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REMARKS ON THE INTERNAL EXPONENTIAL STABILIZATION
TO A NONSTATIONARY SOLUTION FOR 1D BURGERS

EQUATIONS

AXEL KRÖNER†‡ AND SÉRGIO S. RODRIGUES§¶

Abstract. The feedback stabilization of the Burgers system to a nonstationary solution using
finite-dimensional internal controls is considered. Estimates for the dimension of the controller are
derived. In the particular case of no constraint on the support of the control a better estimate
is derived and the possibility of getting an analogous estimate for the general case is discussed;
some numerical examples are presented illustrating the stabilizing effect of the feedback control, and
suggesting that the existence of an estimate in the general case analogous to that in the particular
one is plausible.
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1. Introduction. Let L > 0 be a positive real number. We consider the con-
trolled Burgers equations in the interval Ω = (0, L) ⊂ R:

(1.1) ∂tu+ u∂xu− ν∂xxu+ h+ ζ = 0, u|Γ = 0.

Here u stands for the unknown velocity of the fluid, ν > 0 is the viscosity, h is a fixed
function, Γ = ∂Ω stands for the boundary {0, L} of Ω, and ζ is a control taking values
in the space of square-integrable functions in Ω, whose support, in x, is contained in
a given open subset ω ⊂ Ω.

Let us be given a positive constant λ > 0, a continuous Lipschitz function χ ∈
W 1,∞(Ω, R) with nonempty support, and a solution û ∈ W of (1.1) with ζ = 0,
in a suitable Banach space W. Then, following the procedure presented in [7], we
can prove that there exists an integer M , a function η = η(t, x), defined for t > 0,
x ∈ Ω, such that the solution u = u(t, x) of problem (1.1), with ζ = χPMη, and
supplemented with the initial condition

(1.2) u(0, x) = u0(x)

is defined on [0, +∞) and satisfies the relation |u(t) − û(t)|2L2(Ω,R) ≤ Ce−λt|u(0) −
û(0)|2L2(Ω,R), provided |u(0) − û(0)|L2(Ω,R) < ε, for small enough ε. Here M , C,

and ε can be taken depending only on (|û|W , λ), and PM is the orthogonal projection
in L2(Ω, R) onto the subspace L2

M (Ω, R) := span{sin( iπxL ) | i ∈ N, 1 ≤ i ≤M}. That

is, the internal control ζ = χPMη stabilizes exponentially, with rate λ
2 , the Burgers

system to the reference trajectory û.
Notice that the support of the control ζ is necessarily contained in that of χ, and

that the control is finite-dimensional. Furthermore, we also know that the control can
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2 A. Kröner and S. S. Rodrigues

be taken in feedback form, ζ(t) = e−λtχPMχQ
t, λ
û (u(t) − û(t)), for a suitable family

of linear continuous operators Qt, λû : L2(Ω, R)→ L2(Ω, R), t ≥ 0 (cf. [7, section 3.2]).
We can see that the dimension M of the range of the controller depends on

the norm |û|W of û but, up to now no precise estimate is known. In the case û is
independent of time it is possible to give, for the case of the Navier–Stokes equations,
a rather sharp description of its dimension M , though the range of the controller
depends on û; see, for example, [2,5,6,8,39] (cf. [7, Remark 3.11(c)]). The procedure
uses the spectral properties of the Oseen–Stokes system and cannot be (at least not
straightforwardly) used in the time-dependent case.

The aim of this paper is to establish some first results concerning the dimension M
of the range of the internal stabilizing controller, in the case of a reference time-
dependent trajectory û. Notice that this case is not less important for applications
because often we are confronted with external forces h that depend on time.

In [7], the proof of existence of an M -dimensional stabilizing control uses a con-
tradition argument (cf. [7, proofs of Lemma A.4 and Proposition A.3]) which makes
it difficult to find an estimate for M . Here we prove the existence of a stabilizing
control by a more constructive procedure.

In the case we impose no restriction on the support of the control, more precisely,
if we take χ(x) = 1 for all x ∈ Ω, then we obtain that is it enough to take

(1.3) M ≥ L
π ( 3e

2 )
1
2 (ν−2|û|2W + ν−1λ)

1
2 ,

where e is the Napier’s constant. In the case our control is supported in a small subset
ω = supp(χ), we can also derive that it is “enough” to take

(1.4) M ≥ C1e
C2

(
1+(ν−1λ)

1
2 +(ν−1λ)

2
3 +ν−1|û|W+ν−2|û|2W

)

where C1 and C2 are constants depending on χ and Ω. Estimates (1.3) and (1.4)
are the main results of this paper. We easily see that the estimate in the case of
the support constraint in much less reasonable, if we think about an application.
The reason of the gap is that the idea used to derive (1.3) cannot be (at least not
straightforwardly) used for general χ(x). So one question arises: can we improve (1.4)?
To derive (1.4) we depart from an exact null controllability result, carrying the cost
associated with the respective control. For stabilization, with a given (finite) positive
rate λ

2 > 0, we do not need to reach zero; that is why we believe the estimate can be
improved, if we can avoid using the exact controllability result.

We have performed some numerical simulations whose results suggest that the
possibility of getting, also in the general case, an estimate analogous to (1.3) is plau-
sible. We focus on the 1D Burgers equations because the simulations are much simpler
to perform in this setting. However, we believe that the difficulties to find an estimate
for M will be analogous for the 2D and 3D Burgers and Navier–Stokes systems, and
for a suitable class of parabolic systems.

The rest of the paper is organized as follows. In section 2 we recall some well-
known results and set up our problem, in particular we recall that the problem can be
reduced to the stabilization to zero of the Oseen–Burgers system. In section 3, for the
linearized Oseen–Burgers system, we present the first estimates for a lower bound for
the suitable dimension M of the controller; section 3.1 deals with the particular case
where we impose no restriction on the support of the control and section 3.2 deals with
the general case. In section 4 we consider the full nonlinear Oseen–Burgers system.
The discretization of our problem is presented in section 5, and in sections 6 and 7
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we present the results of some simulations we have performed. Finally, in section 8
we give a few more comments on the results.

Notation. We write R and N for the sets of real numbers and nonnegative integers,
respectively, and we define Rr := (r, +∞), for r ∈ R, and N0 := N \ {0}. We denote
by Ω ⊂ R a bounded interval. Given a vector function u : (t, x) 7→ u(t, x) ∈ R, defined
in an open subset of R×Ω, its partial time derivative ∂u

∂t will be denoted by ∂tu. The

partial spatial derivative ∂u
∂x will be denoted by ∂xu, and ∂

∂x
∂
∂x by ∂xx.

Given a Banach space X and an open subset O ⊂ Rn, let us denote by Lp(O, X),
with either p ∈ [1, +∞) or p = ∞, the Bochner space of measurable functions
f : O → X, and such that |f |pX is integrable over O, for p ∈ [1, +∞), and such
that ess supx∈O |f(x)|X < +∞, for p = ∞. In the case X = R we recover the usual
Lebesgue spaces. By W s,p(O, R), for s ∈ R, denote the usual Sobolev space of or-
der s. In the case p = 2, as usual, we denote Hs(O, R) := W s,2(O, R). Recall that
H0(O, R) = L2(O, R). For each s > 0, we recall also that H−s(O, R) stands for the
dual space of Hs

0(O, R) = closure of {f ∈ C∞(O, R) | supp f ⊂ O} in Hs(O, R).
Notice that H−s(O, R) is a space of distributions.

For a normed space X, we denote by | · |X the corresponding norm, by X ′ its dual,
and by 〈·, ·〉X′,X the duality between X ′ and X. The dual space is endowed with the
usual dual norm: |f |X′ := sup{〈f, x〉X′,X | x ∈ X and |x|X = 1}. In the case that X
is a Hilbert space we denote the inner product by (·, ·)X .

Given an open interval I ⊆ R and two Banach spaces X and Y , we write
W (I, X, Y ) := {f ∈ L2(I, X) | ∂tf ∈ L2(I, Y )}, where the derivative ∂tf is taken in
the sense of distributions. This space is endowed with the natural norm |f |W (I,X, Y ) :=(
|f |2L2(I,X) + |∂tf |2L2(I, Y )

) 1
2 . In the case X = Y we write H1(I, X) := W (I, X, X).

Again, if X and Y are endowed with a scalar product, then also W (I, X, Y ) is. The
space of continuous linear mappings from X into Y will be denoted by L(X → Y ).

If Ī ⊂ R is a closed bounded interval, C(Ī , X) stands for the space of continuous
functions f : Ī → X with the norm |f |C(Ī,X) = maxt∈Ī |f(t)|X .

C [a1,...,ak] denotes a nonnegative function of nonnegative variables aj that in-
creases in each of its arguments.

C, Ci, i = 1, 2, . . . , stand for unessential positive constants.

2. Preliminaries.

2.1. Reduction to local null stabilization. We will denote V := H1
0 (Ω, R),

H := L2(Ω, R), D(∂xx) := V ∩ H2(Ω, R), and V ′ := H−1(Ω, R). The space H is
supposed to be endowed with the usual L2(Ω, R)-scalar product; the space V with
the scalar product (u, v)V := (∂xu, ∂xv)H . The space H is taken a pivot space, and V ′

is the dual of V . The inclusions V ⊂ H ⊂ V ′ are dense, continuous and compact.
The space D(∂xx) is endowed with the scalar product (u, v)D(∂xx) := (∂xxu, ∂xxv)H .

Let us denote

(2.1) W := L∞(R0, L
∞(Ω, R))

and, for given Banach spaces X and Y ,

L2
loc(R0, X) := {f | f |(0, T ) ∈ L

2((0, T ), X) for all T > 0},

Wloc(R0, X, Y ) := {f | f |(0, T ) ∈W ((0, T ), X, Y ) for all T > 0}.

Fix a function h ∈ L2
loc(R0, V

′) and suppose that û ∈ W ∩Wloc(R0, V, V
′) solves

the Burgers system (1.1), with ζ = 0 and initial condition û0 := û(0) ∈ H.
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Let us be given a Lipschitz continuous function χ ∈W 1,∞(Ω, R) with nonempty
support and λ > 0. Then, given another function u0 such that |u0 − û(0)|H is small
enough. Let also O = (l1, l2) be an open interval, such that supp(χ) ⊆ O ⊆ Ω.

Our goal is to find an integer M ∈ N0 and a control η ∈ L2(R0, H) such that the
solution of the problem (1.1)–(1.2), with ζ = χEO0 POM (η|O) is defined for all t > 0 and
converges exponentially to û, that is, for some positive constant C > 0 independent
of u0 − û0,

(2.2) |u(t)− û(t)|2H ≤ C e−λt|u0 − û0|2H for t ≥ 0.

Here POM stands for the orthogonal projection in L2(O, R) onto the subspace spanned
by the first M eigenfunctions sn of the Dirichlet Laplacian in O, that is, onto

L2
M (O, R) := span{sn | n ∈ N0, n ≤M}

where EO0 : L2(O, R) → H is the extension by zero outside O, defined by EO0 f(x) :={
f(x) if x ∈ O
0 if x ∈ Ω \ O . Recall that it is well-known that the complete system of

(normalized) Dirichlet eigenfunctions {sn | n ∈ N0} ⊂ D(∂xx) and the corresponding
system of eigenvalues {αn | n ∈ N0} are given explicitly by

(2.3) sn(x) := ( 2
l )

1
2 sin(nπ(x−l1)

l ), αn = (πl )2n2, −∂xxsn = αnsn, x ∈ O,

where l = l2 − l1 stands for the length of O.
Let us notice that, seeking for the control η and considering the corresponding

solution u, we find that v = u− û, will solve the Oseen–Burgers system

(2.4) ∂tv − ν∂xxv + v∂xv + ∂x(ûv) + ζ = 0, v|Γ = 0, v(0) = v0,

with ζ = χEO0 POM (η|O) and v0 = u(0) − û(0). It is now clear that to achieve (2.2) it
suffices to consider the problem of local exponential stabilization to zero for solutions
of (2.4), where “local” means that the property is to hold “provided |v0|H is small
enough”.

2.2. Weak solutions. The existence and uniqueness of weak solutions for sys-
tem (2.4) can be proved by classical arguments, where weak solutions are understood
in the classical sense as in [37, chapter 1, sections 6.1 and 6.4], [42, sections 2.4
and 3.2], [43, chapter 3, section 3].

Theorem 2.1. Given û ∈ W, ζ ∈ L2((0, T ), V ′), and v0 ∈ H, then there exists
a weak solution v ∈ W ((0, T ), V, V ′) for system (2.4), in (0, T )× Ω. Moreover v is
unique and depends continuously on the given data (v0, η):

(2.5) |v|2W ((0, T ), V, V ′) ≤ C [T, |û|W ]

(
|v0|2H + |ζ|2L2((0, T ), V ′)

)
.

