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Abstract

This paper is devoted to the cubic nonlinear Schrodinger equation in a two di-
mensional waveguide with shrinking cross section of order . For a Cauchy data living
essentially on the first mode of the transverse Laplacian, we provide a tensorial approx-
imation of the solution ¢ in the limit ¢ — 0, with an estimate of the approximation
error, and derive a limiting nonlinear Schrédinger equation in dimension one. If the
Cauchy data 9§ has a uniformly bounded energy, then it is a bounded sequence in
H! and we show that the approximation is of order O(y/z). If we assume that 5 is
bounded in the graph norm of the Hamiltonian, then it is a bounded sequence in H?
and we show that the approximation error is of order O(g).

1 DMotivation and results

1.1 Motivation

The Dirichlet realization of the Laplacian on tubes of the Euclidean space plays an im-
portant role in the physical description of nanostructures. In the last twenty years, many
papers were concerned by the influence of the geometry of the tube (curvature, torsion)
on the spectrum. For instance, in [12], Duclos and Exner proved that bending a waveg-
uide in dimension two and three always induces the existence of discrete spectrum below
the essential spectrum (see also [10]). Another question of interest in their paper is the
limit when the cross section shrinks to a point. In particular they prove that, in some
sense, the Dirichlet Laplacian on a bidimensional tube, with cross section (—¢,¢) is well
approximated by Schrodinger operator
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acting on L?(R x (—1,1), dv1 dos) and where s denotes the curvature of the center line
of the tube. Such approximations have been recently considered in [I5] or in presence
of magnetic fields [I4] through a convergence of resolvent method. Concerning this kind
of results, one may refer to the memoir by Wachsmuth and Teufel [I8] where dynamical
problems are analyzed in the spirit of adiabatic reductions.

In the present paper, we will consider the time dependent Schrédinger equation with a
cubic non linearity in a waveguide and we would especially like to determine if the adiabatic
reduction available in the linear framework can be used to reduce the dimension of the
non linear equation and provide an effective dynamics in dimension one. The derivation
of nonlinear quantum models in reduced dimensions has been the object of several works
in the past years. For the modeling of the dynamics of electrons in nanostructures, the



dimension reduction problem for the Schrédinger-Poisson system has been studied in [6} [11]
for confinement on the plane, in [4] for confinement on a line, and in [13] for confinement on
the sphere. For the modeling of strongly anisotropic Bose-Einstein condensates, the case
of cubic nonlinear Schrédinger equations with an harmonic potential has been considered
in [7, 5, 3, 11, 2.

1.2 Geometry and normal form

Let us describe the geometrical context of this paper. With the same formalism, we will
consider the case of unbounded curves and the case of closed curves. Consider a smooth,
simple curve I' in R? defined by its normal parametrization «y : z1 + y(z1). For ¢ > 0 we
introduce the map

O.:S=Mx(—1,1) 3 (x1,22) = v(x1) + exov(x1) = X, (1.1)

where v(x;) denotes the wunit normal vector at the point ~(z1) such that
det(y/(z1),v(x1)) = 1 and where

M — R for an unbounded curve,
T=R/(277Z) for a closed curve.

We recall that the curvature at the point vy(x;), denoted by x(x1), is defined by

V(1) = w(z1)v(21).

The waveguide is Q. = ®.(S) and we will work under the following assumption which
states that waveguide does not overlap itself and that ®. is a smooth diffeomorphism.

Assumption 1.1 We assume that the function x is bounded, as well as its derivatives '
and K. Moreover, we assume that there exists €9 € (0, m) such that, for e € (0,ep),
D, is injective.

We will denote by —Agi; the Dirichlet Laplacian on .. We are interested in the following
equation:
i0° = —AQTYT 4 Ae®|yfPyf (1.2)
on €. with a Cauchy condition ¢¢(0;-) = 1§ and where a > 1 and A € R are parameters.
By using the diffeomorphism ®., we may rewrite in the space coordinates (1, z2)
given by . For that purpose, let us introduce mg(z1,z2) = 1 — exok(x1) and consider
the function ¢ transported by &,

U (1, m2) = ¢° (21, x2) = el/zma(xl, xg)l/QwE(t; O (11,22)).

Note that U, is unitary from L?(€), dx) to L?(S, dx1 dz2) and maps H}(€2.) (resp. H3(Q.))
to HY(S) (resp. to H%(S)). Moreover, the operator —AB': is unitarily equivalent to the
self-adjoint operator on L?(S, dzy dxs),

UE(—AQEDH)UE_I =H:.+ V., with H, = 7352,1 + 73372 )

where
Peq = m;l/Qlema_l/z, Peo = 5_1D12
and where the effective electric V. potential is defined by
K(x1)”
4(1 — exor(x1))?’

Ve(zy,22) = —



We have used the standard notation D = —id. Notice that, for all ¢ < gg, we have
me > 1 — gg||k||Le > 0. The problem ((1.2)) becomes

iat(bf;‘ — H6¢a + ngba + )\Eoc—lma—l‘d)a‘qua (13)

with Dirichlet boundary conditions ¢°(¢; x1,£1) = 0 and the Cauchy condition ¢°(-;0) =
¢5 = U=1b5. We notice that the domains of H. and H. + V: coincide with H?(S) N H(S).

In this paper we will analyze the critical case & = 1 where the nonlinear term is of the
same order as the parallel kinetic energy associated to Df,l. It is well-known that (thus
also) has two conserved quantities: the L? norm and the nonlinear energy. Let us
introduce the first eigenvalue p; = %2 of D%Q on (—1, 1) with Dirichlet boundary conditions,
associated to the eigenfunction e (z2) = cos (gajg) and define the energy functional

1 1 1
£(6) = 2/3 P 162 dzy dag + 2/‘9\735,2@5\2@1 dzs + 2/3 (Ve - %) 6|2 dary iz

A
- /mglyqb\‘* dzy do (1.4)
4 Js
1 A
= / V(U 9)? day gy + 5/ U |* dary dag — “1/ U 6| dy dws.
2 Ja. 4 Ja. e? Jo.
Notice that we have substracted the conserved quantity %H(ﬁ“fz to the usual nonlinear

energy, in order to deal with bounded energies. Indeed, we will consider initial conditions
with bounded mass and energy, which means more precisely the following assumption.

