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Internal exponential stabilization to a nonstationary solution for 1D
Burgers equations with piecewise constant controls

Axel Kröner and Sérgio S. Rodrigues

Abstract— The feedback stabilization of the Burgers system
to a nonstationary solution using a finite number of internal
piecewise constant controls is considered. Estimates for the
number of needed controls are derived. In the particular case
of no constraint on the support of the control a better estimate
is derived, so the possibility of getting an analogous estimate
for the general case is discussed. That possibility is suggested
by the results of some numerical simulations.

I. INTRODUCTION

Let L > 0 be a positive real number. We consider the
controlled Burgers equations in the interval Ω = (0, L) ⊂ R:

∂tu+ u∂xu− ν∂xxu+ h+ ζ = 0, u|Γ = 0. (1)

Here u stands for the unknown velocity of the fluid, ν > 0
is the viscosity, h is a fixed function, Γ = ∂Ω stands for the
boundary {0, L} of Ω, and ζ is a control taking values in
the space of square-integrable functions in Ω, whose support,
in x, is contained in a given open subset O ⊂ Ω. The Burgers
equation models gas dynamics and traffic flow.

Let us be given a positive constant λ > 0, a continuous
Lipschitz function χ ∈W 1,∞(Ω, R) with nonempty support
∅ 6= supp(χ) ⊆ O ⊆ Ω, and a time-dependent solution û ∈
W of (1), with ζ = 0, in a suitable Banach space W . Let
O = (l1, l2) ⊆ (0, L); in [11] it is shown the existence of an
integer M and a function η = η(t, x), defined for t > 0, x ∈
Ω, such that the solution u = u(t, x) of problem (1), with
ζ = χPM (η|O), and supplemented with the initial condition

u(0, x) = u0(x) (2)

is defined on [0, +∞) and satisfies the relation |u(t) −
û(t)|2L2(Ω,R) ≤ Ce−λt|u(0)−û(0)|2L2(Ω,R), provided |u(0)−
û(0)|L2(Ω,R) < ε, for small enough ε. Here M , C, and ε
can be taken depending only on (|û|W , λ), and PM is
the orthogonal projection in L2(O, R) onto the subspace
L2
M (O, R) := span

{
sin
(
iπ(x−l1)
l2−l1

)
| i ∈ N, 1 ≤ i ≤M

}
.

That is, the internal control ζ = χPM (η|O) stabilizes
exponentially, with rate λ

2 , the Burgers system to the targeted
nonstationary reference trajectory û = û(t).

In the case we take χ(x) = 1 for all x ∈ Ω, then it is
shown in [11, Section 3] that it is enough to take

M ≥ D0(ν−2|û|2W + ν−1λ)
1
2 , (3)
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while in the general case our control is supported in a small
subset supp(χ) ⊆ O, it is shown that it is “enough” to take

M ≥ D1e
D2

(
1+(ν−1λ)

1
2 +(ν−1λ)

2
3 +ν−1|û|W+ν−2|û|2W

)
(4)

where D0, D1, and D2 are constants depending on χ and Ω.
Since the estimates are of different nature some numerical
simulations have been presented in [11] suggesting that an
estimate like (3) should also hold in the general case of
localized controls.

In the derivation of the estimate (3) it is used explicitly the
fact that the controls sin

( iπ(x−l1)
l2−l1

)
, 1 ≤ i ≤ M , are eigen-

functions of the Dirichlet Laplace operator in L2(O, R). In
applications the type of controls at our disposal may be not
of this type, so one question arises: can we derive similar
estimates for other type of controls? Here we show that this
is the case for piecewise constant controls; more precisely
if we consider a partition l1 = p0 < p1 < p2 < · · · <
pM−1 < pM = l2 of O and at each instant of time we apply
a control that vanishes outside O and takes a constant value
ζi(t, x) = ζi(t) for all x ∈ (pi−1, pi), i ∈ {1, 2, . . . , M}.
Notice that in this case we have M independent piecewise
constant controls at our disposal.

In the special case the partition is uniform we find es-
timates analogous to (3) and (4) for the cases the support
of the control is either the entire Ω or a strict subset of Ω,
respectively. In the case of a not necessarily uniform partition
we find a sufficient condition for stabilization that is given
in terms of the maximum max{pi−1 − pi | 1 ≤ i ≤M}.