Notice that the proof of the existence and uniqueness of a weak solution can be
done following the argument in [43, chapter 3, section 3.2] by using the estimate

|∂x(wv)|2V ′ ≤ C|w|2L∞(Ω,R)|v|
2
L2(Ω,R) ≤ C1|w|2H1(Ω,R)|v|

2
L2(Ω,R) ≤ C2|w|2V |v|2H .

Definition 2.2. We say that v ∈ Wloc(R0, V, V
′) is a global weak solution for

system (2.4), in R0×Ω, if v|(0, T ) ∈W ((0, T ), V, V ′) is a weak solution, for the same

system, in (0, T )× Ω, for all T > 0.
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Corollary 2.3. Given û ∈ W, ζ ∈ L2
loc(R0, V

′), and v0 ∈ H, then there exists
a weak solution v ∈Wloc(R0, V, V

′) for system (2.4), in R0×Ω, which is unique and
there holds estimate (2.5).

Finally notice that system (1.1)–(1.2), is a particular case of (2.4) (with û = 0),
hence Theorem 2.1 and Corollary 2.3 also hold for (1.1)–(1.2) (with h+ ζ in the role
of ζ).

3. The Oseen–Burgers system. The dimension of the controller. Here
we look for a control in the form ζ = χEO0 POM (η|O), with η ∈ L2(R0, H), that stabilizes
exponentially the linearized Oseen–Burgers system

(3.1) ∂tv − ν∂xxv + ∂x(ûv) + ζ = 0, v|Γ = 0, v(0) = v0,

to zero, with a desired exponential rate λ
2 > 0. We also provide some first estimates,

concerning a lower bound for the integer M , depending on the triple (λ, |û|W , ν).
Later, the results will follow for system (2.4), provided |v0|H is small enough, by a
fixed point argument.

Remark 3.1. Theorem 2.1 and Corollary 2.3, also hold for system (3.1) in the
role of system (2.4).

It is well known that controllability properties for system 3.1 are closely related
to observability properties for the “time-backward” adjoint Oseen–Burgers

(3.2) −∂tq − ν∂xxq − û∂xq + f = 0, q|Γ = 0, q(T ) = q1

for q1 ∈ H and f ∈ L2((0, T ), V ′); below, in section 3.2, we will use some suitable
observability inequalities for this adjoint system.

3.1. The particular case χ = 1Ω. We consider the case O = Ω and χ = 1Ω,
with 1Ω(x) := 1 for all x ∈ Ω. In particular, there is no constraint in the support of
the controller.

Theorem 3.2. For given û ∈ W and λ > 0, set

(3.3) M ≥ L
π ( 3e

2 )
1
2 ( 1
ν2 |û|2W + 1

νλ)
1
2 ,

where e is the Napier’s constant. Then for any given v0 ∈ H, there is a control
ηλ,û,ν(v0) ∈ L2(R0, H) such that the corresponding solution v of system (3.1), with
ζ = χEO0 POM (ηλ,û,ν |O), satisfies the inequality

(3.4) |v(t)|2H ≤ (1 + e
1
2 )e−λt|v0|2H , t ≥ 0.

Moreover, the mapping v0 7→ ηλ,û,ν(v0) is well defined, is linear, and satisfies∣∣e(λ̂/2)tηλ,û,ν(v0)
∣∣2
L2(R0,H)

≤ 4e
1
2

λ−λ̂
( 1
ν |û|

2
W + λ)|v0|2H , for 0 ≤ λ̂ < λ.

Proof. Let w solve

(3.5) ∂tw = ν∂xxw − ∂x(ûw) + λ
2w, w|Γ = 0, w(0) = v0.

By standard arguments we can find

d

dt
|w|2H ≤ −2ν|∂xw|2H + 2|û|L∞(Ω,R)|w|H |∂xw|H + λ|w|2H

≤ 1
2ν |û|

2
L∞(Ω,R)|w|

2
H + λ|w|2H
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from which we can derive that

(3.6) |w|2L∞((0, T ), H) ≤ e( 1
2ν |û|

2
W+λ)T |v0|2H .

Now let ϕ(t) := 1− t
T ∈ C

1([0, T ], R), and set δ := ϕw. Notice that δ solves

∂tδ = ν∂xxδ − ∂x(ûδ) + λ
2 δ + (∂tϕ)w, δ |Γ = 0, δ(0) = v0

with δ(T ) = 0. Let now M ∈ N0 be a positive integer and consider the solution δM
for the system

∂tδM = ν∂xxδM − ∂x(ûδM ) + λ
2 δM + (∂tϕ)PΩ

Mw, δM |Γ = 0, δM (0) = v0.

The difference d := δ − δM solves

∂td = ν∂xxd− ∂x(ûd) + λ
2 d+ (∂tϕ)(1− PΩ

M )w, d|Γ = 0, d(0) = 0,

from which we can also derive

|d|2L∞((0, T ), H) ≤ e

(
3
2ν |û|

2
W + λ

)
T
(
|d(0)|2H + 3

4ν

∣∣(∂tϕ)(1− PΩ
M )w

∣∣2
L2((0, T ), V ′)

)
≤ T−2e

(
3
2ν |û|

2
W + λ

)
T 3

4να
−1
M |w|

2
L2((0, T ), H)

and, from |w|2L2((0, T ), H) ≤ T |w|
2
L∞((0, T ), H) and (3.6), we can arrive at

|d|2L∞((0, T ), H) ≤ T
−1e2(ν−1|û|2W+λ)T 3

4να
−1
M |v0|2H .

Since we are interested in the stabilization of the system, we can see T as a parameter
at our disposal. Minimizing the right hand side over T > 0, we can see that the
minimizer T∗ is defined by T−1

∗ := 2(ν−1|û|2W +λ); then, setting T = T∗ we have that

(3.7) |d|2L∞((0, T∗), H) ≤ 2(ν−1|û|2W + λ)e1 3
4να

−1
M |v0|2H .

Now, from αM = (Mπ
L )2 (cf. (2.3), with O = Ω), setting M satisfying (3.3), and

recalling that δM (0) = v0 and δM (T∗) = −d(T∗), we find

(3.8) αM ≥ (ν−1|û|2W + λ) 3e1

2ν

and |δM (T∗)|2H ≤ |δM (0)|2H .

Further, from (3.6) and (3.7), we find |δM |2L∞((0, T∗), H) = |δ − d|2L∞((0, T∗), H) ≤
CδM |δM (0)|2H , with

CδM := e( 1
2ν |û|

2
W+λ)T∗ + 2(ν−1|û|2W + λ)e1 3

4να
−1
M

≤ e
1
2 + 2(ν−1|û|2W + λ)e1 3

4να
−1
M ≤ e

1
2 + 1 =: Υδ.

Now, notice that we can consider system (3.5) in (T∗, +∞) × Ω with w(T∗) =
δM (T∗), and repeat the arguments. Recursively, we conclude that in each inter-

val J i∗ := (iT∗, (i + 1)T∗), i ∈ N0, we have |δM ((i + 1)T∗)|2H ≤ |δM (iT∗)|2H and

|δM |2L∞(Ji∗, H) ≤ Υδ |δM (iT∗)|2H . Hence, we conclude that |δM |2L∞(R0, H) ≤ Υδ |v0|2H .

Next we notice that v := e−
λ
2 tδM solves (3.1), in R0 × Ω, with the concatenated

control ζ = χPΩ
M (e−

λ
2 t(−T−1

∗ )w) = −T−1
∗ e−

λ
2 tχPΩ

Mw, where w|Ji∗ =: wi solves (3.5),
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in J i∗ × Ω, with wi(iT∗) = w(iT∗) = δM (iT∗); from (3.6) and from the boundedness
of {|δM (iT∗)|H | i ∈ N}, we can conclude that the family {|w|L2(Ji∗, H) | i ∈ N} is

bounded; so we have that e
λ̂
2 tζ ∈ L2(R0, H) for all λ̂ < λ. Finally we observe that

|v(t)|2H ≤ e−λt |δM |2L∞(R0, H) ≤ Υδe
−λt |v0|2H , and that for ηλ,û,ν := e−

λ
2 t(−T−1

∗ )w,∣∣∣e λ̂2 tηλ,û,ν∣∣∣2
L2(R0, H)

=

∫
R0

e(λ̂−λ)sT−2
∗ |w(s)|2H ds

≤ 1
λ−λ̂

T−2
∗ e( 1

2ν |û|
2
W+λ)T∗ |v0|2H ≤

1
λ−λ̂

(2(ν−1|û|2W + λ))2e
1
2 |v0|2H .

That is,
∣∣∣e λ̂2 tηλ,û,ν∣∣∣2

L2(R0, H)
≤ 4e

1
2

λ−λ̂
(ν−1|û|2W + λ)2 |v0|2H .

3.2. The general case. Let w solve the system

(3.9) ∂tw = ν∂xxw − ∂x(ûw) + λ
2w + χη̃, w|Γ = 0, w(0) = v0.

To simplify the exposition we rescale time as t = τ
ν . Then w̆(τ) := w( τν ) solves

(3.10) ∂τ w̆ = ∂xxw̆ − ∂x(ŭw̆) + λ̆
2 w̆ + χη̆, w̆|Γ = 0, w̆(0) = v0,

with (ŭ, λ̆, η̆) = ν−1(û, λ, η̃). Next, consider the adjoint system

(3.11) −∂τq = ∂xxq + ŭ∂xq + λ̆
2 q, q|Γ = 0, q(T ) = qT

with qT ∈ H (here with no external force; cf. system (3.2)). From, for example, [18,
Theorem 2.1] and [17, Theorem 2.3] (e.g., reversing time in system (3.11)), we have
that given an open set ω ⊆ Ω, there exists a constant Cω,Ω > 0, depending on ω
and Ω, such that for any time T > 0, the weak solution q for (3.11) satisfies

(3.12) |q(0)|2H ≤ e
Cω,Ω

(
1+ 1

T +T λ̆+λ̆
2
3 +(1+T )|ŭ|2W

)
|q|2L2((0, T ), L2(ω,R) .

Proposition 3.3. For every v0 ∈ H, we can find a control η̆ = η̄(v0) ∈
L2((0, T ), H), driving system (3.10) to w̆(T ) = 0 at time t = T > 0. Moreover,
the mapping η̄ : v0 7→ η̄(v0) is linear and continuous: η̄ ∈ L(H → L2((0, T ), H)), and
there is a constant Cχ,Ω such that

|η̄(v0)|2L2((0, T ), H) ≤ e
Cχ,Ω

(
1+ 1

T +T λ̆+λ̆
2
3 +(1+T )|ŭ|2W

)
|v0|2H .(3.13)

Sketch of the proof. The proof can be done following the arguments in [7]. First,
from (3.12) we can derive an observability of the form

(3.14) |q(0)|2H ≤ e
Cχ,Ω

(
1+ 1

T +T λ̆+λ̆
2
3 +(1+T )|ŭ|2W

)
|χq|2L2((0, T ), H)

for the solution q of system (3.11) (cf. [7, eq. (A.8)]). Then we can prove the null
controllability considering the following minimization problem (cf. [7, Problem 3.3])

Jε(w̆, η̆) = |η̆|2L2 +
1

ε
|w̆(T )|2H → min; with (w̆, η̆) solving (3.10).
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Next we can consider the minimization problem

J∞(w̆, η̆) = |η̆|2L2 → min; with (w̆, η̆) solving (3.10) and w̆(T ) = 0

whose unique minimizer (w, η)(v0) depends linearly on v0 (cf. [7, Problem 3.4]).
Considering the null controllability of linear parabolic equations we also refer

to [23, section 2] and [46, section 5.2.2], and references therein.
Theorem 3.4. For given û ∈ W and λ > 0, set

(3.15) M ≥ l
πC

0
χ,Ωe

3
2 (1+Cχ,Ω)

(
1+(λν )

1
2 +(λν )

2
3 + 1

ν |û|W+ 1
ν2 |û|

2
W

)
,

where C0
χ,Ω = (2+2(Lπ )2)

1
2 |χ|W 1,∞(Ω,R), l is the length of O, and Cχ,Ω is the constant

from (3.13). Then for any given v0 ∈ H, there is a control ηλ,û,ν(v0) ∈ L2(R0, H)
such that, taking ζ = χEO0 POM (ηλ,û,ν |O), the corresponding solution v of system (3.1)
satisfies, for t ≥ 0, the inequality

(3.16) |v(t)|2H ≤ Kχ,Ωe−λt|v0|2H ,

with Kχ,Ω :=

(
1 + e(λν+ 1

ν2 |u|
2
W)

1
2

+
(C0
χ,Ω)2

α1
e
3(Cχ,Ω+1)

(
1+(λν )

1
2 +(λν )

2
3 + 1

ν |û|W+ 1
ν2 |û|

2
W

))
.