Assumption 1.2 There exists two constants My > 0 and My > 0 such that the initial
data ¢ satisfies, for all € € (0,ep),

165l < Mo and  E(¢p) < M.

Let us define the projection II; on e; by letting ITju = (u, 61>L2((,1’1))61. A consequence
of Assumption is that ¢§ has a bounded H! norm and is close to its projection IT; 5.
Indeed, we will prove the following lemma.

Lemma 1.3 Assume that ¢ satisfies Assumption[1.4 Then there exists e1(Mp) € (0,&0)
and a constant C > 0 independent of & such that, for all € € (0,e1(My)),

196llH1s) < C and |6 — 152 (vt (—1,1)) < Ce. (1.5)

1.3 Dimensional reduction and main results

In the sequel, it will be convenient to consider the following change of temporal gauge
¢ (t; 21, 22) = e*i’“gdtcpg(t; x1,x2). This leads to the equation

10h0° = Hep® + (Ve — €2 m) 9" + A o [P (1.6)
with conditions ¢°(¢;x1,£1) =0, ¢°(0;-) = ¢§.

In order to study ((1.6)), the first natural try is to conjugate the equation by the unitary
group e‘*= so that the problem (T.6]) becomes

0" = (Ve — 72 )e TG F AW (6 57), FF(0;1) = 5, (1.7)



where A ‘
W, (t 4,0) — eitHeyy, |€_ZtH€‘;0|2e_ZtHESO (1.8)

and where $F = €= which satisfies ¢°(t; 21, +1) = 0. Nevertheless this reformulation

does not take the inhomogeneity with respect to € into account. In particular it will not
be appropriate to estimate the approximation of the solution.

We will see that is well approximated in the limit € — 0 by the following one
dimensional equation

2
i0,6° = D2, 6° — “(”041)05 + Ay |67 267, (1.9)
with v = f_ll e1(z2)tdzy = 3/4 and 6°(0,21) = O5(x1) = f 1¢0 (x1,x2)e1(x2) dzy for
xy € M (recall that the notation M stands for R or ']T) his last equation can be
reformulated as
~ , 2 . ~ ~ ~
i0,6° = P ("“Efl)) eTMDHGE 4 My F(8:65),  0(0;) =065, (1.10)

where

F(t;0) = e"Pi1 e ”Dne et g, (1.11)

and 6° = P gz,
Our main results are the following theorems and their corollary.

Theorem 1.4 (Solutions in the energy space) Consider a sequence of Cauchy data
o5 € HY(S) satisfying Assumption . Then:

(i) The limit problem (1.9) admits a unique solution 6° € C(Ry;HY(M)) N
O (R H-(M)).

(ii) There exists e1(My) € (0,&0] such that, for all e € (0,e1(My)), the two-dimensional
problem admits a unique solution ¢° € C(R;H{(S)) N CH(R4;HTL(S)).

(iii) For all T > 0 there exists Cr > 0 such that, for all e € (0,e1(My)), we have the error
bound

sup [|°(t) — 6°(t)er[|L2(s) < Cret/?. (1.12)
te(0,7)

Theorem 1.5 (H? solutions) Assume that ¢f € H*NH(S) and that there exist My > 0,
My > 0 such that, for all € € (0,¢),

I65e < Mo, || = e, < (1.13)

Then ¢y satisfies Assumption and:

(i) The limit problem admits a unique solution 6° € C(Ry;H2(M)NCH(Ry; L2(M)).
(i) For all € € (0,1(My)), the two-dimensional problem (1.6) admits a unique solution
¢° € C(Ry; H2NHL(S))NCL(R;L23(S)). The constant e1(My) is the same as in Theorem
)

(iii) For all T > 0 there exists Cr > 0 such that, for all e € (0,e1(My)), we have the
refined error bound

sup || (t) — 6°(t )61|||_2 < Cre. (1.14)
t€[0,T]



Coming back by U~ ! to the original equation (1.2]), an immediate consequence of our two
theorems is the following corollary.

Corollary 1.6 Consider a sequence of Cauchy data 1§ € H(l)(QE) with bounded mass and
energy:

1 AE 1251
W6l < Mo and 166l o,y + TGl 0. — 55 18I0, < M-

Then for all € € (0,e1), the confined NLS equation (1.2) with & = 1 admits a unique
solution ¢ € C(R4;H(Q2))NCH R4 HTL(QL)) and, for all T > 0, we have the estimate

sup [[4F(8) — e /YT (65 (t)er) |2y < CreV/2.
te[0,7]

If, additionally, 1§ € H*(Q.) and H(—Ag;— E)05ll2(q.) is bounded uniformly with respect
to e, then we have ¢¥° € C(R4;H2 N HY(Q)) N CH(R1;L2(Qe)) with, for all T > 0, the
estimate

sup [[YF(t) — e T /YT (05 (t)er) liz2(0.) < Cre.
te[0,7)

This paper is organized as follows. Section [2|is devoted to technical lemmas related to
the well-posedness of our Cauchy problems and to energy estimates. Section [3] deals with
the proof of well-posedness stated in Theorems and In Section [d] we establish the
tensorial approximation announced in Theorems [T.4] and [T.5]

2 Preliminaries

In this section, we give a few technical results that will be useful in the sequel.

2.1 Norm equivalences
Let us first remark that

exok’ (x1)
2(1 — exar(zy))

Pei=(1- 8.%'2/@(.731))711151 —

Hence, by Assumption there exists three positive constants C7, Co, C3 such that, for
all € € (0,&0) and for all u € H}(S),

(1= Cie) [[0n,ull2 < [[Pepullez + Coellullz < (1 + C3e)[|0r, ull L2 + Csellufl 2. (2.1)

Furthermore, the graph norm of H. is equivalent to the H? norm for all € € (0, &g), with
constants depending on . More precisely, we have the following result.