We present also the results of some of the numerical sim-
ulations we have performed, that suggest that the possibility
of getting, also in the general case, an estimate analogous
to (3) is plausible.

We underline that our targeted trajectory û(t) is nonsta-
tionary, and that in this case there are only a few works in the
mathematical literature concerning the feedback stabilization
to û and the estimation on the dimension of the controller;
we refer to [4], [11]. This case is important when time
dependent external forces h = h(t) act on the system (1).
Since these problems arise in applications, methods to solve
these problems numerically have already been developed
(see, e.g., [7], [9], [10] and references therein). We refer also
the reader to [12] (in particular, see Section 4 concerning
trajectory tracking) and to [8] (in particular, see Section 7.1
concerning linear feedback control of Navier–Stokes flows).

Notice that, as mentioned in [4], [11], [14] the nonstation-
arity of the trajectory requires different tools than those used
in the stationary case, which has been studied along the last



decade; see for example [1]–[3], [5], [13].

The rest of the paper is organized as follows. In Section II
we recall some well-known results and set up our problem.
In Section III, for the linear Oseen–Burgers system, we
present a general sufficient condition for stabilization that the
family of controls has to satisfy; Section III-A deals with the
particular case where we impose no restriction on the support
of the control and Section III-B deals with the general case.
In Section IV we consider the case of piecewise constant
controls where the sufficient condition is given in terms of
the maximum length among the subintervals of the partition
of the control region. In Section V we give the local result
for the Burgers system. In Sections VI and VII we present
the results of some simulations we have performed for the
Oseen–Burgers system and Burgers system, respectively.

Notation. We write R and N for the sets of real numbers
and nonnegative integers, respectively, and we define Rr :=
(r, +∞), for r ∈ R, and N0 := N \ {0}. Given an open
interval I ⊆ R and two Banach spaces X and Y , we write
W (I, X, Y ) := {f ∈ L2(I, X) | ∂tf ∈ L2(I, Y )}, where
the derivative ∂tf is taken in the sense of distributions. This
space is endowed with the natural norm |f |W (I,X, Y ) :=(
|f |2L2(I,X) + |∂tf |2L2(I, Y )

) 1
2 . In the case X = Y we write

H1(I, X) := W (I, X, X). The space of continuous linear
mappings from X into Y will be denoted by L(X → Y ).

Also, C, Ci, i ∈ N, stand for generic positive constants.

II. PRELIMINARIES

Let Ω = (0, L), with L > 0. We will denote V :=
H1

0 (Ω, R), H := L2(Ω, R), D(∂xx) := V ∩H2(Ω, R), and
V ′ := H−1(Ω, R). As usual the space H is taken as a pivot
space, H = H ′, and V ′ is the dual of V . We also denote

W := L∞(R0, L
∞(Ω, R)) (5)

and, for given Banach spaces X and Y ,

L2
loc(R0, X) :={f | f |(0, T )∈L

2((0, T ), X), T > 0},
Wloc(R0, X, Y ) :={f | f |(0, T )∈W ((0, T ), X, Y ), T > 0}.

Fix a function h ∈ L2
loc(R0, V

′) and suppose that û ∈
W ∩Wloc(R0, V, V

′) solves the Burgers system (1), with
ζ = 0 and initial condition û0 := û(0) ∈ H .

Let us be given λ > 0, a function u0 such that |u0−û(0)|H
is small enough, and an open interval O = (l1, l2) ⊆ Ω.

Let C = {Ψi ∈ L2(Ω, R) | i ∈ {1, 2, . . . , M}} be a
family of controls such that supp(Ψi) ⊆ O. Let us denote
by PM the orthogonal projection in L2(Ω, R) onto the linear
space SC := span C spanned by the functions in C.