Moreover, the mapping v0 7→ ηλ,û,ν(v0) is well defined, is linear, and satisfies for

0 ≤ λ̂ < λ the inequality

∣∣e λ̂2 tηû,λ(v0)
∣∣2
L2(R0,H)

≤ νe
Cχ,Ω

(
1+3(λν )

1
2 +(λν )

2
3 +3 1

ν |û|W+ 1
ν2 |û|

2
W

)
1− e(λ̂−λ)(2(νλ+|û|2W))−

1
2

|v0|2H .

Proof. Let w̆ solve (3.10), for t ∈ (0, T ), with the control η̆ = η̄(v0) given by
Proposition 3.3, and let w̆M be the solution of

∂τ w̆M = ∂xxw̆M − ∂x(ŭw̆M ) + λ̆
2 w̆M + χEO0 POM (η̄(v0)|O), w̆M |Γ = 0, w̆M (0) = v0.

Then, the difference d := w̆ − w̆M solves

∂τd = ∂xxd− ∂x(ŭd) + λ̆
2 d+ χEO0 (1− POM )(η̄(v0)|O), d|Γ = 0, d(0) = 0,

and taking the scalar product with d, in H, we can arrive at

d

dτ
|d|2H ≤ −2 |∂xd|2H + 2 |ŭ|L∞(Ω,R) |d|H |∂xd|H + λ̆ |d|2H(3.17)

+ 2〈χEO0 (1− POM )(η̄(v0)|O), d〉V ′, V .

For the last term we find

〈χEO0 (1− POM )(η̄(v0)|O), d〉V ′, V = (χEO0 (1− POM )(η̄(v0)|O), d)H

≤ |η̄(v0)|O|L2(O,R)

∣∣(1− POM )(χd|O)
∣∣
L2(O,R)

,

and from∣∣(1− POM )(χd|O)
∣∣2
L2(O,R)

≤ α−1
M

∣∣(1− POM )(χd|O)
∣∣2
V
≤ 2α−1

M |χ|
2
W 1,∞(Ω,R) |d|

2
H1

0 (Ω,R)
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(which makes sense for a.e. t ∈ (0, T ), since from 2〈χEO0 (1−POM )(η̄(v0)|O), d〉V ′, V ≤
2
∣∣χEO0 (1− POM )(η̄(v0)|O)

∣∣
H
|d|H and (3.17), by standard arguments it follows that

d ∈ L∞((0, T ), H) ∩ L2((0, T ), V )) and |∂xd|2L2(Ω,R) ≥
αΩ

1

1+αΩ
1
|d|2H1

0 (Ω,R), where αΩ
1 =

π2

L2 , we find

〈χEO0 (1− POM )(η̄(v0)|O), d〉V ′, V ≤ α
− 1

2

M Dχ,Ω |∂xd|L2(Ω,R) |η̄(v0)|O|L2(O,R)
,

with Dχ,Ω =
(
2

1+αΩ
1

αΩ
1

) 1
2 |χ|W 1,∞(Ω,R) = (2+2(Lπ )2)

1
2 |χ|W 1,∞(Ω,R). Then, from (3.17),

d

dτ
|d|2H ≤ |ŭ|

2
L∞(Ω,R) |d|

2
H + λ̆ |d|2H + α−1

M D2
χ,Ω |η̄(v0)|O|

2
L2(O,R)

and, using (3.13), we obtain

(3.18) |d|2L∞((0, T ), H) ≤ α
−1
M D2

χ,Ωe
Cχ,Ω

(
1+λ̆

2
3 +|ŭ|2W

)
eC

1
χ,Ω( 1

T +2(λ̆+|ŭ|2W)T) |v0|2H

with C1
χ,Ω = max{1, Cχ,Ω}. Now the function E(T ) = eC

1
χ,Ω( 1

T +2(λ̆+|ŭ|2W)T) takes its

minimum when T = T∗, with T∗ defined by 1
T 2
∗

= 2(λ̆+|ŭ|2W). Then, choosing T = T∗,

and recalling that w̆M (T ) = −d(T ) and w̆M (0) = v0, we arrive at

|w̆M (T∗)|2H ≤ α
−1
M D2

χ,Ωe
Cχ,Ω

(
1+λ̆

2
3 +|ŭ|2W

)
e2

3
2C1

χ,Ω(λ̆+|ŭ|2W)
1
2 |w̆M (0)|2H .

Thus, choosing M ∈ N0 satisfying (3.15) and recalling that αM = (Mπ
l )2, we have

(3.19) αM ≥ D2
χ,Ωe

3(Cχ,Ω+1)
(

1+λ̆
2
3 +|ŭ|2W+λ̆

1
2 +|ŭ|W

)

and |w̆M (T∗)|2H ≤ |w̆M (0)|2H . Moreover we can deduce from (3.13) and (3.18) that

|w̆M |2L∞((0, T∗), H) = |w̆ − d|2L∞((0, T∗), H) ≤ CdM |w̆M (0)|2H , with

CdM := e(λ̆+|ŭ|2W)T∗ + (α−1
1 + α−1

M )D2
χ,Ωe

Cχ,Ω
(

1+λ̆
2
3 +|ŭ|2W

)
eC

1
χ,Ω( 1

T∗+2(λ̆+|ŭ|2W)T∗)

≤ e(λ̆+|ŭ|2W)
1
2 + α−1

1 D2
χ,Ωe

3(Cχ,Ω+1)
(

1+λ̆
2
3 +|ŭ|2W+λ̆

1
2 +|ŭ|W

)
+ 1 =: Υd.

Recursively, repeating the argument in the time interval (iT∗, +∞) with w̆(iT∗) =
w̆M (iT∗) in (3.10), we can conclude that the solution w̆M will remain bounded for all

time τ ≥ 0. That is, |w̆M |2L∞(R0, H) ≤ Υd |v0|2H .

Next, we notice that v(t) := e−
λ
2 tw̆M (νt) solves (3.1), in R0 × Ω, with the con-

catenated control ζ = χEO0 POM (νe−
λ
2 tη̄(w̆M (iT∗))(νt)|O), where η̄(w̆M (iT∗)), i ∈ N, is

the control given in Proposition 3.3, when we consider system (3.10), in J i∗ ×Ω, with
J i∗ := (iT∗, (i+ 1)T∗), i ∈ N0, and w̆(iT∗) = w̆M (iT∗), in particular η̄(w̆M (iT∗))(νt) is
defined for t ∈ (iν−1T∗, (i+1)ν−1T∗). We can also conclude from (3.13) and from the
boundedness of {|w̆M (iT∗)|H | i ∈ N} that the family {|η̄(w̆M (iT∗))|L2(Ji∗, H) | i ∈ N}

is bounded; so e
λ̂
2 tζ ∈ L2(R0, H) for all λ̂ < λ. Finally we observe that |v(t)|2H ≤

e−λt |w̆M (νt)|2H ≤ Υde
−λt |v0|2H , and for ηλ,û,ν(t) := νe−

λ
2 tη̄(w̆M (iT∗))(νt), t ∈ J i∗, it
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follows

∣∣∣e λ̂2 tηλ,û,ν∣∣∣2
L2(R0, H)

= lim
j→+∞

j∑
i=0

∫ (i+1)T∗
ν

iT∗
ν

e(λ̂−λ)sν2 |η̄(w̆M (iT∗))(νs)|2H ds

≤ lim
j→+∞

ν

j∑
i=0

e(λ̂−λ) iT∗ν

∫ (i+1)T∗

iT∗

|η̄(w̆M (iT∗))(τ)|2H dτ

≤ ν

1−e(λ̂−λ)
T∗
ν

e
Cχ,Ω

(
1+ 1

T∗+T∗λ̆+λ̆
2
3 +(1+T∗)|ŭ|2W

)
|v0|2H

from which, using the equality T ∗ = (2(λ̆ + |ŭ|2W))−
1
2 , we can arrive to the estimate∣∣∣e λ̂2 tηλ,û,ν∣∣∣2

L2(R0, H)
≤ νe

Cχ,Ω

(
1+3(λ

ν
)
1
2 +(λ

ν
)
2
3 +3 1

ν
|û|W+ 1

ν2 |û|
2
W

)

1−e(λ̂−λ)(2(νλ+|û|2W ))
− 1

2
|v0|2H .

Remark 3.5. Notice that when we shrink the support of χ the constant Cχ,Ω
in (3.13) is expected to increase; we cannot expect the right hand side of (3.15) to go
to 0 as the length l of O does.

3.3. The gap between (3.3) and (3.15). Comparing estimates (3.3) and (3.15),

we see that there is a big gap; the former being proportional to
(

1
ν2 |û|2W + 1

νλ
) 1

2 ,

while the latter depends exponentially on both 1
ν |û|W and (λν )

1
2 . For application

purposes the latter is much less convenient, so one question arises naturally: can we
improve (3.15)?

It seems that the idea used to derive (3.3) cannot (at least straightforwardly) be
applied in the general case. On the other side to derive (3.15) we start from an exact
null controllability result and carry the cost of the respective control. This means
that to improve (3.15) we will probably need a different idea.

In section 6, in order to understand if it is possible to improve (3.15), say that
we also have an estimate like (3.3) in the general case, we present results of some
numerical simulations comparing the number of controls M = Mneed, that we need
to stabilize the system (3.1) to zero, with the following reference real numbers

(3.20) Mref := L
π (ν−2 |û|2W + ν−1λ)

1
2 ; Mexp := L

π eMref .

The value Mref is motivated by (3.3), and the value Mexp by (3.15); notice that l
π eMref

is a lower bound for the right hand side of (3.15); we take L
π instead of l

π in front
of eMref in order to avoid giving the wrong idea that (3.15) goes to 0 with l (cf. Re-
mark 3.5).

Notice that in the case û = 0, we can see that the unstable modes of system (3.5)

are those defined by the inequality ναi <
λ
2 , that is, i < L

π ν
− 1

2 (λ2 )
1
2 = 2−

1
2Mref <

Mref . Thus, in this case and with χ = 1Ω, it is enough (and necessary) to take the

M = b2− 1
2Mrefc controls in

{
( 2
L )

1
2 sin( iπxL ) | i ∈ {1, 2, . . . , M}

}
(taking the family

of controls considered in section 3.1). Here byc ∈ N stands for the biggest integer that
is strictly smaller than y > 0.

3.4. Feedback control and Riccati equation. By the dynamic programing
principle, for example following the arguments in [7, section 3.2], considering the
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family of minimization problems
(3.21, s)

Minimize J s(v, η) :=
∫
Rs eλt(ν |v(t)|2V + |η(t)|2H) dt on the space X :={

(v, η)

∣∣∣∣ e
λ
2 t(v, η) ∈W (Rs, V, V ′)× L2(Rs, H) and, for t ∈ Rs,

(v, ζ) solves (3.1) with v(s) = w ∈ H and ζ = χEO0 POM (η|O)

}
where s runs over [0, +∞) and Rs = (s, +∞), we can derive the following result.

Theorem 3.6. The controls ζ given in Theorems 3.2 and 3.4 can be taken in
feedback form

ζ = e−λtχEO0 POM ((χQt, λû v)|O)(3.22)

for a suitable family of operators Qt, λû : H → H, t ≥ 0, with
∣∣∣Qt, λû ∣∣∣

L(H→H)
≤

C[λ, û, 1
ν ]e

λt. Furthermore, the family {Qt, λû | t ≥ 0} is continuous in the weak operator

topology and Q := Qt, λû satisfies the differential Riccati equation

(3.23) Q̇−Q(−ν∂xx + B(û))− (−ν∂xx + B(û))∗Q−QBOMBOM
∗
Q− eλtν∂xx = 0

where B(û)v := ∂x(ûv), and BOM : H → H and its adjoint BOM
∗

: H → H given by

(3.24) BOMη := e−
λ
2 tχEO0 POM (η|O), BOM

∗
ξ = e−

λ
2 tEO0 POM ((χξ)|O),

and (Qs, λû v0
∗(s), v

0
∗(s))H = J s(v0

∗ |Rs , η
0
∗ |Rs) where (v0

∗, η
0
∗) is the unique minimizer

of problem (3.21, 0). Further, (Qs, λû w, w)H = J s(vs∗, ηs∗), where (vs∗, η
s
∗) is the unique

minimizer of problem (3.21, s).
Remark 3.7. Equation (3.23) can be seen as an evolutionary equation, and Q̇ :=

d
dtQ. A solution for (3.23), is understood in the sense that

(Q̇w1, w2)H = (QAw1, w
2)H + (A∗Qw1, w

2)H

+ (QBOMB
O
M

∗
Qw1, w

2)H + (eλtν∂xxw1, w
2)H

holds for all (w1, w2) ∈ D(∂xx) × D(∂xx), with A = A(t) := −ν∂xx + B(û(t)). See,
for example, [15, section 5.4], [35, chapter 1, Theorem 1.4.6.4 and Corollary 1.5.3.3].