Lemma 2.1 There exist positive constants Cy and Cs such that, for all e € (0,20) and
for all uw € H> NH}(S),

1
s (D2l + 5 11 (0%, = )l + ) < 22

1
<[ (e~ )+ e < €5 (1024 25 102, = )l + )



Proof. To prove the left inequality in (2.2), we use standard elliptic estimates. For
u € H2NHY(S), we let

1 _
f= (Hg - ’;—2) w="Pu+e (D2, — p)u (2.3)
and taking the L? scalar product of f with D2 L u, we get

_ 1/2
(D, P21, Dyyu)2 + € 2| Dy, (D7, — pa) " wllfe < || flle2 )| D7, ull 2
Then we write

2 _ 2
1 - ; ’ ) ? ;
(Dy Ps,luv Dyyuy2 = ||Pe 1Dx1uH|_2 +([Dzy, Pealu, Peg Doy u) 2
- <7D8,1u7 [Dxlapa,l]Dmu)L?
and use
[[Days Peplull 2 < Ce (| Dy ulliz + llullL2), (2.4)

together with (2.1) and the interpolation estimate || Dy, ul| 2 < C||Dglu||téz\|u||ié2, to get

(Do, P2 1u, Dyyu)2 > (1= Ce)||DZ, ullfz — Cellulfe.
It follows that
IDZ,ull> < C[I 2 + CllulL2
and then, using and again ,
e [(DZ, — m)ull > < flle + I1P21ulliz < I fllz + CIDZ, ulliz + Cllull
< Cllfllez + Cllule-

This proves the left inequality in (2.2)). The right inequality can be easily obtained by
using Minkowski inequality, (2.1)) and (2.4]). [

In the sequel, we shall denote by C' a generic constant independent of ¢, and by C.
a generic constant that depends on €. Moreover, for two positive numbers o° and (¢,
the notation a® < (5 means that there exists C' > 0 independent of € such that for all
e € (0,e0), a® < CpB°.

2.2 Some estimates of ' and W,

In this subsection, we give some results concerning the two nonlinear functions F' and W,

defined in ([1.11)) and (|1.8]).

Lemma 2.2 The function F is locally Lipschitz continuous on H'(M) and on H?(M):
fork=1o0ork=2,

Vur,uz € HY(M),  sup | F(tur) — F(tuz)llne S (lualfe + lluzllfo)llus — uallpe (2.5)
teM

and, for all e € (0,e0), the function W is locally Lipschitz continuous on H? N H}(S):
there exists C. > 0 such that

Vur,ug € H? NHG(S), sup [We(t; 1) = We(tug) w2 < Ce(llunllfe + lJuzllfe)llur — ua|lne-
te
(2.6)



Moreover, for all u € H*(M), one has

sup || (¢ w) [l S I|ullf[lulle- (2.7)
teR

Moreover, for all M > 0 and for all ¢ € (0,¢¢), there exists a constant Ce(M) > 0 such
that, for all u € H2 N HY(S) with ||uly < M, one has

sup IWe(t;u)llwe < Ce(M)(1 +log (1 + [Jullnz) ) lullne- (2.8)
S

Proof. We recall that the group e TP g unitary in L2(M), HY(M), H2(M).
Moreover, the group e~ " is unitary on L%(S), H}(S) and H3(S) N H(S), if these two
last spaces are respectively equipped with the norms ||(H.u)"/?|| 2 and |H.ul| 2, which
are equivalent to the H' and H? norms with e-dependent constants, by .

Let us prove (22.5). We let v; = e~iP% uj. We have
D2 _ S
e~ tDz, (F(t;u1)— F(t;u2)) = ]v1\2vl — \02]21}2 = (]vg\g—i—vlvg)(vl —w)—i—v%(vl —732). (2.9)
Then we have
IF(t;u1) — F(tu2)llpe < Ilv2|* (01 — v2) lge + llv12(vr — va) [[ue + [[01° (01 — v2) |y

We are led to estimate products of functions in H¥ in the form vyvv3 so that, by using
the Sobolev embedding H!( M) < L>( M), we get for all k& > 1

[orv2vs|lwe < llvr [ vzl e f[os]| e
Let us deal with (2.6)). Here we let v; = e~y and we estimate
IWe(t; ur) = We(t;uz) wz < Cellmz (Jor[Por — [o2]?02) w2 < CLl|va*01 — [v2l*v2 |12

where we have used the unitarity of e=#*= for the graph norm of .. Then, the conclusion
follows by using the embeddings H2(S) < L*>°(S) and H?(S) «— W4(S). Let us now deal
with (2.7). We notice that, for all u € H?( M),

— 2
IEE W) e < o[2olle, v = e Py

and

lolollkz < Mool + lov]le + [lo"v? 2

S Mol llolfe + 10l lee vl + ol ollne
S ol llvllue = llullf llullme-
Let us now deal with (2.8]). We first recall the Gagliardo-Nirenberg inequality in dimension

2 (see [16], p. 129]):
ol < ol ffolle. (2.10)

The next Sobolev inequality is due to Brézis and Gallouet (see [8, Lemma 2]): there exists
C(M) > 0 such that, for all v € H*(R?) with ||v|[1 g2y < M,

Jelle < C(M) (1+ v/log(1+ [[ole) ) - (2.11)



By using continuous extensions from H?(S) to H?(R?), one obtains the same inequality
for u € H> N H}(S). Hence, for all v € H3(S) with [|v||y: < M,
loPollne S 103l + 1A@De S lvlfs + v Avlle + o] Vol
Sl + lollEs | Avlice + (vl oo ol
S C(M) (1 +log(1 + [[v]lu2)) [[vllne,

where we used the Sobolev embedding H(S) — L%(S), (2.10) and (2.11]). Finally, for all
u € H2 NHY(S) with [|ully1 < M, setting v = e~H=y we get ||v||y1 < C-M and

Wt 0l < Celllo]vllne < Co(M) (1 +log(1 + [[v]lu2)) [[v]l
< CL(M) (1 +1og(1 + [Jullne)) fleeflye-

This proves ([2.8)) and the proof of the lemma is complete. [

2.3 Proof of Lemma [1.3

We will need the following easy lemma.

Lemma 2.3 For all u € HY(M), we have
lulls < 2llullfellollie. (2.12)
For all u € HY(S), we have
ullte < 4lulags) 10, ull ) 9oy ull2(s)- (2.13)

Proof.  The proof of (2.12) is a consequence of the standard inequality, for f € H!( M),
I £lIEse <2/ f 2l fllL2- To prove (2-13)), let us recall the following inequality

/S|f\2d$1 dzy < |0, fllis) 10z fllLis),  VF € WHH(S).