Our goal is to find a control η ∈ L2(R0, H) such that the
solution of the problem (1)–(2), with ζ = PMη is defined
for all t > 0 and converges exponentially to û, that is, for
some positive constant C > 0 independent of u0 − û0,

|u(t)− û(t)|2H ≤ C e−λt|u0 − û0|2H for t ≥ 0. (6)

Seeking for the control η and considering the correspond-
ing solution u, we find that v = u−û, will solve the nonlinear

Oseen–Burgers-like system

∂tv − ν∂xxv + v∂xv + ∂x(ûv) + ζ = 0, v(0) = v0, (7)

with v|Γ = 0, ζ = PMη and v0 = u(0) − û(0). It is now
clear that to achieve (6) it suffices to consider the problem
of local exponential stabilization to zero for solutions of (7),
where “local” means that the property is to hold “provided
|v0|H is small enough”.

The existence and uniqueness of a weak solution v ∈
Wloc(R0, V, V

′) for system (7) can be proved by classical
arguments (cf. [11, Section 2.2]).

III. THE OSEEN–BURGERS SYSTEM.

Following [11, Section 3] we start by looking for a control
in the form ζ = PMη, with η ∈ L2(R0, H), that stabilizes
exponentially the linear Oseen–Burgers system

∂tv−ν∂xxv+∂x(ûv)+ζ = 0, v|Γ = 0, v(0) = v0, (8)

to zero, with a desired exponential rate λ
2 > 0. System (8)

is well-posed (cf. [11]). Recall that PM is the orthogonal
projection onto SC = span C and C = {Ψi ∈ L2(Ω, R) | i ∈
{1, 2, . . . , M}}; so the question is which conditions must
the family C satisfy in order to guarantee the existence of
such a function η.

The results will follow for system (7), provided |v0|H is
small enough, by a fixed point argument.

A. The particular case O = Ω.

In the case of O = Ω we have no constraint in the support
of the controller.

Theorem 3.1: For given û ∈ W and λ > 0, suppose that

|(1− PM )|2L(H→V ′) ≤
2

3e1 (ν−2|û|2W + ν−1λ)−1, (9)

where e is the Napier’s constant. Then for any given v0 ∈
H , there is a control ηλ,û,ν(v0) ∈ L2(R0, H) such that
the corresponding solution v of system (8), with ζ =
χEO0 POM (ηλ,û,ν |O), satisfies the inequality

|v(t)|2H ≤ 2(1 + e
1
2 )e−λt|v0|2H , t ≥ 0. (10)

Moreover, the mapping v0 7→ ηλ,û,ν(v0) is well defined, is
linear, and satisfies for 0 ≤ λ̂ < λ, the estimate∣∣e(λ̂/2)tηλ,û,ν(v0)

∣∣2
L2(R0,H)

≤ 4e
1
2

λ−λ̂
( 1
ν |û|

2
W + λ)|v0|2H .

Proof: Let w solve

∂tw = ν∂xxw−∂x(ûw)+λ
2w, w|Γ = 0, w(0) = v0. (11)

By standard arguments, following [11, Section 3.1], we find

d

dt
|w|2H ≤ 1

2ν |û|
2
L∞(Ω,R)|w|

2
H + λ|w|2H ;

|w|2L∞((0, T ), H) ≤ e( 1
2ν |û|

2
W+λ)T |v0|2H .

Setting ϕ(t) := 1− t
T ∈ C

1([0, T ], R), δ := ϕw solves

∂tδ = ν∂xxδ − ∂x(ûδ) + λ
2 δ −

1
T w, δ |Γ = 0, δ(0) = v0



with δ(T ) = 0. Let now δM be the solution of the system

∂tδM = ν∂xxδM − ∂x(ûδM ) + λ
2 δM −

1
T PMw,

δM |Γ = 0, δM (0) = v0.

The difference d := δ − δM solves

∂td = ν∂xxd− ∂x(ûd) + λ
2 d−

1
T (1− PΩ

M )w,

d|Γ = 0, d(0) = 0.

Then, proceeding as in [11, Section 3.1] we can arrive to

|d|2L∞((0, T∗), H)≤ 3e1

2ν (ν−1|û|2W+λ) |(1−PM)|2L(H→V ′)|v0|2H
with T∗ := 1

2(ν−1|û|2W+λ)
. Now, recalling that δM (0) = v0

and δM (T∗) = −d(T∗), we find that if (9) holds then
|δM (T∗)|2H ≤ |δM (0)|2H .