Observe also that (Qs, λû w, w)H = J s(vs∗, ηs∗) > 0 for all w 6= 0, that is, Qs, λû is
definite positive.

Remark 3.8. Notice that (∂xx)∗ = ∂xx and B(û)∗ = −û∂x. Notice also that from

Theorems 3.2 and 3.4 (taking, e.g., (2λ, λ) in place of (λ, λ̂)), we have that the space
X in problem (3.21) is nonempty.

Remark 3.9. For any T > 0 and w ∈ H, the function q := Qv0
∗ solves the sys-

tem (3.2) with f = −eλtν∂xxv
0
∗ and q(T ) = QT, λû v0

∗(T ), where (v0
∗, η

0
∗) = (v0

∗, η
0
∗)(w)

is the minimizer of problem (3.21, 0).
We already know that Q satisfies (3.23), we can also show that it is unique in the

class of operators eλtC with

C :=

R̂ ∈ L∞(R0,L(H→H))

∣∣∣∣∣∣
R̂(t) is self-adjoint positive definite for all t ≥ 0,

the family {R̂(t) | t ≥ 0} is continuous in the
weak operator topology

.
Lemma 3.10. If R satisfies (3.23) and R̂ := e−λtR ∈ C, then the feedback control

ζ = e−λtχEO0 POM ((χRv)|O) = BOMB
O
M

∗
Rv
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stabilizes exponentially system (3.1) to zero with rate λ
2 .

Proof. We find that

d

dt
(Rv, v)H = (Ṙv, v)H + (R∂tv, v)H + (Rv, ∂tv)H

= ((RA + A∗R+RBOMB
O
M

∗
R+ eλtν∂xx)v, v)H

+ (−R(A +BOMB
O
M

∗
R)v, v)H + (Rv, −(A +BOMB

O
M

∗
R)v)H

= −eλt(ν|v|2V + |e−λ2 tBOM
∗
Rv|2H).

Notice that χEO0 POM ((χe−
λ
2 tBOM

∗
Rv)|O) = BOMB

O
M
∗
Rv. Thus we have that (Rv, v)H

is decreasing and, after integration, that J s(v, e−
λ
2 tBOM

∗
Rv) = (R(s)v(s), v(s))H −

lim
T→+∞

(R(T )v(T ), v(T ))H ≤ (R(s)v(s), v(s))H ≤ |R̂|L∞(R0,L(H→H))e
λs |v(s)|2H . This

inequality, together with ∂t(e
λ
2 tv) = λ

2 e
λ
2 tv + e

λ
2 t(ν∂xxv − ∂x(ûv) +BOMB

O
M
∗
Rv) and∫

Rs |e
λ
2 tBOMB

O
M
∗
Rv|2H dt ≤ C0

∫
Rs |B

O
M
∗
Rv|2H dt ≤ C0J s(v, e−

λ
2 tBOM

∗
Rv), imply that

∂t(e
λ
2 tv) is in L2(Rs, V ′), with |∂t(e

λ
2 tv)|L2(Rs, V ′) ≤ Ceλs |v(s)|H . Hence it follows

that |eλ2 tv|C([s,+∞), H) ≤ C1e
λ
2 s |v(s)|H , for suitable positive constants C0, C and C1.

That is, the feedback control ζ = BOMB
O
M
∗
Rv stabilizes system (3.1) to zero with

rate λ
2 , |v(t)|H ≤ C1e−

λ
2 (t−s) |v(s)|H .

The uniqueness of Q will follow from the uniqueness of Q1 := e−λtQ ∈ C satisfying

(3.25) Q̇1 −Q1A− A∗Q1 −Q1BB∗Q1 − ν∂xx + λQ1 = 0

with B = B(t) := e
λ
2 tBOM . From the exponential stability, with rate λ

2 , of system (3.1)
with ζ given by (3.22), it follows that

(3.26) ∂tz − ν∂xxz + ∂x(ûz)− λ
2 z + BB∗Q1z = 0, z |Γ = 0, z(0) = z0,

is stable, that is, there is a constant C > 0 independent of z0 such that |z(t)|H ≤
C |z0|H , for all t ∈ R0. Actually we can prove that it is uniformly exponentially stable,
that is, there are α > 0 and K > 0 such that

(3.27) |z(t)|H ≤ Ke−α(t−t0) |z(t0)|H for all 0 ≤ t0 ≤ t.

Indeed, notice that we can consider the system (3.1) in the interval of time Rt0 =
(t0, +∞), instead of R0 and we obtain the analogous to Theorems 3.2 and 3.4, re-
placing the initial time t = 0 by t = t0. This means that if we denote by S(t, t0)w
the solution of system (3.26) for t ∈ Rt0 with initial condition z(t0) = zt0 we will

have that |S(t, t0)w|2L2(R0, H) ≤ C |zt0 |
2
H , where C is given in Theorems 3.2 and 3.4

and can be taken independent of t0. The uniform exponential stability follows then
by [14, Theorem 1], see also [47, chapter 3, Theorem 3.1].

Remark 3.11. The operator (or family of operators) S(t, t0) is sometimes called
“evolutionary process” as in [14, section 1], “Green operator” as in [36, chapter IV,
section 3], or “evolution operator” as in [13, section 2].

Theorem 3.12. The solution of (3.25) is unique in C.
Proof. We follow ideas from [12, 13, 45], see also [35, chapter 1]. Let Q2 ∈ C

solve (3.25). Then with A1 = A + BB∗Q1 − λ
2 I and A2 = A + BB∗Q2 − λ

2 I, where I
is the identity operator, the difference D := Q2 −Q1 solves

Ḋ = DA1 +A∗1D +DBB∗D,(3.28a)

Ḋ = DA2 +A∗2D −DBB∗D.(3.28b)
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Let w ∈ H and let Si(t, s)w stand for the solution of system (3.26) in the interval
of time t ∈ Rs, with z(s) = w and with Qi in the place of Q1, i ∈ {1, 2}. Then
we have that ∂tSi(t, s)w = −Ai(t)Si(t, s)w, and we find ∂tSi(t, s) = −Ai(t)Si(t, s)
and ∂tSi(t, s)∗ = −Si(t, s)∗Ai(t)∗. For t ∈ (s, T ) we also have 0 = ∂tSi(T, s)w =
∂t(Si(T, t)Si(t, s)w), which gives us 0 = (∂tSi(T, t))Si(t, s) + Si(T, t)∂tSi(t, s), that
is, ∂tSi(T, t) = Si(T, t)Ai(t) and ∂tSi(T, t)∗ = Ai(t)∗Si(T, t)∗.

Now we fix s ≥ 0 and, for t > s, set Gi(t) := Si(t, s)∗D(t)Si(t, s). Using (3.28),
it follows that

Ġ1 = S1(t, s)∗(DBB∗D)(t)S1(t, s) and Ġ2 = −S2(t, s)∗(DBB∗D)(t)S2(t, s).

Then we obtain (G1(t)w, w)H − (G1(s)w, w)H =
∫ t
s
|(B∗D)(r)S1(r, s)w|2H dr and

(G2(t)w, w)H − (G2(s)w, w)H = −
∫ t
s
|(B∗D)(r)S2(r, s)w|2H dr. Then, from G1(s) =

D(s) = G2(s), we arrive to

(3.29) (G2(t)w, w)H ≤ (D(s)w, w)H ≤ (G1(t)w, w)H .

Notice that from Lemma 3.10 and (3.27) we have that

|Si(t, t0)w|H ≤ Kie
−αi(t−t0) |w|H for all 0 ≤ t0 ≤ t,

for suitable positive constants Ki and αi. Thus from (3.29), it follows

(3.30) −D̂K2
2e−2α2(t−s)|w|2H ≤ (D(s)w, w)H ≤ D̂K2

1e−2α1(t−s)|w|2H .

with D̂ := |D|L∞(R0,L(H→H)). Letting t go to +∞ we obtain (D(s)w, w)H = 0;

hence since w can be taken arbitrary and D(s) is self-adjoint, it follows that 0 =
(D(s)(w1 +w2), w1 +w2)H = 2(D(s)w1, w2)H for any (w1, w2) ∈ H×H; necessarily
D(s) = 0 and D = 0 because s can be taken arbitrary.

We know (cf. Remark 3.7) that Q1(t) = e−λtQ(t) is self-adjoint and positive
definite for all t ≥ 0. From (3.25) we can also conclude that if, at some T > 0, we
impose a final condition Q1(T ) = QT1 with QT1 self-adjoint and positive definite, then
Q1(t) remains self-adjoint and positive definite for all t ∈ [0, T ]. Indeed from

(3.31) Q̇1 = Q1A1 +A∗1Q1 −Q1BB∗Q1 + ν∂xx

we can see that Q1 can be written as

Q1(t) = S1(T, t)∗QT1 S1(T, t) +

∫ T

t

S1(s, t)∗(Q1BB∗Q1 − ν∂xx)(s)S1(s, t) ds(3.32)

and, for u 6= 0, we have

(Q1(t)u, u)H = (QT1 S1(T, t)u, S1(T, t)u)H(3.33)

+

∫ T

t

|B∗Q1S1(s, t)u|2H + ν |∂xS1(s, t)u|2H ds > 0.

Further, if Q2 also solves (3.25) with Q2(T ) = QT1 , then necessarily D(s) :=
Q2(s) − Q1(s) = 0 for all s ∈ (0, T ), because from (3.29) if D(T ) = 0 we can derive
that 0 = (G2(T )w, w)H ≤ (D(s)u, u)H ≤ (G1(T )w, w)H = 0.
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Remark 3.13. Denoting F1 := Q1BB∗Q1−ν∂xx and differentiating (3.32) we find

Q̇1 = ∂tQ1 = A1(t)∗S1(T, t)∗QT1 S1(T, t) + S1(T, t)∗QT1 S1(T, t)A1(t)− F1(t)

+

∫ T

t

A1(t)∗S1(s, t)∗F1(s)S1(s, t) + S1(s, t)∗F1(s)S1(s, t)A1(t) ds

= Q1(t)A1(t) +A1(t)∗Q1(t)− F1(t),

that is, we recover (3.31).
Remark 3.14. From (3.32) we see that Q1(t) is obtained from QT1 = Q1(T ). Thus,

the Riccati equations (3.31), (3.23), and (3.25) must be solved backwards in time.

4. The nonlinear system. The next result is a corollary of Theorem 3.6. It
will follow by a fixed point argument.

Theorem 4.1. Let M be the integer in Theorem 3.6 (i.e., as in either (1.3) or
(1.4)). Then there are positive constants Θ and ε = ε(Θ) depending only on λ, |û|W ,
and ν such that for |v0|H ≤ ε the solution v of system (2.4), with ζ as in (3.22), is
well defined for all t ≥ 0 and satisfies the inequality

(4.1) |v(t)|2H ≤ Θe−λt|v0|2H for t ≥ 0.

Notice that the feedback rule is found to globally stabilize to zero the linear
Oseen–Burgers system (3.1). Then, Theorem 4.1 says that the same feedback rule
also locally stabilizes to zero the bilinear system (2.4).

The proof of Theorem 4.1 will be done following the arguments in [7, section 4].
The nonlinear system (2.4) with ζ as in (3.22) reads

(4.2) ∂tv − ν∂xxv + v∂xv + ∂x(ûv) +Kt, λv = 0, v|Γ = 0, v(0) = v0

with Kt, λv := e−λtχEO0 POM ((χQt, λû v)|O). Given λ > 0, we denote by Zλ the space of
functions z ∈ C([0, +∞), H) ∩ L2(R0, V ) such that

|z|Zλ :=

(∣∣∣eλ2 ·z(·)∣∣∣2
L∞(R0, H)

+
∣∣∣eλ2 ·z(·)∣∣∣2

L2(R0, V )

) 1
2

<∞.

Let us fix a constant Θ > 0 and a function v0 ∈ H, and introduce the following
subset of Zλ:

ZλΘ := {z ∈ Zλ | z(0) = v0, |z|2Zλ ≤ Θ|v0|2H}.

We define a mapping Ξ : Zλ → C([0, +∞), H) ∩ L2
loc(R0, V ) that takes a function

a ∈ Zλ to the solution b of the problem

(4.3) ∂tb− ν∂xxb+ ∂x(ûb) +Ktb+ a∂xa = 0, b|Γ = 0, b(0) = v0.