Indeed, by density and extension, we may assume that f € C3°(R?) and we can write

f(z1,22) = /m Ony f(u, x2) du, f(z1,29) = /362 On, f(x1,v) do.

el < ([ 1onsteion) ([ pustno)a)
2

and it remains to integrate with respect to ;1 and x5. We apply this inequality to f = u*,
use the Cauchy-Schwarz inequality and ([2.13)) follows. [

We get

Now, we prove a technical lemma on the energy functional.

Lemma 2.4 There exists e € (0,20) such that, for all € € (0,e3), the energy functional
defined by (1.4) satisfies the following estimate. For all M > 0, there exists Cy > 0 such
that, for all o € HY(S) with ||¢||L2 < M, one has

1 3
E() 2 {10mllEs(s) + (8 - 00M4) 02, (1d — ) pl[Zas) — CoM® — CoMS.  (2.14)



Proof. Remark that

1 1
E(p / ‘Pg 1(,0‘ dzydxo + 222 <(D3262 — Ml) 0, S0>L2 4 2/5{/6‘()02 dzy dzo

+4/m61\<p]4dx1 dxa.

Next, recalling that II; denotes the projection on the first eigenfunction e; of Dgc27 we
easily get
lolitss) < 8IMigltsgs) +8ll(1d — Mgl

We may write II;p(z1,22) = 0(z1)e1(x2) so that with (2.12),

Miollias) = ’Y/M 0(z1)" dzr < 29|01z (4 16/l 20ty = 27 1T P2 5118y (i) [1L2(s)
< 29[l¢ 125102, (1) [[L2(s) (2.15)
where v = f_ll e1(w2)* dzo, and thus, for all n € (0, 1),
IThllias) < nlhide ellteisy + 17210002 o)
Moreover, thanks to (2.13]), we have, for all n € (0,1),
1(1d = T llfacsy < 40Pz 1182, (1d = Tl L2(s) [0, (1d = T |2
<0z, (1d = T2y + 407 @llE2 (5192, (1d = )P 5. (2:16)

Now we remark that, if s = 72 denotes the second eigenvalue of D2 on (—1,1) with
Dirichlet boundary conditions, we have

3
<(Da2:2 - ,U'l) QO:‘P>|_2( = (1 - M) Haﬂcz(ld Hl)‘ﬁ”@ 1 Haxz(ld - H1)¢|’E2(S)

(2.17)
Therefore, using (2.1)), (2.16)), (2.17)), using that ||Vz||.~ < C and that 0 < m-! <1+ Ce,

we obtain
1 2 2 3 2
E(p) 2 5(1 = C)llOn, lliz(s) — Cllellizs) + gz 102 (1d = Th)ellizs)
—2[A|(1 + Ce) (ﬁ”aacls@HE?(S) + A ollie sy 192, (1d — H1)<P||E2(S)) = CllelPzs)

1 3
> 1||3x1<ﬁ||52(3) + (8 5 — Cllgllizs) ) 1925 (1d = ) |F25) = CllelF2s) — CllelPa(s

where we has chosen n = 1—2Ce L which is positive for € small enough. ]

SA\[(1+Ce)

Proof of Lemma It is easy now to deduce Lemma [I.3] from Lemma [2.4] Indeed,
consider a sequence ¢ satisfying Assumption and introduce the constants

3 1/2
51(M0) = min (527 (]_66'0]\461) ) . (218)
We deduce from (2.14) that, if € € (0,e1(My)), we have

3 1 1 3
16 (10617 + 23 10n, 00 = T)G81E: ) < G0 0alRa + (25 — Codr* ) 0,00 — a5l

< E(#5) + CoM§ + CoM§
< My + CoME + CoMS§. (2.19)



The conclusion (|1.5)) stems from (2.19) by remarking also that

m T
102, 1146 2 = ({65, en)2((~1,1))OmzetllLz < S I65lI2 < 5 Mo
and by using the Poincaré inequality

Vitr?
1d = T @5 ez rapn (1,1 < 02, (1d = T)65

3 Well-posedness of the Cauchy problems

3.1 Limit equation

The aim of this subsection is to prove briefly the global well-posedness of the limit equation

[9).

Proposition 3.1 Let 0y € H'(M). Then (1.9) with the Cauchy data 0y admits a unique
global solution 0 € C(R,;HY(M)) N CY(Ry;HY(M)), that satisfies the following conser-
vation laws

165 )2 = ll6oll> (mass), (3.1)
E0(t;-)) = E(6y) (nonlinear energy), (3.2)

1 2
B(0) = 2/M (yameﬁ _ ”"(”I)W) dri + 2] /M 101" das.

Moreover, there exists a constant C > 0 such that

where

vVt e [0, Ry), 16|l < C([160]lr + [|60]l7) (3.3)
If 6o € H2(M) then 6 € C(R.; H2(M)) N CY(Rs; L2(M)) and
vt e Ry, 16()lnz < |160]ln2 exp(C(1 + ||6o]l:)t)- (3.4)

Proof. ‘We introduce

FO)() = 0, —i/t {eisDil (-"“2(;”1)> e #PE0(s;) + AyF(s:0(s; -))} ds.

0

For M > 0,T > 0, we consider the complete space
Grar = {C([0,T); HY(M)) : V¢ € [0,T], 0(t) € By (6o, M)},

where, for all Banach space X, Bx(y, M) denotes the closed ball in X, of radius M,
centered in 6y. Let us briefly explain why F is a contraction from G s to G as soon
as T is small enough. Due to (2.5) and F'(¢,0) = 0, there exists C' > 0 such that for all
M,T > 0,t €[0,T] and § € Gr ., we have

| F(6)(t) — bl < CT +CM3T

10



which leads to choose T < Ty = M(C + CM3)~L. In the same way, there exists C' > 0
such that for all M,T > 0,t € [0,T] and u1,u2 € G,

IF(01)(t) = F(02)(t) ]l < (CT + CM>T) ap 161(2) = O2(2) |1

so that we choose T' < Ty = (C + CM?)~!. It remains to apply the fixed point theorem
for any T € (0, (min(71,75)) and the conclusion is standard. By a continuation argument,
it is clear moreover that the solution is global in time if it is bounded in H!.