Furthermore, |δM |2L∞((0, T∗), H) = |δ − d|2L∞((0, T∗), H) ≤
2 |ϕw|2L∞((0, T∗), H) + 2 |d|2L∞((0, T∗), H) ≤ CδM |δM (0)|2H ,
with

CδM := 2e( 1
2ν |û|

2
W+λ)T∗ + 2 ≤ 2(e

1
2 + 1) =: Υδ.

Next, we may consider the system (11) in (T∗, +∞)×Ω
with w(T∗) = δM (T∗), and repeat the arguments. Recur-
sively, we conclude that in each interval J i∗ := (iT∗, (i +
1)T∗), i ∈ N0, we have |δM ((i+1)T∗)|2H ≤ |δM (iT∗)|2H and
|δM |2L∞(Ji∗, H) ≤ Υδ |δM (iT∗)|2H . Hence, the concatenated
solution satisfy |δM |2L∞(R0, H) ≤ Υδ |v0|2H .

Next we notice that v := e−
λ
2 tδM solves (8), in R0 × Ω,

with the concatenated control ζ = PM (e−
λ
2 t(−T−1

∗ )w) =
−T−1
∗ e−

λ
2 tPMw, where w|Ji∗ =: wi solves (11), in J i∗ ×Ω,

with wi(iT∗) = w(iT∗) = δM (iT∗); from the boundedness
of {|δM (iT∗)|H | i ∈ N}, we can conclude that the family
{|w|L2(Ji∗, H) | i ∈ N} is bounded; so we have that e

λ̂
2 tζ ∈

L2(R0, H) for all λ̂ < λ. Finally we observe that |v(t)|2H ≤
e−λt |δM |2L∞(R0, H) ≤ Υδe

−λt |v0|2H , and that for ηλ,û,ν :=

e−
λ
2 t(−T−1

∗ )w we have∣∣∣e λ̂2 tηλ,û,ν∣∣∣2
L2(R0, H)

=

∫
R0

e(λ̂−λ)sT−2
∗ |w(s)|2H ds

≤ 1
λ−λ̂

T−2
∗ e( 1

2ν |û|
2
W+λ)T∗ |v0|2H

≤ 1
λ−λ̂

(2(ν−1|û|2W + λ))2e
1
2 |v0|2H .

That is,
∣∣∣e λ̂2 tηλ,û,ν∣∣∣2

L2(R0, H)
≤ 4e

1
2

λ−λ̂
(ν−1|û|2W + λ)2 |v0|2H ,

which ends the proof.

B. The general case

In the case O 6= Ω we have the following result, whose
proof follows by similar arguments as in [11, Section 3.2]
and in the previous Section III-A; thus we skip the details.

Theorem 3.2: Let us be given û ∈ W and λ > 0. Then
there are constants D1 and D2 depending only in O and Ω
with the following property: if

|(1− PM )|2L(H→V ′)

≤ D1e
−D2

(
1+(

λ
ν )

1
2 + (λν )

2
3 +

|û|W
ν +

|û|2W
ν2

)
, (12)

then for any given v0 ∈ H , there is a control ηλ,û,ν(v0) ∈
L2(R0, H) such that, taking ζ = PMη

λ,û,ν , the correspond-
ing solution v of system (8) satisfies, for t ≥ 0, the inequality

|v(t)|2H ≤ Kχ,Ωe−λt|v0|2H , (13)

with Kχ,Ω depending on D1, D2, λ
ν , and |û|Wν . Moreover,

the mapping v0 7→ ηλ,û,ν(v0) is well defined, is linear, and
satisfies for 0 ≤ λ̂ < λ the inequality∣∣e λ̂2 tηλ,û,ν(v0)

∣∣2
L2(R0,H)

≤ νe
D3

(
1+3(λν )

1
2 +(λν )

2
3 +3 1

ν |û|W+ 1
ν2
|û|2W

)
1− e(λ̂−λ)(2(νλ+|û|2W))−

1
2

|v0|2H .

