] and at T = T h = 7.25K, I c crosses I r1 [see Fig. 3(e)], so that hysteresis is absent at higher temperature [see Fig. 3(f)]. We observe sharp voltage changes corresponding to the three currents, making them distinguishable from each other. With increasing temperature, while the IVC near I c becomes relatively smooth, the voltage jump corresponding to I r1 remains sharp and evolves over this smooth feature. Also, the hysteresis does not disappear untill I r1 fully crosses this smooth feature [see Fig. 3(e)]. This confirms that the two transitions have distinct origins. dence of I c , I r1 and I r2 for µS1. Fig. 4(b) shows the same for the device µS2, which has narrower WLs as compared to µS1, leading to a smaller critical current, and thus a smaller crossover temperature and a wider temperature range of non-hysteretic IVCs. The retrapping currents I r1,2 are the same in the two samples, which confirms that these are independent of the WL structure. With increasing bath temperature, the critical current I c decreases linearly in both devices up to T h , where it shows a marked change in behavior. For both devices, I c and I r1 go to zero at the temperature T c1 , while I r2 vanishes at T c2 . This is consistent with the R-T behavior of Fig. 1(c) for µS1. In both plots, we also indicate the state (resistive or SC) of different portions of the device when the current is ramped down, which constitutes a kind of a phase diagram, or more appropriately, state diagram. The light gray-shaded area shows the bistable region where the whole device is in the fully SC state during the current ramp-up from zero. In the dark grayshaded region, only the WLs are resistive. No hysteresis is observed in the related temperature range [T h ,T c1 ]. This is the most desirable mode for a SQUID, but it occurs in quite a limited temperature window. At a fixed current bias, we do see the expected voltage oscillations with flux in this regime [18].

Using the long lead approximation for the wide leads, we can fit I r2 with Eq. 1 which writes here I r2 = w 2α(T c2 -T b )/R . We obtain a very good fit, see Fig. 4 with the only free parameter being α = 5.3 W/cm .K, in good agreement with reported values [9,11]. With the same parameters, except w = 0.3 µm, Eq. 1 predicts for the narrow leads a current I r1 significantly smaller than observed. This is expected as the presence of wide leads at a short distance makes the heat evacuation more efficient, leading to a higher run-away current.

In a short WL, i.e. with dimensions less than the SC coherence length, we expect, close to its critical temperature, a linear decrease of I c with temperature so that [3]. From the I c slope in Fig. 4(a) for µS1 at temperatures below T h , we find a R W L /2 value of 3 Ω, which agrees with our earlier findings. In this same regime, the extrapolated critical temperature value of 7.4 K is related to the intrinsic superconductivity of the WLs. Above T h , the temperature dependence of I c changes slope and goes down to zero precisely at the critical temperature T c1 of the SQUID loop. From this observation, we conclude that the WLs are SC above T h owing to proximity effect from the adjacent SC with a higher critical temperature.

I c R W L = β(T c -T b ) with β = 0.635 mV/K
Finally, we elaborate on how the behavior change of I c coincides with its crossing with I r1 at T h . Below the crossover temperature T h , the critical current I c exceeds the stability (retrapping) current I r1 . In this case, a single phase-slip event induced by thermal fluctuations in the WL can cause a thermal runaway [13]. IVCs thus exhibit a sharp voltage jump at I c , see Fig. 3(a-d). A distribution of I c values is obtained, since a phase slipinduced transition is stochastic [20]. Above the crossover temperature T h , the critical current I c is smaller than the stability (runaway) current I r1 , so that no thermal runaway can happen at I c : the reversible (mono-stable) regime is obtained. Due to phase-slips proliferation near I c , the transition to the resistive state (at I c ) is then smeared, see Fig. 3(e). The related non-zero dissipation just below I c also heats some portion of the device above the bath temperature T b . Assuming that the whole SQUID loop is at nearly uniform temperature, which is justified since the loop size is comparable to l th , we estimate that the power generated just below I c of 72 nW for T b = 7.25 K brings the SQUID loop to a temperature of about 7.8 K. Because of this and of the fact that the WL region is actually a SC with a lower critical temperature, the temperature dependence of I c between T h and T c1 cannot be simply described by that of S-N-S WLs [19]. Due to their respective temperature dependence, I c and I r1 are expected to cross at some temperature even if the WL T c is same as that of the adjacent SC. But then the hysteresis-free regime would have existed over a much narrower temperature range. Thus the smaller T c of the WL and the proximity SC plays crucial role in widening this hysteresis-free temperature range. Finally, SQUID devices with lower I c or higher I r1 values will help widen this temperature range even further.