The conservation of the L?-norm is obtained by considering the scalar product of
with 6 and then taking the imaginary part. For the conservation of the energy ,
we consider the scalar product of the equation with 9;6 and take the real part. Let us now
prove . If A > 0, it is an immediate consequence of the bounds on the energy and
L2-norm and the Sobolev embedding H!(M) < L*(M). Let us analyze the case A < 0.

Thanks to (2.12)), we have
M| IMI IMI
P o1t don < P 101001080100y = 257 1800 a0z

so that, for all n € (0,1),

Ay _
BAL Tt < B2 (720018 + 110110180

Choosing 17 Such that 17|M‘ 5 and using the bound on the energy, we get the uniform

estimate . In particular, the solution @ is global in time.

The local well-posedness in H2(M) can be obtained by a similar procedure. To prove
that the H? solution is global in time, we simply use Assumption on k with (2.7)):

t
101z < 1100]ln2 +/0 CA+10()[7)N10(s) Iz ds
and conclude by using the H! bound (3.3) and the Gronwall lemma. ]

3.2 Cauchy problem in the strip

Let us now analyze the well-posedness of (|1.6), but without any e-control of the solution.

Proposition 3.2 Let ¢5 € H{(S) and let € € (0,e¢). Then, the following properties hold:
(i) The problem (L.6) admits a unique mazimal solution ¢° € C([0,T5,); H(S)) N
CH[0, TS . ); HH(S)), with T:,, € (0,+00] that satisfies the following conservation laws

1" (& )l = 52 (mass), (3.5)
E(°(t;) = ()  (nonlinear energy),

where & is defined in (|1.4]).
(ii) There exists a constant Cy > 0 such that, if € < €2 (given in Lemma and if
ell§llis < C1, then TS, = +oc.

max

(i4i) If ¢5 belongs to HXNH(S), then ¢° € C([0,T5,); H2NHL(S)) NCH([0, TE 1y ); LA(S)).

) - max ? T max
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Proof. Step 1: local well-posedness in H2. Let us fix e € (0,20) and analyze in a first
step the well-posedness in H? N H}(S). For ¢f € H2 N H{(S), we consider the conjugate
problem ((1.7)) in its Duhamel form

t . . —~ . .
o (t) = ¢5 — 1/0 (€M (Ve — e 72 pn)e ™™ He 5% (s) + AWe(5: 87 (s))) ds = We(&°)(1).
For M, T > 0, we consider the complete space
Gy = {C([0,T); HX N HY(S)) : ¥t € [0,T],  6(t) € Byz (6o, M)}

The application WW; is a contraction from C~¥T7 M to C~}T7 a for T small enough. Indeed, as
in Lemma and thanks to (2.6), there exists Cz > 0 such that for all T > 0, M > 0,
t €[0,T] and p1,p2 € G0,

W= (1) () — @ollpz < CT + C.TM?,

We(p1)(t) = We(p2)(®) [z < (C-T + C-TM?) Sup l1(t) = @2(t)[l2,
where we have again used the unitarity of e®*s with respect to the graph norm of .
and the equivalence between the graph norm of #H. and the H?-norm, for each fixed e.
Therefore the Banach fixed point theorem insures the existence and uniqueness of a local
in time solution of and thus of for each given ¢ € (0,e09). The conservation
laws and . are obtained similarly as and (| . In fact, it is not difficult

to deduce the existence of a maximal ex1stence time T°¢ w2 € (0, +oo] such that ¢® €
C([0, T, 12); H2NHE(S) NCH([0,T¢ ., 12); L3(S)) and such that we have the alternative

mahz = T00 or - m{lp%(1)][wz = +oo. (3.7)
max, H2

Step 2: local well-posedness in H'. Consider now a Cauchy data ¢f € H}(S). To prove the
local well-posedness in H!, we can proceed with the usual argument based on Trudinger’s
inequality, explained in Section 3.6 of [9] and that we sketch here.

We first recall the construction of a local weak solution ¢° € L*([0,T);H(S)) N
Whee((0,T); H=Y(S)) of by a standard regularization method. We approximate the
Cauchy data ¢§ by a sequence ¢f,, € H? N Hi(S) converging to ¢f in H§(S). Then we
apply the well-posedness result in H? proved in Step 1 to obtain a sequence of solutions
@ € C([0, T,); H2NH(S)) N CH([0, T, ) of (L.6) with ¢f,(0;-) = ¢ ,, satisfying the
conservation of mass and energy and where T is chosen such that

Ve [0, Tn],  llh ()l < 2/|¢5]n:-
From (1.7) and the embedding H!(S) < L%(S), we deduce that for s,t < T},
lo5 (1) = r()lle = 185.() — Ga() Iz < Ceft = s| (65l + 16511
and then, from the conservation of mass and energy, we get

len @7 vi- 5| .

[lehOE2 = ller (01|

”mEHL“’ [llen @)IEs =l O)]Is]
2
< H%,n( M+ Cet (163l + l511) "

12



From this estimate, we deduce that there exists 7' > 0, independent of n (but of
course depending on €), such 7,, > T. The sequence (¢f)nen being bounded in
L=([0,T); HY(S)) N We°((0,T); H71(S)), we can use the local compactness of H! into
LS to extract a subsequence that converges to a weak solution of . This weak solution
satisfies in fact ||¢°(t)|| .2 = ||¢§ |2 and the inequality E(p°(t)) < E(¢5).

Next, by using Ogawa’s method [17] (see Theorem 3.6.1 in [9]), we prove the uniqueness
of the weak solution ¢ € L>([0,7); H{(S)) NnW1°([0,T); H71(S)). This crucial property
relies on an L? estimate and Trudinger’s inequality.

A consequence of the uniqueness property is that the NLS equation is time-
reversible, so one has & (¢f) < E-(¢°(t)) and then the energy is exactly conserved: the
weak solution ¢° satisfies (3.6). From this, one deduces (see Theorem 3.3.9 of [9]) that
©° € C([0,T); HY(S)) N C([0,T); H7L(S)), that the solution depends continuously from
the initial data, and that the exists a maximal existence time T2\, € (0, 400] with the
alternative

max,H1 = T00 oI H%Ei . 16 (@)ln1 = +o0. (3.8)

Step 3: equality of the mazimal existence times. Let ¢f € H2 N H(lJ(S). From the previous

two steps, there exists a maximal existence time T |, (resp. 1% ) of the H? (resp.