C. The gap between (9) and (12).
Comparing estimates (9) and (12), we see that there is

a big gap; the former being proportional to
(

1
ν2 |û|2W +

1
νλ
) 1

2 , while the latter depends exponentially on both 1
ν |û|W

and (λν )
1
2 . For application purposes the latter is much less

convenient, so one question arises naturally: can we im-
prove (12)?

It seems that the idea used to derive (9) cannot (at least
not straightforwardly) be applied in the general case. On
the other side to derive (12) we start from an exact null
controllability result (from [6]) and carry the cost of the
respective control. This means that to improve (12) we will
probably need a different idea.

IV. EXAMPLE: PIECEWISE CONSTANT CONTROLS

We consider a partition

l1 = p0 < p1 < p2 < · · · < pM−1 < pM = l2

of the controlled region O = (l1, l2), and at each instant of
time we apply a control that vanishes outside O and takes
a constant value ηi(t, x) = ηi(t) for all x ∈ (pi−1, pi),
i ∈ {1, 2, . . . , M}; we suppose we can act independently
in each subinterval Oi := (pi−1, pi). That is, we have M
independent piecewise constant controls at our disposal,
namely the functions in C := {Ψi = Ii1Ω | 1 ≤ i ≤ M},
where 1Ω ∈ L2(Ω, R) is the constant function 1Ω(x) = 1
for all x ∈ Ω. and Ii : H1(Ω, R)→ L2(Ω, R), denotes the

indicator operator, Iif(x) :=

{
f(x), if x ∈ Oi
0, if x ∈ Ω \ Oi.

A. An estimate for the dimension M of the controller
Let PM be the orthogonal projection in L2(Ω, R) onto

SC = span C. Let also P iM : L2(O, R) → RΨi be the or-
thogonal projection onto the one dimensional space spanned
by Ψi. Observe that PM =

∑M
i=1 P

i
M and that, for given

u ∈ L2(Ω, R) and v ∈ V with u|Ω\O = 0 and |v|V = 1, we
have

|〈(1− PM )u, v〉V ′, V |R = |(u, (1− PM )v)H |R

≤
M∑
i=1

∣∣(u|Oi , (1− P iM )v|Oi)L2(Oi,R)

∣∣
R

≤
M∑
i=1

∣∣u|Oi∣∣L2(Oi,R)

∣∣((1− P iM )v)|Oi
∣∣
L2(Oi,R)

. (14)



Notice that ((1−P iM )v)|Oi = (1−P iM )Iiv ∈ L2(Oi, R) is
zero averaged, which implies

∣∣((1− P iM )v)|Oi
∣∣
L2(Oi,R)

≤
l̂i
π

∣∣∂x(((1− P iM )Iiv)|Oi)
∣∣
L2(Oi,R)

= l̂i
π

∣∣∂xv|Oi∣∣L2(Oi,R)
,

where l̂i := pi − pi−1 is the length of Oi. In particular,∣∣((1− P iM )v)|Oi
∣∣
L2(Oi,R)

≤ l̂i
π |v|V = l̂i

π .

Therefore, setting l̂ = max{l̂i | 1 ≤ i ≤ M},
from (14) it follows that |〈(1− PM )u, v〉V ′, V |R ≤

l̂
π |u|H ,

and |(1− PM )|L(H→V ′) ≤
l̂
π .

In the case O = Ω, from Theorem 3.1 it is enough to take
a partition of Ω such that

l̂ ≤ π( 2
3e1 )

1
2 (ν−2|û|2W + ν−1λ)−

1
2 , (15)

which implies that L ≤ Mπ( 2
3e1 )

1
2 (ν−2|û|2W + ν−1λ)−

1
2 ,

because L ≤Ml̂. Thus we need to take at least M controls
with M satisfying

M ≥ L

π
( 3e1

2 )
1
2 (ν−2|û|2W + ν−1λ)

1
2 . (16)

This number of controls is also sufficient if L = Ml̂, that is,
if the partition of Ω is uniform: l̂i = l̂, i ∈ {1, 2, . . . , M}.