In conclusion, we present the complete device-state diagram of Nb based µ-SQUIDS. We highlight a nonclassical weak link behavior which is understood in the framework of a thermal instability picture. The nonhysteretic high temperature regime of the weak-links is shown to benefit from proximity superconductivity. The present new understanding of the physical mechanisms at the origin of a non-hysteretic behavior is key to further in µ-SQUID magneto-sensors for which the suppression of hysteresis represents a key issue.

Samples were fabricated at the platform Nanofab, acquired at a bias current of 0.17 mA, which is close to the critical current at this 7.4 K. The SQUID oscillations with magnetic field are seen only in I c and not in I r1 and I r2 . The temperature dependent I c values have been extracted from these I c -Vs-B plots at all temperatures by selecting maximum I c at each temperature. In the nonhysteretic regime I c was found from the maximum slope of the IVC. This is found to coincides with the current at which the voltage modulation in V-Vs-B peaks. In both cases, the magnetic field periodicity is found to be 1.5 mT, which defines an effective SQUID loop area as A ef f = φ0 ∆B = 1.3µm 2 , which is larger than the actual patterned (internal) area of 1 µm 2 .

Heat sharing during resistive fluctuation

In order to elaborate on the sharing of the extra resistive heat, when the differential element becomes normal, by the three interfaces, we also consider two neighboring differential elements of the same length dx as shown in Fig. 2 
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 1 FIG. 1: (a) SEM image of the µ-SQUID µS1 with its current and voltage leads. The zoomed-in image shows the SQUID loop (with area 1×1 µm 2 ) and the narrow leads. (b) Resistance vs temperature (R-T) plot. (c) Low-temperature portion of the R-T plot, showing multiple transitions, for µS1 at a bias current of 0.01 mA.
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 2 FIG. 2: (a) Schematic of the semi-infinite (in +x direction) lead of SC material on a substrate at bath temperature T b with N-S interface at x = 0. (b) shows the region near the N-S interface with three differential elements of length dx when the N-S interface stabilizes near the heat source on left.
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 43 FIG. 3: (a) -(d) IVCs in hysteretic regime for µS1 at different temperatures. A large hysteresis is seen at 4.25 K with two re-trapping currents, Ir1 and Ir2. Ic crosses Ir2 near 5.7 K and Ir1 around 7.25 K as seen in (e). (f) shows the IVC of µS1 in the non-hysteretic regime above T h = 7.25 K. The inset of (e) shows a larger bias-current range plot to show the Ir2 transition.
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 4 FIG. 4: Variation of Ic, Ir1 and Ir2 with bath temperature for (a) µS1 and (b) µS2. The symbols are the data points. The continuous lines are fits given by (in mA and K), (a) Ic = 0.42(7.4 -T b ) and (b) Ic = 0.29(7.4 -T b ) while the other two are described by Ir1 = 0.17(8.4 -T b ) 0.43 and Ir2 = 0.37(8.7 -T b ) 0.5 for both the devices. The cartoon pictures of the device shown in different regions depict the state of the device during current ramp-down with blue as SC and red as resistive portions. The light gray-shaded area shows the bistable region where the whole device is in the fully SC state during the current ramp-up from zero. In the dark grayshaded region, only WLs are resistive.
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 55 Figure 5 below shows the oscillations in I c for µS1 at 4.25 K (below T h ) and in voltage at 7.4 K (above T h ) with external magnetic flux. The voltage oscillations are

2 )I 2 ρ n wt dx ( 3 )

 23 (b) of the main paper. The one on the left (i.e. from x = -dx to x = 0) is at temperature T c + dT 1 and the one on the right (i.e. from x = dx to x = 2dx) is at temperature T c -dT 2 . The left one gives heat Q0 = κwt dT1 dx to the middle one, which gives heat Q1 = κwt dT2 dx to the element on right and thus we get, κwt dT 1 dx = α(T c -T b )wdx + κwt dT 2 dx (When the middle element becomes resistive due to fluctuations its temperature increases to T c + dT . In this case the above equation gets modified to κwt dT 1 -dT dx = α(T c + dT -T b )wdx + κwt dT 2 + dT dx -Subtracting eq. 2 from eq. 3 we get 2κwt dT dx = I 2 ρndx wt -αdT wdx. Neglecting the higher order second term on the right, we get κwt dT dx = I 2 ρndx 2wt . Thus the heat current incident from the left interface, i.e. Q′ 0 = κwt dT1-dT dx = Q0 -I 2 ρndx 2wt and the heat current incident at the right interface, i.e. Q′ 1 = κwt dT2+dT dx = Q1 + I 2 ρndx 2wt . Thus the extra heat generated is equally shared across the two interfaces.
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SQUID oscillations with magnetic flux