H') solution of (T.3]). Moreover, by (3.7) and (3.8), it is already obvious that Thacnz <

T ax HL- Let us prove by a contradiction argument that we have in fact the equality of

these two maximal existence times:

T‘(Eax,H2 = T'Ea,x,H1 = Thax- (39)

m, m. max

Assume that T° ., < T Then ¢° is bounded by a constant M¢ in H' norm on

max, max,H!"
3
[0, T, 1e] and one has

lim  ||¢°(t)||q2 = +o0. (3.10)

From (|1.6) and (2.8) we get
10:% [lwe < Ce (1 +log (1 + [0 (t; )llm2) ) llo™ (& )l e-

It remains to use an argument ¢ la Gronwall from [8]. Given a Banach space G, let us
consider a function ¢ € C1([0,7%), G) such that for, t € [0,T%),

l" @ < C (1 +log(L + [[e(@®))le(t)].
We easily get
le®)l < F(t), with — F(t) = [l¢oll + C/O (1 +log (L + [le(m)Ile(r)] d
and d
570 = CU +log(L+ [le@ D))l < C(1 +log(1 + F(1)))F(2),
so that

% log (1 +1log(1+ F(t))) < C.

Consequently, we find an estimate of the form

bt

le(@) < F(t) <e*.

13



Applying this inequality to ¢ with G = H?(S), one gets a bound for the H2 norm of ¢*
on the interval [O’Triax,m)’ which is a contradiction with (3.10). The proof of (3.9) is
complete.

Step 4: global existence for € small enough. Let M. = ||¢°|| L2 = ||¢§2. By Lemma [2.4]
for € € (0,£2), one has

1 3
$100 1+ (2 — oMY ) 100,00~ I < E0(59) + o2 + ot

= E(¢f) + CoM2 + CoMP.

Hence, if eM?2 < (%)1/ 2 this inequality provides an H! bound for ©° and, by (3.8), we
have Tyax = +00. [

4 Reduction to the limit equation

This section is devoted to the proof of our two main theorems. As for the study of the
Cauchy problem in Subsection we shall start with the case of H? initial data, which is
simpler than the case of data in the energy space H! requiring an additional regularization
argument.

4.1 Proof of Theorem [1.5]

Consider a sequence of Cauchy data ¢5 € H? N H}(S) satisfying (1.13) and let 6°(¢) and

©°(t) be respectively the solutions of (1.9) and (1.6). Items (i) and (7i) of Theorem
are direct consequences of Propositions and Notice that 1(Mp) is defined once

for all by (2.18)).

Let us prove Item (%ii). To this aim, we first prove that Assumption is satisfied,
i.e. that the energy of ¢ is bounded from above. From (1.13]) and (2.2), one gets

1
|DZ, 5] > + o) (D7, = 11) 6| > + 1652 < C (1 + Ma). (4.1)

Hence, by using , we have
[Peadilliz <O, [1Daydllt> — mlld5llE> < Ce®. (4.2)
Moreover, from the proof of Lemma we write
16511t < ClIgflILs + C1(1d — 1) o5 | s

< Cll 631210, 6512 + CllGG TNl (1d — 1) D, 5li2 10, (1 — TT1) 5 12
< C1165I2 1102, 65 lIu2 + Cell 65121100, S5l < C (4.3)

where we used (4.2)) and (2.17). Hence, (4.1), (4.2) and (4.3)) yield &(¢F) < M, for

some M; > 0 independent of e: the sequence of Cauchy data satisfies Assumption [1.2}
Therefore, by conservation of mass and energy, for all ¢ > 0, the sequence ¢°(t) also
satisfies Assumption We can then apply Lemma to ¢°(t): for all t > 0 and for all
e < e1(My), we have

le*(llnis) <€ and  [[(Id = T)@" (]| 2 Hr(-1,1)) < Ce (4.4)
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Let us now deal with the NLS equation (1.6) projected on ej(z2): setting u® =
(1), e1)L2((~1,1)), We get

. /12 T
i0pu® = D, uf = %uwﬂuﬂ?m (Re(%)s e1)iz2((-1,1)) + (S=(9%)s en)iz 1,1y (4:5)

with u#(0;-) = 65 and where, for all ¢ € H%(S), we have denoted

Relg) = m: "Dy, (m:' Dy (m:20)) = Dl = "0 (m* =) (46)
Se(p) = Am oo — AL T . (4.7)
Since 6° = 6°(t,x1) and e; = Il e, we have
67 (8) — 65 (t)en lIF2(s) = ITLL(7(8) — 0 (£)en) 2 (s) + I (1d — T0) " () [P
< us () = 0°(®) 12 gy + C€°

by (4.4). Thus, to deduce (1.14), it is enough to prove the following property: for all
T > 0, there exist Cr > 0 and er € (0,21(M)y)) such that, for all € < ep, we have

vt € 10,71, |u(t) = 0°(t) |l < Cre. (4.8)
This fact will be a consequence of the following lemmas, that we prove further.

Lemma 4.1 For all o € H%(S), we have the interpolation estimate

1/2 1/2
el S el el (4.9)
Lemma 4.2 Let ¢ € H*(S), then, for all € € (0,¢0),

[R=(#)lle2 < ell el

and
1S:(0)llz S lellz el (1d = el +ellelit:llelne,
where Re and S¢ are defined by (4.6) and (4.7).
Lemma 4.3 LetT > 0, lete € (0,2¢) and let * € C([0,T); H*NH(S))NCL([0, T); LA(S))

be solution of (1.6). Assume moreover that we have an L™ bound ||¢®|| o (o0, 1xs) < M,
with M independent of . Then there exists Cprr > 0 such that, for allt € [0,T], we have

-2

End of proof of Theorem [1.5] In this proof, C' denotes a generic constant that only
depends on the two upper bounds My and M; in Assumption [I.2] Consider the quantity

+ e ()2 -

e Olhe < Carr (|| (e = £5) ¢°(0)