In the general case we obtain, from Theorem 3.2, that it
is enough to take a partition of O such that

l̂ ≤ πD
1
2
1 e
−D2

2

(
1+(

λ
ν )

1
2 + (λν )

2
3 +

|û|W
ν +

|û|2W
ν2

)
, (17)

which leads to the estimate on the number of needed controls

M ≥ l

π
D
− 1

2
1 e

D2
2

(
1+(

λ
ν )

1
2 + (λν )

2
3 +

|û|W
ν +

|û|2W
ν2

)
, (18)

where l = l2 − l1 is the length of O; this number is also
sufficient if the partition is uniform.

B. The gap between (16) and (18).

The gap between (9) and (12) give rise to a big gap
between (16) and (18). In Section VI, in order to understand
if it is possible to improve (18), say that we also have an
estimate like (16) in the general case, we consider the case
of a uniform partition of O, where (16) and (18) give also a
sufficient number of controls. We present results of some
numerical simulations comparing the number of controls
M = Mneed, that we need to stabilize the system (8) to
zero, with the following reference real numbers

Mref := L
π (ν−2 |û|2W + ν−1λ)

1
2 ; Mexp := L

π eMref . (19)

The value Mref is motivated by (16), and the value Mexp

by (18); notice that l
π eMref is (roughly speaking, up to the

constants D1 and D2) a lower bound for the right hand side
of (18); we take L

π instead of l
π in front of eMref in order to

avoid giving the wrong idea that (18) goes to 0 with l (indeed
the constants D1 and D2 will increase as l goes to 0).

In an uniform partition, we want to understand if a number
of controls of the order of Mref ∼ l

l̂
is also sufficient to

stabilize the system (8) to zero, with rate λ
2 .

C. Feedback control and Riccati equation

By the dynamic programming principle, and the arguments
in [4, Section 3.2], we can derive the following result.

Theorem 4.1: The controls ζ given in Theorems 3.1
and 3.2 can be taken in feedback form

ζ = e−λtPMQ
t, λ
û v (20)

for a suitable family of operators Qt, λû : H → H , t ≥ 0,
with

∣∣∣Qt, λû ∣∣∣
L(H→H)

≤ Ceλt for a suitable constant C.

Further, Q := Qt, λû satisfies the differential Riccati equation

Q̇−QA− A∗Q−QBMB∗MQ+ L = 0 (21)

where L = −νeλt∂xx, A = A(t) := −ν∂xx + B(û(t)),
B(û)v := ∂x(ûv), and B∗M = BM := e−

λ
2 tPM .

V. THE NONLINEAR OSEEN–BURGERS-LIKE SYSTEM.

The next result is a corollary of Theorem 4.1. We omit
the proof that follows by a stardard fixed point argument,
following similar arguments as in [4, Section 4].

Theorem 5.1: Let M be the integer in Theorem 4.1 (i.e.,
as in either (3) or (4)). Then there are positive constants Θ
and ε = ε(Θ) depending only on λ, |û|W , and ν such that
for |v0|H ≤ ε the solution v of system (7), with ζ as in (20),
is well defined for all t ≥ 0 and satisfies the inequality

|v(t)|2H ≤ Θe−λt|v0|2H for t ≥ 0.
Notice that the feedback rule is found to globally sta-

bilize to zero the linear Oseen–Burgers system (8). Then,
Theorem 5.1 says that the same feedback rule also locally
stabilizes to zero the bilinear system (7).

VI. NUMERICAL EXAMPLES: THE LINEAR SYSTEM

We present some results of the numerical simulations we
have performed concerning the stabilization of the Oseen–
Burgers system (8) to zero. Below, vu stands for the solution
of the uncontrolled system (i.e., ζ = 0), and v (or vλ) stands
for the solution of the system under the action of a feedback
controller ζ = e−λtPMQ

t, λ
û v as in (20). The rule Q = Qt, λû

is found by solving (21).
For the discretization we use finite elements in the space

variable and a Crank-Nicolson scheme for the time variable.
For further details we refer the reader to [11, Section 5].

We follow a “trying and checking” procedure, (i): we fix
M , (ii): we (try to) compute the corresponding feedback
control (the differential Riccati equation (21) has a solution
only if M is big enough), and (iii): we check the results of
the simulations.