Recall that
∣∣K·, λ∣∣

L∞(R0,L(H→H))
≤ C1 and |a∂xa|V ′ ≤ C2 |a|H |a|V .

Lemma 4.2. Let M be the integer in Theorem 3.6. Then, there exists Θ =
Θ(λ, |û|W , ν) > 0 such that the following property holds: for any γ ∈ (0, 1) one can
find a constant ε = εΘ, γ > 0 such that for any v0 ∈ H with |v0|H ≤ ε the mapping Ξ
takes the set ZλΘ into itself and satisfies the inequality

(4.4) |Ξ(a1)− Ξ(a2)|Zλ ≤ γ|a1 − a2|Zλ for all a1, a2 ∈ ZλΘ.
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Proof. Step 1. For suitable Θ and ε = εΘ, Ξ maps ZλΘ into itself. By the Duhamel
formula, we can write b as

(4.5) b(t) = S(t, 0)b(0) +

∫ t

0

S(t, s)(a∂xa)(s) ds

where S(t, s)w denotes the solution of the system (4.3), for time t ≥ s with initial
condition b(s) = w, and a = 0. Then, we derive

|b(t)|2H ≤ 2|S(t, 0)b(0)|2H + 2

(∫ t

0

|S(t, s)(a∂xa)(s)|H ds

)2

≤ 2C3e
−(λ+β)t|b(0)|2H + 2C3e

−(λ+β)t

(∫ t

0

e
λ+β

2 s|(a∂xa)(s)|H ds

)2

,

where β = min{α, λ} > 0, and α is as in (3.27). From |(a∂xa)(s)|H ≤ C4 |a|2V , it
follows that

(4.6) e(λ+β)t|b(t)|2H ≤ C5

(
|b(0)|2H + |a|4Zλ

)
.

Now, multiplying (4.3) by b and following standard arguments, we also have that

ν

∫ s+1

s

|b(τ)|2V dτ ≤ |b(s)|2H + C6

(
|û|2W +

∣∣K·, λ∣∣2
L∞(R0,L(H→H))

)
|b|2L2((s, s+1), H)

+ C7

∫ s+1

s

|a∂xa(τ)|2V ′ dτ

from which, using (4.6), it follows that

ν

∫ s+1

s

eλτ |b(τ)|2V dτ ≤ eλ(s+1) |b(s)|2H + eλC7

∫ s+1

s

eλτ |a∂xa(τ)|2V ′ dτ

+ C6

(
|û|2W +

∣∣K·, λ∣∣2
L∞(R0,L(H→H))

)
eλ(s+1) |b|2L∞((s, s+1), H)

≤ e−βsC8

(
|b(0)|2H + |a|4Zλ

)
+ C9

∫ s+1

s

eλτ |a(τ)|2H |a(τ)|2V dτ.

Thus, since eλτ ≤ e−λse2λτ ≤ e−βse2λτ for τ ∈ (s, s + 1), summing up we obtain∫
R0

eλτ |b(τ)|2V dτ ≤ C10

(
|b(0)|2H + |a|4Zλ

)+∞∑
j=1

e−βj . Then from (4.6) we arrive to

|b|Zλ ≤ C11

(
|b(0)|2H + |a|4Zλ

)
, which implies that for a ∈ ZλΘ we have

|Ξ(a)|2Zλ ≤ C11

(
1 + Θ2 |v0|2H

)
|v0|2H

Setting Θ = 2C11 and choosing εΘ > 0 so small that ΘεΘ ≤ 1, we see that if
|v0|H ≤ εΘ, then Ξ maps the set ZλΘ into itself.

Step 3. Given γ ∈ (0, 1), Ξ is a γ-contraction for smaller ε = εΘ, γ . Let us take
two functions a1, a2 ∈ ZλΘ and set a := a1 − a2 and b := Ξ(a1) − Ξ(a2). Then the
function b satisfies (4.3) with b(0) = 0 and a1∂xa1−a2∂xa2 in the place of a∂xa. From

|a1∂xa1 − a2∂xa2|H = |a1∂xa+ a∂xa2|H ≤ C4(|a1|V + |a2|V ) |a|V ;

|a1∂xa1 − a2∂xa2|V ′ ≤ C12(|a1|H + |a2|H) |a|V ;
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and proceeding as above we can arrive to

|Ξ(a1)− Ξ(a2)|2Zλ ≤ C13

(
|a1|2Zλ + |a2|2Zλ

)
|a|2Zλ ≤ 2C13Θ |v0|2H |a1 − a2|2Zλ .

Choosing ε̃Θ, γ > 0 so small that 2ΘC13ε̃
2
Θ, γ ≤ γ2, we see that if |v0|H ≤ ε̃Θ, γ ,

then (4.4) holds. Therefore the lemma holds with εΘ, γ = min{εΘ, ε̃Θ, γ}.
Proof of Theorem 4.1. If |v0|H ≤ εΘ, γ , the contraction mapping principle implies

that there is a unique fixed point v ∈ ZλΘ for Ξ. It follows from the definition of Ξ
and ZλΘ that v is a solution of problem (4.2) and satisfies (4.1). We claim that v is
the unique solution of (4.2) in the space C([0, +∞), H) ∩ L2(R0, V ). Indeed, if w is
another solution, then the difference z = v − w satisfies

zt − ν∂xxz + z∂xz + ∂x(wz) + ∂x(ûz) +Kt, λz = 0, z(0) = 0.

Multiplying this equation by z, in H, and following a standard procedure, we arrive

to d
dt |z|

2
H + ν |z|2V ≤ C14

(
|w|2V + |û|2W

)
|z|2H which implies z(t) = 0, for all t ≥ 0.

Remark 4.3. Though it would be possible to derive more precise estimates on the
Θ and ε in Theorem 4.1, it would lead to a more cumbersome exposition, and these
estimates are not the main focus of this work.

5. Discretization. To perform the simulations in order to check the stabiliza-
tion of systems (1.1) and (3.1), to a reference trajectory û and to zero respectively,
we must discretize those systems with the feedback control ζ as in (3.22).

5.1. Discretization in space. We use a finite-element based approach. We
introduce an uniform mesh

(5.1) ΩD :=
(
L
Nx
, 2L
Nx
, . . . , (Nx−1)L

Nx

)
consisting of the interior points of Ω that are multiples of the space step h = L

Nx
, with

2 ≤ Nx ∈ N. As basis functions we take the classical hat-functions φi ∈ V defined for

x ∈ Ω and each i ∈ {1, 2, . . . , Nx−1} by φi(x) :=


1− i+ x

h
, if x ∈ [(i− 1)h, ih] ;

1 + i− x
h
, if x ∈ [ih, (i+ 1)h] ;

0 , if x /∈ [(i− 1)h, (i+ 1)h] .

Next any function u ∈ V can be approximated by the values it takes on ΩD. More
precisely, we approximate u by the function ũ, defined as

ũ :=

Nx−1∑
i=1

u(ih)φi.

We define the evaluation vector u := [u(ih)]
> := [u(1h), u(2h), . . . , u((Nx − 1)h)]

> ∈
M(Nx−1)×1, where A> stands for the transpose matrix of A.

Remark 5.1. Notice that ũ :=
∑Nx−1
i=1 uiφi, is a piecewise (affine) linear function

that takes the same values as u at the points of the mesh ΩD. Also notice that, since
we are dealing with homogeneous Dirichlet boundary conditions, only the values at
interior points are unknown for the solution of our system

The next step is the weak discretization matrix LD of a given linear operator
L ∈ L(V → V ′). We define LD by the formula

(5.2) v>LDu = 〈Lũ, ṽ〉V ′, V for all u, v ∈ V.

Of key importance are the identity and Laplace operators. For the identity oper-
ator Iu = u, we find that ID = [(φi, φj)H ] =: M is the so-called mass matrix, while
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for the Laplace operator we find (∂xx)D = −[(∂xφi, ∂xφj)H ] =: −S, where S is the
so-called stiffness matrix. Explicitly we have the tridiagonal matrices

M :=
h

6


4 1 0 0 . . . 0
1 4 1 0 . . . 0

0 1 4 1
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0
0 . . . 0 1 4 1
0 . . . 0 0 1 4

 and S :=
1

h


2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0

0 −1 2 −1
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0
0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2

.

Next, we recall the reference solution û and discretize the operator v 7→ B(û)v =
∂x(ûv), v ∈ V . We start by noticing that, for an arbitrary w ∈ V , (∂x(ûv), w)H =

−(ûv, ∂xw)H , then we consider the approximation ˜̂uv =
∑Nx−1
j=1 ûjvjφj of ûv, and we

find −(˜̂uv, ∂xw̃)H =
∑Nx−1
i=1

∑Nx−1
j=1 −ûjvjwi(φj , ∂xφi)H , and

(∂x(ûv), w)H ≈ w>BDûv,

with

B :=
1

2


0 1 0 0 . . . 0
−1 0 1 0 . . . 0

0 −1 0 1
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0
0 . . . 0 −1 0 1
0 . . . 0 0 −1 0

 and Dû :=


û1 0 0 . . . 0

0 û2 0 . . . 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . 0 ûNx−2 0

0 . . . 0 0 ûNx−1

.

Notice also that, rewriting v∂xv as 1
2B(v)v, we can discretize v∂xv as 1

2BDvv.

Remark 5.2. Notice that above we consider the operator v 7→ ∂x(ûv) as a compo-
sition ∂x ◦mû, where mû denotes the pointwise multiplication by û, and then we just
take the product of the discretized factors. Of course, we can also discretize directly

and, after some computations we can find that B(û)D is a tridiagonal matrix Bû:

Bû
ii = −

∑
k∈{i−1, i+1}
1≤k≤Nx−1

ûk

∫
Ω

(φkφi∂xφi)dx =
1

6

{
û2, if i = 1

ûi+1 − ûi−1, if i ∈ {2, . . . , Nx − 2}
−ûNx−2, if i = Nx − 1

;

Bû
ij = −

∑
k∈{i, j}
1≤k≤Nx−1

ûk

∫
Ω

(φkφj∂xφi)dx =
1

6

{
2ûi+1 − ûi, if j = i+ 1;

−2ûi−1 + ûi, if j = i− 1;
0, if |i− j|R ≥ 2

.

We see that the composition based procedure leads to a simpler result. We have also
performed some simulations with the direct discretization (for the nonlinear system)
and, though we have noticed no substantial difference, we must say that the direct
discretization could lead to better results under suitable data.

To discretize the operators in the feedback control rule in (3.22), we start by
rewriting it, recalling (3.24), as

Fv := BOMB
O
M

∗
Qt, λû v,(5.3)

and we notice that what we essentially need is an approximation Fv of Fv, when we
only know the approximation v of v.
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We will construct Fv in a few steps. For the multiplication operator v 7→ χv
we can of course take Dχv = χv as an approximation of χv. For the orthogonal
projection POM we start by noticing that

POM (v|O) =

M∑
n=1

(v|O , sn)L2(O,R)sn =

M∑
n=1

(v, EO0 sn)Hsn,

then we can take the approximation POM (v|O) ≈
∑M
n=1

(
EO0 sn

>
Mv

)
sn, from which

we set the discrete approximation

PMv ≈ EO0 POM (v|O) with PM := SMM, and SM :=

M∑
n=1

EO0 sn EO0 sn
>
.

Finally, the linear operator Qt, λû is, at this moment, unknown and (an approximation)

has to be found. Note that denoting by QD = (Qt, λû )D the discretization of Qt, λû , we

may take M−1QDv ≈ Qt, λû v and discretize the feedback rule (5.3) as follows: first

we take the approximation BOM
∗
ξ ≈ e−

λ
2 tPMDχξ, then from (5.2) and (Fv, w)H =(

BOM
∗
Qt, λû v, BOM

∗
w
)
H

, for (v, w) ∈ H ×H, we find

(Fv, w)H ≈
(

˜
BOM

∗
Qt, λû v, B̃OM

∗
w

)
H

= BOM
∗
w
>

MBOM
∗
Qt, λû v

≈ e−λt (PMDχw)
>

M
(
PMDχM−1QDv

)
= w⊥MM−1e−λt (PMDχ)

>
M
(
PMDχM−1QDv

)
= w⊥Me−λtRR>QDv

where

(5.4) R :=
(
McPMDχM−1

)>
and Mc, satisfying M>

c Mc = M, is the Cholesky factor of M (notice that M is
positive definite). Thus we take Fv = Fv with

(5.5) F := e−λtRR>QD.