L2 L2

M =2 sup supl[0°(t)[lLo(sry < C sup supHH () [IH1 (na)
EE(O,El(MQ)) t>0 EE(O El(Mo))

<C+C sup ”QOHIQ—H(M)
86(0,81(M0))

<C+C  swp |65llfngs < +oo,
e€(0,e1(Mo))
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where we used the Sobolev embedding HY(M) < L°°(M), the estimate , Cauchy—
Schwarz and the uniform bound . Next, for £ € (0,e1(Mp)), by ([#.4), (4.9) and (4.1]
(which yields a uniform H? bound on QSO) we have

[05l[Lee < Mg — 05 enllLee + (165 erflLee = [[(1d =TT )@ lioe + (165 Lo~

< C||(1d = 1) | 471/ (1d — TI) 5 1117 + 1105 Lo
M

< 051/2(1+M2)1/2+7. (4.10)

Hence, for ¢ < M?/(16C?(1 + Ma)), one has ||¢5[lL.~ < 3M/4 and, by continuity of
% (t)]| Lo, we know that
(4.11)

belongs to (0, +00]. By a continuation argument, it is clear moreover that
if T.<too then [¢°(Ty)ll~ = M. (4.12)

Let us fix T > 0. For all ¢ < min(7,T.), one has [¢°(t)||L~ < M so, from Lemma [4.3]
from (2.2)) and from (|1.13]), we deduce that

1
|D2,65 Ol + 25 (D2, = 1) O + [ Dl <

<0|(x-5) 0], +cle@ie

< O (|| (He = 55) 05, + 1ol
< Cumr (14 My).
This yields the H? estimate
o= () llne < || D265 ()| + [|(D2, — 1) @ ()] 2 + L + )l ()2 < COMr(1+ M).

(4.13)
We can now apply Lemma together with (4.4) and (4.13)) and, for all ¢ < min(7,T;),
obtain

[R=(0" ()2 + [15:(" (1) Iz < e CCuMr(1 + Mp). (4.14)

Let us define u®(t) = D e (1 (t) and 0= (t) = eithlﬁs(t) and write the equation satisfied
by the difference w®(t) = u®(t) — 6°(¢):

4
itD2
™51 ((Re(%), e1)i2((—1,1)) + (S=(¢°), ex)iz((-1,1))) (4.15)

with w®(0 ) = 0. Hence, (2.9) together with the Sobolev embedding H!( M) < L> and the

bounds . - yield

|0yw® ()|l 2 < Cllw® ()2 + e CCM (1 + M), w(0)=0.

a2 2 ~
iOw® =P (—H (m1)> e MR + My ( (t;u®) — F(t; 96))

_|_

The Gronwall lemma gives then, for all ¢ < min(7,T),

lu®(t) — 65 (1)l = llw*(8) 2 < e COM(L + M) (4.16)
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We have proved the estimate for all ¢ < min(7,7;), and the proof of Theorem
will be complete if we show that there exists ep > 0 such that, for all € € (0,e7), we have
T.>1T.

Let us proceed by contradiction and assume that T, < T'. Apply as above the interpo-
lation estimation at time T:

l* (T2) L < 1l9°(T2) — 05(T2) ex [l + [16°(T2) x|
< Ol (T2) — 0°(T2) el |47 1197 (T2) — 6°(T2) en |4y + 1167 (T2) e
< C(JJuf(T2) = 05(T) 2 + [ (1d = ) (T2)[l2) 2 (1" (Te) 2 + [10°(T2) e flz)
+]165(T2) |
M

< 51/20(1 + Cur(1+ MQ)@CT) + 5

where we used (4.16)), (4.4)), (4.13), (3.4) and the definition of M. Now we choose

2
er = min (51(M0), (C(1 + Carr(1+ My)eCT)) ™ <]§f> )

and obtain that, for all € € (0,e7),

(@)l < 23 < M.
Since T, < 400, this contradicts . The proof of Theorem is complete. |
Proof of Lemmaf4.1 The interpolation estimate follows from the Sobolev embedding
vue H(R?),  [lullie S llullez + [IDZ,ullz + [|DZ,ull 2 (4.17)

by a simple homogeneity argument. Indeed, for ¢ € H%(R?), non zero, inserting the

function uy defined by uy(x) = p(Az) with A = ngH}_éQHgoH;zlﬂ in (4.17) yields (4.9). =

Proof of Lemma The estimate on R.(y) is immediate as soon as one notices
that, for all € < g9, we have m. > 1 — g¢||&||L= > 0 and that

||’I7’L5 — 1HW2’°°(S) S EHK‘HWQ’OQ(M) S CE. (418)

The estimate on S; follows from (4.18)), from

|el%e — el The = (Mgl + ¢llip) (Id = ) + * (Id = ). (4.19)
and from the interpolation estimate (4.9)). ]

Proof of Lemma Let us consider the time derivative of (|1.6): if x* = J;¢°, then
i0ix" = (He — €72 m) X7+ Vex® + 2mZ Mo X7 + dm 2 (7).

Take the L%(S) scalar product with x° and then the imaginary part to get,

1d
iR < € [ 1P do doy < OO
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where we have used the assumption on the L> bound of ¢° on [0,7]. It remains to apply
the Gronwall lemma;:

1866 (1)l < 191" (0) 2 e
K _
= [[(#: = 5) (@ + (e - Am = O) 7 O , e

= <H (H - %) Soa(O)HLZ +CO(+ Mz)llsﬂe(O)IILz) M (4.20)

)

where we used the equation (1.6) to identify and bound 0;¢°(0). We can now deduce an
H? bound of ¢°. Indeed, by ((1.6]), we have
H () - g () — g (3
[ (e = £3) 0], = ot = Ve =z 1o 2
< 10" O)E2 + C(1+ M)l (#) |12

and the conclusion follows by using (4.20) and ||¢°(t)|| L2 = ||¢°(0)]| 2. n

4.2 Proof of Theorem [1.4]

Consider a sequence of Cauchy data ¢§ € Hj(S) satisfying Assumption Let 6°(t) and
©°(t) be respectively the global solutions of ([1.9) and (1.6]) (for ¢ € (0,e1(Mp)). Items (i)

and (4i) of Theorem [1.4] stem from Propositions and
Let us prove Item (i44). Since E.(p°(t)) = E-(¢f) < My and by conservation of the L2

norm, we deduce as in the proof of Theorem that the estimates (4.4) hold true, for all
t>0.
Let us regularize the initial data by setting