A. A family of targeted nonstationary solutions

We set ν = 1
10 , T = 3, Ω = (0, π), O = ( 3

2 ,
5
2 ), M = 4,

λ = 4, and the initial condition v0(x) = 2 sin(x)−3 sin(2x).
Then we set the family of targeted solutions

û(i,j) = Cnr(sin(−t) sin(ix)− cos(3t) sin(jx))

where the constant Cnr is chosen such that |û|W = 1.
Figure 1 shows, for different reference trajectories, that



the system is not stable with rate 2 = λ
2 , and that the

feedback control is able to stabilize it with rate 2. Notice that,
accordingly Matlab, Mref ≈ 11.83 and Mexp ≈ 137610.
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Fig. 1. Stabilization for different reference solutions.

B. An unstable situation

Now we take ν = 1
10 , T = 1, Ω = O = (0, π), M = 4,

λ = 4, v0(x) = sin(x), and û = − sin(5x). In Figure 2
we see that the system is unstable. Figure 3 shows that one
control is not enough to stabilize the system. We see that
the optimal cost (Q(t)v(t), v(t))H =

∫ +∞
t

(Lv, v)V ′, V +
|B∗MQv|2H dτ , is not strictly decreasing, which contradicts
the dynamic programming principle. This could explain the
cuspy-like behavior of the norm of the control η = B∗MQv.
In Figure 4 we see that two controls are enough to stabilize
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Fig. 2. Without feedback control.

the system with rate 2. For M = 12 > Mref ≥
√

140 ≈
11.83 we also observe that the behavior of the norms on
time is more uniform. Finally the magnitude of the controls
are shown in Figure 5, we see that with one control the
magnitude is much bigger, which could rely on the fact that
one control is not enough. For other simulations concerning
this problem we refer to [11].
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Fig. 3. The case M = 1.

VII. NUMERICAL EXAMPLES: THE BURGERS SYSTEM

It remains to confirm that the feedback control sta-
bilizes system (1)–(2) to a given reference trajectory û,
provided |u0 − û(0)|2H is “small”. We set the data as
in Section VI-A, with (i, j) = (3, 3). Let δ ∈ R and
let u solve (1)–(2) with u0 = û(0) + δv0 and with the
feedback control ζ, as in (20), computed to stabilize the
linear system (8) to zero. We denote d = u − û and
observe that, for d0 := d(0) = δv0, the local maxima of
the function eλt|d(t)|2H

|d0|2H
, in Figure 6(a), do not increase for

|δ| ≤ 0.1, while they do for |δ| ≥ 0.5. That is, for small |δ|
the feedback control is working and for big |δ| it is not.

VIII. FINAL REMARKS

We have presented a sufficient condition for stabilization
to a nonstationary solution for the Burgers system by means
of a finite dimensional controller. In the case of no constraint
on the support of the control the condition leads to a much
better estimate on the number of piecewise constant controls
we need to stabilize the system; the results of numerical
simulations we present suggest that a similar estimate should
hold in the general constrained case.
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[11] A. Kröner and S. S. Rodrigues, “Remarks on the internal exponential
stabilization to a nonstationary solution for 1D Burgers equations,”
SIAM J. Control Optim. (to appear), 2015.

[12] M. Krstic, L. Magnis, and R. Vazquez, “Nonlinear control of the vis-
cous Burgers equation: Trajectory generation, tracking, and observer
design,” J. Dyn. Syst. Meas. Control, vol. 131, no. 2, pp. 021 012(1–8),
2009.

[13] J.-P. Raymond and L. Thevenet, “Boundary feedback stabilization of
the two-dimensional Navier–Stokes equations with finite-dimensional
controllers,” Discrete Contin. Dyn. Syst., vol. 27, no. 3, pp. 1159–1187,
2010.

[14] S. S. Rodrigues, “Boundary observability inequalities for the 3D
Oseen–Stokes system and applications,” ESAIM Control Optim. Calc.
Var. (to appear), 2014.

Fig. 5. The control for different M ∈ {1, 2, 12}.

0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

4t+ log(|d(t)|2H / |d0|
2
H)

time t

 

 

δ = −0.05
δ = 0.05
δ = −0.1
δ = 0.1
δ = −0.5
δ = 0.5
δ = −1
δ = 1

(a) The norm of the difference u− û.
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Fig. 6. Local stabilization for the Burgers system