Remark 5.3. Denoting Q = Qt, λû , the approximation M−1QDv ≈ Qv can be un-
derstood in the following formal sense: we have that w⊥QDv ≈ (Qv,w)H ≈ w⊥MQv,
thus we can write w⊥MM−1QDv ≈ w⊥MQv, that is, (M−1QDv, w̃)H ≈ (Qv, w)H ,
where in the last expression the vector ρ = (ρ1, ρ2, . . . , ρNx−1) = M−1QDv is to
be seen as an element in Y = span{φi | i ∈ {1, 2, . . . , Nx − 1}} ⊂ L2(Ω, R), that

is, ρ is to be understood as
∑Nx−1
i=1 ρiφi. Further, notice that in this way the opera-

tor M−1QD is symmetric in Y, because if (v, w) ∈ Y × Y we have (v, w) = (ṽ, w̃)
and (M−1QDv, w)H = w⊥MM−1QDv = w⊥QDv = v⊥QDw = v⊥MM−1QDw =
(M−1QDw, v)H .
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5.2. Discretization in time. For discretization in time of system (3.1), con-
sidered in a time interval [0, T ], where T is a positive real number, we introduce an
uniform mesh

(5.6) [0, T ]D :=
(
0, T

Nt
, 2T
Nt
, . . . , (Nt−1)T

Nt
, T
)

consisting of the points in [0, T ] that are proportional to the time step k := T
Nt

, with

Nt ∈ N0. Then, any function u ∈ H1((0, T ), V ) is approximated by the values it takes
in [0, T ]D × ΩD, that is, we essentially approximate u = u(t, x) by a matrix [u] ∈
M(Nx−1)×(Nt+1) whose jth column is the vector u(jk, ·). That is, [u]ij = u(jk, ih),
for i ∈ {1, 2, . . . , Nx − 1} and j ∈ {0, 1, 2, . . . , Nt}

5.3. Computation of the discretized feedback rule. We recall the opera-
tor Q = Qs, λû satisfying, for t > 0, the differential Riccati equation (3.23).

5.3.1. Discretization of the differential Riccati equation. To construct
the approximation QD for the operator Q, we can look for QD solving

∂tQD −QDX −X>QD − e−λtQDRR>QD + eλtνS = 0, t > 0,

with R as in (5.4) and

X = X(t) = M−1
(
νS + BD

û(t)

)
.(5.7)

Equivalently, we can look for P = e−λtQD solving

(5.8) ∂tP − PX −X>P − PRR>P + νS + λP = 0, t > 0.

Remark 5.4. Notice that from the relation Xv ≈ −ν∂xxv + B(û)v, we have
that (Q(−ν∂xx + B(û))v, w)H ≈ w>QDXv. Similarly ((−ν∂xxv + B(û))∗Qv,w)H ≈
w>X>QDv, and (QFv, w)H ≈ w>QDFv.

5.3.2. Initialization of the differential Riccati equation. Since we need
to solve (3.23) backwards in time (cf. Remark 3.14), we will also solve system (5.8)
backwards in time; thus the question is: how to initialize the system? Roughly
speaking, it seems that we would need to know P (+∞), and even if we know this
(limit) value it is not clear how we could use it.

Recall that, our main goal is to approach the desired solution û(t) as time t
increases but, in a real application we also want to have an effective controller that,
for example, guarantees us that after some time t = T̂ > 0 we are indeed closer than
we were at initial time t = 0, say, e.g., |v(T̂ )|2H ≤ 1

2 |v(0)|2H . Also, in applications it
is reasonable to think of a problem set for a possibly very long time range t ∈ [0, T ],
but never for an infinite time range.

Thus we suppose we are interested in the evolution for time t ∈ [0, T ], then we
may suppose that for time t > T our solution is stationary, that is, we may study
the same problem but, now we suppose that û(t) = û(T ), for all t ≥ T . Notice,
however, that this does not reduce the full problem to the stationary case, because in
the interesting time range t ∈ (0, T ) the reference trajectory û(t) remains unchanged.

Now we can find PT solving the algebraic Riccati equation

(5.9) P (−X(T ) + λ
2 I) + (−X(T ) + λ

2 I)>P − PRR>P + νS = 0,

and we can see that, PT will solve the autonomous system (5.8) for t ≥ T (under the
supposition û(t) = û(T ) for t ≥ T ), see also [47, sections 1.4 and 4.4].

Then, it remains to solve (5.8) for t ∈ [0, T ] with the final condition P (T ) = PT .
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5.3.3. Solving the Riccati systems.
• General procedure. To solve the algebraic Riccati system (5.9) we use the software
available from [9]; in this way we find PT .

To solve (backwards in time) the differential system (5.8), for t ∈ [0, T ], with
the initial condition P (T ) = PT , we proceed as follows. Recall the mesh [0, T ]D of
the interval [0, T ], defined in (5.6). We have PNt := P (Ntk) = P (T ) = PT ; next,
recursively, we construct P j := P (jk) from P j+1, for j ∈ {0, 1, . . . , Nt − 1}, as
follows: we start by rewriting (5.8) as

−∂tP = P (−X + λ
2 I) + (−X + λ

2 I)>P − PRR>P + νS =: RF (P )

and, we use the Crank-Nicolson inspired scheme

− 2
k (P j+1 − P j) = RF (P j) +RF (P j+1),

from which we obtain RF (P j)− 2
kP

j +RF (P j+1) + 2
kP

j+1 = 0, that is,

(5.10) P j(−X + λ
2 I −

1
k I) + (−X + λ

2 I −
1
k I)>P j − P jRR>P j + Zj+1 = 0

with Zj+1 = RF (P j+1) + 2
kP

j+1 + νS. Hence P j solves again an algebraic Riccati
equation and we can still use the software in [9].

• Initial guess. The software in [9] (see also [10]) uses a Newton method to solve an
algebraic Riccati equation like (5.9). We have to provide an initial starting guess Y0

such that −X(T ) + λ
2 I−RR>Y T0 Y0 is stable. This is of course a nontrivial task (see,

e.g., the discussion after (1.4) in [27]) and we look for the initial guess in three steps:
(i) We set M = +∞ and χ = 1Ω. That is, we impose no constraints neither on

the dimension nor on the support of the controller. In this case we can see that

R =
(
McM

−1
)>

and RR> = M−1. Then from (5.7) we can expect that

−X(T ) + λ
2 I −M−1Y T0 Y0 = −M−1

(
νS + BD

û(T )

)
+ λ

2 I −M−1Y T0 Y0

will be stable for Y0 = βMc, with
√

2β ≥ β0 := (ν−1 |û(T )|2L∞(Ω,R) + λ)
1
2 .

Notice that, proceeding as in the beginning of section 3.1 we see that a weak
solution w for wt = ν∂xxw − ∂x(û(T )w) + λ

2w − β
2w, will satisfy the estimate

d
dt |w|

2
H ≤ −ν|∂xw|2H + ν−1|û(T )|2L∞(Ω,R)|w|

2
H + λ|w|2H − 2β2|w|2H . That is, the

lower bound β0 works for the continuous system. However, when taking β strictly
bigger than β0 we may expect that the stability is preserved for the discretized
system, if Nx and Nt are big enough.
Hence we set β = (ν−1 |û(T )|2L∞(Ω,R) + λ)

1
2 and solve (5.9), i.e.

P (−X(T ) + λ
2 I) + (−X(T ) + λ

2 I)>P − PM−1P + νS = 0,

providing the initial guess Y0 = βMc. Let us denote the solution by P
[1]
T .

(ii) We set M = +∞ and the true χ. That is, now we include the constraints on the

support of the controller. In this case R =
(
McDχM−1

)>
, see (5.4). In some

cases it may happen that P
[1]
T is not a “good” initial guess. In some cases (as we

have observed in some simulations) the step from (+∞, 1Ω) to (+∞, χ) seems

to be too big, in other words P
[1]
T is too far from the solution corresponding

to R =
(
McDχM−1

)>
. Having this in mind we connect the operators I and Dχ



Internal stabilization for 1D Burgers equations 21

by the homotopy Hτ = (1− τ)I + τDχ, τ ∈ [0, 1] and set Hτ := (McHτM−1)>.
Now let us fix NH ∈ N0 and set the homotopy step ρ = 1

NH
and solve

P (−X(T ) + λ
2 I) + (−X(T ) + λ

2 I)>P − PHρH
>
ρ P + νS = 0,

providing the initial guess Y0 = P
[1]
T . Let us denote the solution by P

[1+ρ]
T .

Recursively we solve, for l ∈ 2, . . . , NH,

P (−X(T ) + λ
2 I) + (−X(T ) + λ

2 I)>P − PHlρH
>
lρP + νS = 0,

providing the initial guess Y 0 = P
[1+(l−1)ρ]
T , and denote the solution by P

[1+lρ]
T .

After NH steps we have found a solution P
[2]
T for

P (−X(T ) + λ
2 I) + (−X(T ) + λ

2 I)>P − PH1H
>
1 P + νS = 0

with H1 =
(
McDχM−1

)>
.

(iii) We set the true M and the true χ. That is, finally we include also the constraints
on the dimension of the controller. In this case R is given by (5.4). Analogously
to step (ii) we consider the homotopy Hτ = (1 − τ)Dχ + τPMDχ, set Hτ :=

(McHτM−1)> and, starting with P
[2]
T we find, recursively after NH steps, a

solution P
[3]
T for

P (−X(T ) + λ
2 I) + (−X(T ) + λ

2 I)>P − PH1H
>
1 P + νS = 0

with H1 =
(
McPMDχM−1

)>
= R. That is P

[3]
T solves (5.9).

Of course, the number of homotopy steps NH may be taken different in steps (ii)
and (iii). To get the convergence of the Newton method used to solve the algebraic
Riccati equations at each homotopy step we may need, depending on the situations,
to increase the number of homotopy steps NH.

Notice, however that in step (iii) increasing NH can be sufficient for conver-
gence at each homotopy step only if M is big enough. Indeed we can see that
the algebraic Riccati equation will have a solution up to the homotopy step be-
fore the last, because from the observability inequality (3.14) we can also derive

|q(0)|2H ≤ (1− τ)−2C |(1− τ)χq|2L2((0, T ), H), and from

|(1− τ)χq|2L2((0, T ), H)

=
∣∣(1− τ)(1− POM )(χq|O)

∣∣2
L2((0, T ), L2(O,R))

+
∣∣(1− τ)POM (χq|O)

∣∣2
L2((0, T ), L2(O,R))

≤
∣∣(1− τ)(1− POM )(χq|O)

∣∣2
L2((0, T ), L2(O,R))

+
∣∣POM (χq|O)

∣∣2
L2((0, T ), L2(O,R))

=
∣∣(1− τ)(χq|O) + (1− (1− τ))POM (χq|O)

∣∣2
L2((0, T ), L2(O,R))

,

we arrive at |q(0)|2H ≤ (1−τ)−2C
∣∣(1− τ)χq + τEO0 POM (χq|O)

∣∣2
L2((0, T ), H)

. Then, from

this observability inequality it will follow that there exists a stabilizing control (for
system (3.1)) of the form ζ(t) = Fτη := (1 − τ)χη(t) + τχEO0 POM (η(t)|O), for τ < 1.
Reasoning as in section 3.4, by the dynamic programing principle it will follow that
the control can be taken in feedback form ζ(t) = FτF∗τQtτv(t), where eλtQtτ solves the
Ricatti equation (3.25) with Fτ in the role of B, which corresponds on the discrete
level to the case we take R = (Mc[(1− τ)Dχ + τPMDχ]M−1)> in (5.8).
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For the last homotopy step, that is, for τ = 1 the observability will hold if M
is big enough (following the arguments in [7]). Also, from Theorem 3.4 a stabilizing
control exists if M is big enough, so we cannot guarantee the existence of a stabilizing
control of the form ζ(t) = χEO0 POM (η(t)|O) for arbitrary (small) M , and then we
cannot guarantee the existence of a solution for the algebraic Riccati equation (3.25).

In step (ii), increasing NH should be sufficient to get the convergence at each
homotopy step, because reasoning as above we can conclude that there exists a sta-
bilizing control of the form ζ(t) = (1− τ)η(t) + τχη(t), for all τ ∈ [0, 1].

Therefore, if convergence is not reached at a homotopy step in (ii) or at a homo-
topy step before the last in (iii) we probably need either more homotopy steps or to
refine our mesh; if convergence is not reached only at the last homotopy step in (iii),
then probably the number of controls is not enough.

In the simulations we present here, we have taken no more than NH = 20 in
the second step and no more than Nh = 10 in the third step. Notice however that
increasing the number of homotopy steps does not mean that the computational
time will be much bigger because the Newton method may converge faster at each
homotopy step.

Finally, in the process of solving the differential Riccati equation, to find P j

solving (5.10) we provide the natural initial guess P j+1. Again, we cannot guarantee
that the solution will always exist. If this process fails at some j-step, we can try to
refine the mesh (in particular, by increasing the number Nt of time steps in (5.6)); if
that does not work it probably means that the number of controls M is not sufficient.