¢y =T (1 +neD2 )~ 1/245, (4.21)

where 1 > 0 is a parameter independent from e that will be chosen later. It is clear that
we have ¢, € H2 N H}(S), with the following estimates:

165" lI2 < [19Gllez, D267 Iz < [ Dy b2,

ID2, 65" L2 < (ne) (165l
and that (D%2 — p11)¢g"" = 0. In particular, we deduce from (2.1, (2.2)) and (2.15) that

||¢8’n||L2 < Mo, 5s(¢>8’n) < CM;, H(HE B %)qﬁé’"

LS Clne)™Y2.  (4.22)

Let ¢>7(t) be the H?> N H} solution of with the Cauchy data ¢;" and let 657(¢) be
the solution of with the Cauchy data (¢g", €1>|_2((_171)). By Proposition and since
e < e1(Mp) and ||¢g"||L2 < My, this solution ¢*"(t) is defined for all t € R . Moreover,
from & (¢=(t)) = E-(¢y") and the first two inequalities of (4.22)), one gets again from
Lemma [1.3 that

=" (O)llhsy <€ and  ||(Id — Iy )™ (8) || L2 (p 1 (—1,1)) < Ce. (4.23)
Step 1: estimating ="(t) — 6"(t)e;. Let us reproduce the series of estimates obtained

in the proof of Theorem We have to take care to the fact that, here, the H? norm of
©="(t) is not uniformly bounded but is of order e~/2. Defining M by

M =2 sup sup||0°7(t)[|Leo(nry < +o00,
66(0,81(M0)) t>0
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and remarking that ¢g" (21, z2) = 05" (x1)e1(z2), we get

M
166" Lo = 11057 L= < -

This enables to define T, > 0 similarly as above, by
T, =max{t >0 : for all s € [0,t], ||="(s)|lLe < M}.

Next, Lemma [£.3] yields
l™" 2 < COMr(1 + (7e)?)

and (4.14)), (4.16) are now respectively replaced by
IR (") llz + [1S(9M)llez < e COMr(1 + (ne) /)

and, if we define u™" = (p="(t), e1)12((~1,1)), by
[u(8) — 07 (1) 2 < £ CCrrr(1 + (ne) YD) < el (424

This bound (4.24) holds true for all ¢ < min(7,7;). To show that 7. > T, we estimate
again the L® norm of ¢*" by interpolation, and obtain

= (T2)||Loe < [|657(T2) oo+
+ O (JJus™(Tz) — 65"(T2) 2 + [[(1d = T ()] 2) M2 (|05 (T2) [l + [1657(T2) ea]|pe) M

< % b OVl 4 L) (L1 )

< % + O 2 oV 4 ot/

Hence we first choose > 0 such that Cnp~1/2 < %. Then we choose er > 0 such that

Cn_1/451T/4 + C’egp/2 < %. Therefore, for all £ < ep, we have ||p="(T:)||L~ < 3M /4, which
is sufficient to conclude as above that 7. > T'. Finally, by (4.24) and (4.23]), we have
obtained that, for all t < T,

o™ (t) = 65" (e Iz < [[u™"(t) = 657(#)l|uz + [[(1d = )™ (#) ]|, < Ce'/2 (4.25)

Step 2: stability estimates. Let us now estimate the two differences 6°(¢t) — 6= (¢) and
() — ¢*(t). By (L21), we have
166 — 65"l < 11(1d = TT)gGlluz + [T (L = (L +neDz,) ™" /)52
< O + el DF, (1 + (L +1eD3 )3) 7 (1 + neD3, ) 726512
< Ce + 02V 2| Dy |12 < CeV/2. (4.26)
The two functions 6°(¢) and 6°"(t) satisfy the same equation (1.9)), respectively with
the initial data (¢, e1)i2((—1,1)) and (¢y", e1)12((~1,1))- Hence, since 6°(t) and 6= (t) are

uniformly bounded in L>( M) (because they are bounded in H'(M)), a standard stability
estimate in L? yields, with the Gronwall lemma,

16°(t) — 65" (#)ll> < 165 — 5" llLe e < /2, (4.27)

To estimate the difference z(t) = ¢(t)—¢="(t), we have to proceed in a different way, since
¢°(t) does not belong to L*(S). Recall that ¢°(t) and ¢*"(t) satisfy the same equation
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(1.6]), with the initial data ¢=(0) = ¢§ and ¢="(0) = ¢g". Hence, the standard L? estimate
on the difference 2°(t) leads to

d
EHZEHLQ < A1 1 = 1= P12 12
< IS (9%) Iz + 1S=(¢5M) L2 + [T P p° — [T P2 (4.28)
where N
Se() = Ao — AT1p Ty .

We now estimate S-(¢°) by coming back to (4.19)). By the Holder and Minkowski inequal-
ities and using that ||IIp||Lr < [l@llLe, we get

~

= 5/2 1/2
15612 < Cllee Pl (1d — TTy)® |47
Then, with a Sobolev embedding and (4.4), we deduce
S(¢)I> < ClletI22110d = T1y) e[ 147 < CeV/2,

Similarly, we also obtain ||S.(¢%")|| 2 < Ce/2 thanks to (£.23). The last term in (4.28)
is easy to estimate, since for all ¢ € H}(S), one has, by Sobolev embedding in dimension

one, ||[TI1p|L~ < [J@|lqr. Thus, by using again (4.4) and (4.23]), we get,
11 PTLg® — [Myp®7PIip™ 2 < C (J1g®[Loe + 1L ) [[2°] 2
< Ol + ™) [12°M 22 < Cll2%l e

Hence, (4.28) and (4.26]) yield

d 1)
EHZ

and we conclude by the Gronwall lemma that

)l < C? + Ol (@)ll2, [12°(0) o2 < V2

e (1) = &)z = 1|2 (1) |2 < C=/2e . (4.29)
Finally, from (4.25)), (4.27) and (4.29), one deduces the error estimate ((1.12). The proof
of Theorem [1.4] is complete. ]
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