5.4. Solving the discretized Oseen–Burgers system. Once we have con-
structed P we can simulate the evolution of the system (3.1); we look for v(t) := v(t, ·)
that solves the system

(5.11) ∂tv + νM−1Sv + M−1BDûv + R>RP (v) = 0, v(0) = v0,

and expect v to go exponentially to 0 as time increases, with an a priori prescribed
rate λ

2 > 0 as time goes to infinity (cf. (3.4) and (3.16)); recall that P depends on λ

(cf. (5.8)). Notice that from (5.5), (5.4), and P = e−λtQD, it follows Fv = RTRPv.
Again, we will approximate v(t) ≈ [v(jk)], j ∈ {0, 1, . . . , Nt}, and we apply a

Crank-Nicolson inspired algorithm to solve system (5.11). For simplicity we denote

F j := R>RP j , for j ∈ {0, 1, . . . , Nt}. Set v0 := v(0k) = v0; then the idea is to
construct, recursively, vj+1 := v((j + 1)k) from vj := v(jk) by the scheme

2
k (vj+1 − vj) = −νM−1S(vj + vj+1)−M−1

(
BD

û
jvj + BD

û
j+1vj+1

)
−
(
F jvj + F j+1

vj+1
)
,

with û
j

:= û(jk), j ∈ {0, 1, . . . , Nt}. Then, working a little the above scheme, we
can obtain

vj+1 = A−1
⊕ A	v

j − k
2A
−1
⊕
(
BD

û
jvj + BD

û
j+1vj+1

)
(5.12)

− k
2A
−1
⊕ M

(
F jvj + F j+1

vj+1
)
, .

with A⊕ := M + k
2νS and A	 := M − k

2νS. Notice that the unknown vj+1 is still
present on the right hand side of (5.12). In the argument of the feedback operator
we will replace vj+1 by a preliminary guess vj+1

G , and approximate BD
û
j+1vj+1 by
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BD
û
jvj + k(BD

û
jvj −BD

û
j−1vj−1) (where we define v−1 := v0 = v0). In this way

we arrive at the scheme

vj+1 = A−1
⊕ A	v

j − kA−1
⊕
(
(1 + k

2 )BD
û
jvj − k

2 BD
û
j−1vj−1

)
(5.13)

− k
2A
−1
⊕ M

(
F jvj + F j+1

vj+1
G

)
.

We set vj+1
G as the “uncontrolled” output

vj+1
G := A−1

⊕ A	v
j − kA−1

⊕
(
(1 + k

2 )BD
û
jvj − k

2 BD
û
j−1vj−1

)
.

5.5. Solving the discretized Burgers system. Concerning the evolution of
the system (1.1)–(1.2). We look for u(t) := u(t, ·) that solves the system

(5.14) ∂tu+ νM−1Su+ 1
2M−1BDuu+ h+ R>RP (u− û) = 0, u(0) = u0,

and expect u to go exponentially to û, with an a priori prescribed rate λ
2 > 0, as

time increases (with R as in (5.4)). However this would be meaningful if û were a
solution for the uncontrolled discrete system, which is not true. The solution of the
uncontrolled discrete system

(5.15) ∂tûS + νM−1SûS + 1
2M−1BDûS

ûS + h = 0, ûS(0) = û0

will be an approximation ûS of û. There is no reason to expect that e
λ
2 t(u(t)− û(t))

will remain bounded for t ∈ R0.
Nevertheless there is a way to check the rate of exponential stabilization λ. We

will just have to compute the discrete (fictitious) external force hf , that makes û a
solution of the discrete system, that is,

(5.16) ∂tû+ νM−1Sû+ 1
2M−1BDûû+ hf = 0, û(0) = û0.

Before that we present the scheme we apply. Suppose for the moment, that we know
hf . Then, we follow the idea in section 5.4 and arrive at the scheme

uj+1 = A−1
⊕ A	u

j − k
2A
−1
⊕
(
(1 + k

2 )BDujuj − k
2 BDuj−1uj−1

)
(5.17)

− k
2A
−1
⊕ M

(
h
j

f + h
j+1

f + F j(uj − ûj) + F j+1
(uj+1
G − ûj+1

)
)
,

with the preliminary “uncontrolled” guess uj+1
G given by

uj+1
G := A−1

⊕ A	u
j − k

2A
−1
⊕
(
(1 + k

2 )BDujuj − k
2 BDuj−1uj−1

)
− k

2A
−1
⊕ M

(
h
j

f + h
j+1

f

)
.

It remains to explain how we construct the force hf . Actually, from our scheme

we can deduce that we only need to know the terms k
2A
−1
⊕ M

(
h
j

f + h
j+1

f

)
, for j ∈

{0, 1, . . . , Nt − 1}, that we can easily compute as

k
2A
−1
⊕ M

(
h
j

f + h
j+1

f

)
= −ûj+1

+A−1
⊕ A	û

j − k
2A
−1
⊕

(
(1 + k

2 )BD
û
j û
j − k

2 BD
û
j−1 û

j−1
)
,

(where we define û
−1

:= û
0
).
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6. Numerical examples: the linear Oseen–Burgers system. We present
some results of the numerical simulations we have performed concerning the sta-
bilization of system (3.1) to zero. Below, vu stands for the solution of the un-
controlled (discretized) system (i.e., ζ = 0), and v (or vλ) stands for the solution
of the (discretized) system under the action of a (discretized) feedback controller

ζ = χη, with η = e−λtEO0 POM ((χQt, λû v)|O) as in (3.22). If nothing is said in contrary
O = (inf{Ω ∩ supp(χ)}, sup{Ω ∩ supp(χ)}).

We follow a “trying and checking” procedure, we fix M and check the results of
the simulations.

6.1. Testing with a family of reference trajectories. We set ν = 1
10 , λ = 2,

Ω = (0, π), O = ( 3
2 ,

5
2 ), and

(6.1) χ(x) = EO0
(
sin((x− 3

2 )π)|O
)
.

That is, χ = EO0 s1 (cf. section 2.1). Next we set the family of reference trajectories

(6.2) û = û(i,j) = Cnr (sin(−t) sin(ix)− cos(3t) sin(jx)) ,

where the constant Cnr is chosen so that |û|W = 1. In this case we have that Mref =√
120 ≈ 10.95 and Mexp ≈ 57208.12; so our question is if the number M of needed

controls stay “close” to Mref or to Mexp (cf. section 3.3). We will test with the smaller
number M = 4, and v0(x) = sin(2x). The function χ and the four controls are plotted
in figure 1.
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(a) The function χ.
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(b) The first four sinus.

Fig. 1. Basis for the control space {χEO
0 η | η ∈ span{si | i ∈ {1, 2, 3, 4}}}.

In figure 2 we can check that the feedback control is able to stabilize the system
with the desired rate. Then, we change the initial condition to v0(x) = sin(x) −
sin(6x), and test for some other reference trajectories (with higher frequencies) in the
family (6.2); in figure 3 we see that the feedback control is still able to stabilize the

system with the desired rate; of course, the squared norm |v|2H is to be understood as
the discrete approximation v>Mv (cf. section 5.1).

Remark 6.1. There is no particular reason to test with M far below Mref ; trivially,
if M controls are enough to stabilize the system, then taking more controls we can also
stabilize the system.

Initial data in L2(Ω, R)\H1(Ω, R). We set λ = 4, ν = 1
10 and χ as in (6.1). But

now we set v0(x) = x
1
2 and the reference trajectory û = Cnr1[0, π2 ](sin(−t) sin(2x) −
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Fig. 2. Convergence rate is achieved with the feedback control.
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Fig. 3. Convergence rate is achieved with the feedback control.

cos(3t) sin(2x)), where

(6.3) 1[a, b](x) :=

{
1 , if x ∈ [a, b]
0 , if x ∈ Ω \ [a, b]

, a, b ∈ R

and Cnr is taken so that |û|W = 1. We can see in figure 4 that two controls stabilize the
system (3.1) to zero with the desired rate. In figure 5 we see the controls corresponding
to the cases we take either two or three controls. Notice that in this case the initial
condition is in H \ V and the support of the control is disjoint from that of û.

6.2. Increasing number of needed controls. We set û = 0, Ω = (0, π). In
this example we show that for any given n ∈ N0 we can construct χ supported in a
subset ω ⊂ ω ⊂ Ω, λ > 0, and an initial condition v0, such that the first 2n controls
cannot stabilize the system (3.1) to zero with the rate λ. However, by increasing the
number of controls we can obtain the desired stabilization. Notice that here we look
for χ 6= 1Ω (cf. last paragraph in section 3.3).

Let n ∈ N0. Set v0(x) = sin((2n + 5)x), O =
(

2π
2n+5 ,

(2n+3)π
2n+5

)
, and χ =

EO0 v2
0 |O. We claim that the controls χPO2nη cannot stabilize the equation with rate

λ > 2ν(2n + 5)2. Indeed, we can write (v0, χP
O
2nη)H =

∑2n
i=1 ηi

∫
O v

3
0si dO =∑2n

i=1 ηi(
l
2 )

3
2

∫
O s

3
2n+1si dO and also

∫
O s

3
2n+1si dO = 1

4

∫
O(1 − c2(2n+1))(c2n+1−i −
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(a) The trajectory û.
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(b) Convergence rates of vu and v.

Fig. 4. Two controls stabilize the system to zero with desired rate.

(a) The control η for M = 2. (b) The control η for M = 3.

Fig. 5. The controls.

c2n+1+i) dO, with

cj(x) := ( 2
l )

1
2 cos( jπ(x−l1)

l ), x ∈ O, l := length(O) = (2n+1)π
2n+5 , l1 = 2π

2n+5

(cf. definition of the functions sn in section 2.1). Now, notice that since i ≤ 2n, we
have that 0 < 2n + 1 ± i < 2(2n + 1), thus we can conclude that (v0, χP

O
2nη)H = 0.

Therefore since the eigenspace span{v0} is preserved by the Laplacian we can conclude
that the control cannot change the dynamics on this space. Thus, we conclude that
the rate of convergence is at most 2ν(2n+ 5)2.

Now we set ν = 1
10 ; from above we know that for n ∈ {1, 2} the rate of convergence

λ = 20 > 81
5 is not achieved with the first 2n controls. Simulations below show that, in

these examples, it is enough to add one more control to achieve the rate. In particular,

we have M = 2n+ 1 ≤ 5 < (λν )
1
2 = 10

√
2 = Mref < Mexp = e10

√
2. In Figures 6 and 7

we see the results of the simulations for the cases n = 1 and n = 2; we can check the
stabilization rate to zero of the heat system (i.e., system (3.1) with û = 0).

6.3. Instability of the system. Increasing |û|W and decreasing ν brings more
instability to the system, which leads to the necessity to take a bigger number M
of controls. To illustrate the instability of the (uncontrolled) system (3.1), and the
response of the controller, we can just take a stationary reference trajectory. The
main advantage is that we do not need to solve the differential Riccati equation that
is the more expensive numerical step. Notice, however that (as far as we know) an
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Fig. 6. Case n = 1. The first three controls can stabilize the heat system.
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Fig. 7. Case n = 2. The first five controls can stabilize the heat system.

estimate depending on the norm |û|W is not known also in this case; for the Oseen–
Stokes system estimates are known, but depending on û (cf. the discussion and given
references in section 1). We will set

(6.4) û(t, x) = ε−1 sin(5x), and v0(x) = sin(πx)

where ε is a constant that we will use to change the norm |û|W of û.

6.3.1. Changing the norm of the reference trajectory. Here we take λ = 4,
M = 4, and ν = 1

10 . In figure 8 we see that the uncontrolled system becomes more
instable as ε decreases, that is, as |û|W increases. We can also see that the four
controls work up to ε = 0.067, but not for ε = 0.0665. This could mean that either
the number of controls in not enough anymore or that our discretization is not fine
enough (notice that for smaller ε the magnitudes |∂xû(t, x)|R become bigger, we will
come back to this issue hereafter in section 7.3). Notice that in all the cases we

have Mref ≥
√

44 ≈ 6.63 and Mexp ≥ e
√

44 ≈ 759.95. In particular, M
(ε=0.067)
ref ≈

149.49 is already big compared to M .

6.3.2. Changing the viscosity. Here we take λ = 4, M = 4 and û(t, x) =
2 sin(5x). In figure 9 we see that the uncontrolled system becomes more instable as ν
decreases. We can also see that the four controls work up to ν = 0.001, but not
for ν = 0.0005. Again, either the number of controls in not enough anymore or our
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Fig. 8. Instability increases as ε decreases.

discretization is not fine enough (notice that for smaller ν the magnitudes |∂xû(t, x)|R
become bigger when compared to ν). Notice that in all the cases we have Mexp ≥
e
√

8 ≈ 16.92, M
(ν=1)
ref =

√
8 ≈ 2.83 < 4 and M

(ν≤0.5)
ref ≥

√
22 ≈ 4.69 > 4. In

particular, notice that for ν ∈ {0.5, 1} we have M ≈Mref and the corresponding plots

in figure 9(a) remain below 0.423 ≈ log(1 + e
1
2 ) which suits (3.4) better than (3.16).
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Fig. 9. Instability increases as ν decreases.

6.3.3. Changing the desired decreasing rate. Here we take M = 4, û =
sin(5x), and ν = 1

10 . In figure 10 we see that with the four controls we can get at

least rate of convergence λ = 17. We also see that |v(t)|2H ≤ eCλe−λt|v0|2H , where Cλ
is the maximum of the corresponding curves. Since in all cases we have λ > Cλ we
see that the controller is effective at time t = 1, that is, the norm has been squeezed
at time t = 1. On the other hand, for example for λ = 15, up to time t = 0.2 we
can guarantee that |v(t)|2H ≤ e9e−15t|v0|2H , in particular |v(0.2)|2H ≤ e6|v0|2H , that is
we cannot guarantee that the norm has been squeezed, but at time t = 0.8 we find
|v(0.8)|2H ≤ e11e−15 8

10 |v0|2H = e−1|v0|2H , and we see that the norm is already squeezed.

6.3.4. Changing the number of controls. Here we take û = sin(5x), and

ν = 1
10 , and λ = 4. In figure 11 we see that |v(t)|2H ≤ eC

v
M e−λt |v0|2H , and |η(t)|2H ≤

eC
η
M e−λt |v0|2H , with CvM and CηM decreasing as M increases. Figure 12(a) could

explain the cusp in the control plot in figure 11; we guess that one control is not
enough, because the cost function t 7→ (Q(t)v(t), v(t))H must be a strictly decreasing

function (Q(s)v(s), v(s))H = (Q(t)v(t), v(t))H +
∫ t
s

eλτ (|∂xv(τ)|2H + |η(τ)|2H) dτ for
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Fig. 10. Behavior as the desired exponential rate changes.

s ≤ t (cf. section 3.4). In figure 12(b) we can see that two controls can stabilize the
system, and that the cost decreases as M increases.
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Fig. 11. Behavior as M increases.
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Fig. 12. The cost decreases as the number of controls increase.

7. Numerical examples: the Burgers system. It remains to confirm that
the feedback control stabilizes the system (1.1)–(1.2) to a given reference trajectory û,
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provided that |u0 − û(0)|2H is “small”. We recall that û solves (1.1) with ζ = 0 and
û(0) = û0. Below, we denote d := u−û and du := uu−û, where uu solves system (1.1)–
(1.2) with ζ = 0, and u solves system (1.1)–(1.2) with the feedback control ζ, as
in (3.22), computed to stabilize the system (3.1) to zero.

7.1. Local nature of the results and nonlinear nature of the equation.
As in section 6.1, we set ν = 1

10 , χ as defined in (6.1), λ = 2 and the trajectory
û = Cnr (sin(−t) sin(8x)− cos(3t) sin(8x)) from the family (6.2). Again we set M =
4 < Mref =

√
120. Next, we consider the family of initial conditions u0 = uδ0 := dδ0+û0

with d0 = dδ0 = δ(sin(x)− sin(6x)), and δ ∈ R \ {0}.
In figure 13 we can see that the feedback control is able to stabilize, with the

desired rate, the nonlinear system (1.1)–(1.2) to the trajectory û, provided that d0 is
small enough. We can see that, for |δ|R > 1, the stabilization rate is not guaranteed;
while for |δ| ≤ 1 it holds. For example, for |δ|R ≤ 1 we can see that the local maxima
of the plotted curves seem either to converge to a real number or to decrease, while
for |δ|R > 1 those local maxima seem to go to infinity. Notice that the radius 1 here
is suitable for this example, for other settings the stabilization may hold only for
smaller |δ|R.

In figure 14 we can see that the uncontrolled systems does not go exponentially
to û (at least not with the rate λ = 2); here we have plotted the curves corresponding
to some of those values of δ in figure 13 (for the other the behavior is similar).

We can also see the nonlinear nature of the equations, because changing the sign
of the initial condition leads to different curves.

Remark 7.1. The results correspond to simulations in which we have taken a
fictitious external force hf (i.e., an approximation of h) that makes û a solution of
the discrete system (cf. section 5.5).
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Fig. 13. Convergence rate to û holds locally.

7.2. Real versus fictitious external force behavior. Here we are in the
same setting as in section 7.1. But, now we fix δ = 1, and consider û in the longer
time interval t ∈ [0, 10]. We compare the numerical results in the case when we take
the real external force h = −∂tû− û∂xû+ ν∂xxû with those in the case when we take
the fictitious external force hf (cf. Remark 7.1). We denote d = ū− ¯̂u and dr = ūr− ¯̂u,
where ūr solves (5.14) (that is, with the real external force h̄), and ū solves (5.14)
with h̄f in the place of h̄. In figure 15, we confirm the rate of convergence of ū to ¯̂u in
the entire time interval, while for dr the rate is confirmed until time t = 6; after time
t = 6 we see that dr remains bounded, this just means that the magnitude of ūr − ¯̂u



Internal stabilization for 1D Burgers equations 31

0 1 2 3 4 5
−4

−3

−2

−1

0

time t

log(|v(t)|2H / |v0|
2
H)

 

 

δ = 0.1

δ = −0.5

δ = 0.5

δ = −1

δ = −2
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has reached that of the discretization error of our solver, and consequently we cannot
expect the magnitude of ūr − ¯̂u to decrease more.
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Fig. 15. Ficticious versus real external force.

7.3. On the discretization error. Here we are in the same setting as in sec-
tion 7.1 with δ = 1. We observe that, following the scheme (5.17), with the exact
external force h (in the place of hf), the discrete solution ûS for (5.15) will be close
to û. Moreover, ûS converges to û as (k, h)→ (0, 0).

The main goal of the presented simulations in the previous sections is to show
that an estimate like (3.3) should hold, in general, instead of (3.15), and it is not our
intention to compare our algorithm/discretization to solve the Burgers and Oseen-
Burgers systems with existing ones. That is why we have not performed a rigorous
numerical analysis concerning the convergence of the scheme. Though, we would
like to say that from numerical experiments we have performed we expect linear
convergence. We present some results that indeed suggest that the error ûS − û is
proportional to h+ k.

Let û = û(i, j) be as in (6.2), with (i, j) = (8, 8). In figure 17 the error ûS − û
is proportional to h + k; notice that as we squeeze (h, k) by the factor 1

2 , the plots
are squeezed by a factor (not bigger than) 1

2 . Also, in the examples in figure 18,

corresponding to û = û(i, j) as in (6.2) with (i, j) = (1, 4) and (i, j) = (3, 2), the
error is proportional to h+ k.

We must however recall that it is well-known that in general, when solving Burgers
equation with small viscosity by finite elements, spurious oscillations may appear in
the numerical solution if the convection part is dominant. They can be reduced
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by a reduction of the mesh size or by stabilization of the numerical scheme (e.g.,
see [11,16,24]). In our simulations the reference trajectory is smooth with moderately
bounded gradient. Thus we can choose moderately small mesh parameters, such that
no spurious oscillations appear. When we apply our scheme to a different example
where the gradient ∂xu of the exact solution reaches big magnitudes, then we will
observe spurious oscillations on a coarse mesh; the oscillations vanish by decreasing the
mesh parameters, see figure 19. In 19(a) we have taken the same space step and time
step and viscosity as in [1, figure 3(a)]. We see we get the same behavior near (t, x) =
(1, 1), where the gradient of the exact solution has a big magnitude |∂xu(1, 1)|R, see
also [16, section 5.6.5].

For references on numerical methods for feedback control and stabilization of the
Burgers equation we refer the reader to [3, 22,31–34,44].

(a) The reference trajectory û. (b) The discretization error.

Fig. 16. The difference between the discrete ûS and exact û solutions. (h, k) = ( π
121

, 5
500

).

0 1 2 3 4 5
0

0.5

1.5

2.5

3.5

4.5

x 10
−3

time t
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8. Final remarks. We have presented some estimates on the number of internal
controls M we need to exponentially stabilize the Burgers system to a given reference
trajectory û = û(t, x). In the case we take χ = 1Ω, in particular there is no constraint
on the support of the control, we can derive a better estimate comparing with the
general case (cf. sections 3.1 and 3.2), and we have presented the results of some
numerical simulations that suggest that an estimate like that obtained in the case
χ = 1Ω might hold also in the general case.
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Fig. 19. Spurious oscillations occur on coarser meshes.

Throughout the paper we consider controls given in the form
∑M
i=1 ηi(t)χEO0 si(x).

Usually, the controls at our disposal depend on each specific application, of course we
can always consider another family of controls Ψ = {ψi | i ∈ N0}, and perform the

simulations for controls like
∑M
i=1 κi(t)ψi(x), and perhaps also derive the correspond-

ing estimates on M following the procedure in sections 3.1 and 3.2.

We have focused on the viscous 1D Burgers system. However, we are convinced
that the challenge to find an estimate for M , trough a condition like (3.8) (preferable
to a condition like (3.19)), will present analogous difficulties for the cases of 2D and 3D
Burgers and Navier–Stokes systems, and also for a wide class of parabolic systems.

Our results do not apply to the case of nonviscous Burgers equation (i.e., to the
case we take ν = 0 in (1.1)), that is a completely different problem. We do not even
know if a finite number M of controls is enough to stabilize the system (in a general
situation the number M of needed controls will go to +∞ as ν goes to 0).

The existence of a finite-dimensional feedback control supported on a small subset
of the boundary and stabilizing the system to reference nonstationary solution, is work
still going on (see [40, 41] for some work on this direction). Also in this case, it will
be interesting to have an estimate on the dimension of the controller.

The value ν = 1
10 we use in most of the simulations is (perhaps) too big for

many applications. Of course we can take smaller ν but, in that case we may need
to take also a finer mesh in order to guarantee that the stabilization observed for
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the discretized system in the numerical simulations, will also hold for the continuous
system. Notice that, when the numerical solution for system (1.1) goes to û as time
increases, we can extrapolate that also the evaluations u(t, ih), i ∈ {1, 2, . . . , Nx −
1}, of the continuous solution at the spatial mesh points will go to û(t, ih) as time
increases. Recall that if |u(t)− û(t)|H goes to 0 as t increases, then also |u(t)− û(t)|V
does (provided that û ∈ {v ∈ W | supτ≥0 |∂xû|L2((τ, τ+1), L2(Ω,R)) < +∞}, due to

the smoothing property of the system (3.1), see [7, Lemma 2.1]). However, the fact
that |u(t, ih)− û(t, ih)|R goes to 0, for all i ∈ {1, 2, . . . , Nx−1}, as time increases, is
in general not enough to conclude that u goes to û. Indeed, from [25, Theorem 4.2] (for
the case of the Navier–Stokes system in a two-dimensional Torus) we can derive that

to conclude that u goes to û, the space step h should be taken proportional to ν2

1−2 log(ν)

(for small ν); and supposing that a similar estimate holds for the 1D Burgers system,
it would follow that the number Nx of space points (determining nodes) should be

proportional to 1−2 log(ν)
ν2 . Notice that the computational effort and computational

time will increase with Nx. We refer also to [26] and [19, chapter III, section 2], and
references therein, concerning the estimates on the number of determining nodes.

The mathematical theory concerning stabilization to time-dependent trajectories
(cf. [7]) is not so developed as for stabilization to a stationary state (cf. [2, 4–6, 8,
38, 39]). However, since these problems arise in applications, methods to solve these
problems numerically have already been developed (see, e.g., [20,28,29] and references
therein), notice that in this setting “trajectory” will often mean a suitable evolutionary
discrete process u0 ∈ Z, ui+1 = S(ui) ∈ Z, i ∈ N, where Z is a Hilbert space.
Other approaches can be found, for example, in [30] (in particular, see section 4
concerning trajectory tracking) and in [21] (in particular, see section 7.1 concerning
linear feedback control of Navier–Stokes flows).

Acknowledgments. The authors would like to thank Karl Kunisch for fruitful dis-
cussions on the subject, and the anonymous referees for their remarks that lead to an
improvement of the paper.
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lability of parabolic systems with a nonlinear term involving the state and the gradient,
SIAM J. Control Optim., 41 (2002), pp. 798–819.

[18] T. Duyckaerts, X. Zhang, and E. Zuazua, On the optimality of the observability inequalities
for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non
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