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A semi-Lagrangian scheme for Lp-penalized minimum time problems

Maurizio Falcone1 and Dante Kalise2 and Axel Kröner3

Abstract— In this paper we consider a semi-Lagrangian
scheme for minimum time problems with Lp-penalization. The
minimum time function of the penalized control problem can
be characterized as the solution of a Hamilton-Jacobi Bellman
(HJB) equation. Furthermore, the minimum time converges
with respect to the penalization parameter to the minimum
time of the non-penalized problem. To solve the control problem
we formulate the discrete dynamic programming principle and
set up a semi-Lagrangian scheme. Various numerical examples
are presented studying the effects of different choices of the
penalization parameters.

I. INTRODUCTION

In this paper we consider Lp-penalized minimum time
problems for dynamical systems with 1 ≤ p < ∞. In the
literature there exist several publications considering these
type of problems. In [18] the authors analyzed optimal
control problems for dynamical systems with different cost
functionals involving Lp-norms of the control. They present
several approaches how to handle the nonsmooth case p =
1. Further, in a recent preprint [3] L1-regularization for
open-loop optimal control for finite horizon problems of
a dynamical system is considered and regularization and
discretization error estimates are derived. In [16] a minimum
time problem is solved by regularization. In contrast to these
open-loop approaches we present a closed-loop approach
leading to robust controls and only minimal changes in the
implementation are necessary when considering different p-
norms in the penalization. Results for closed-loop optimal
control problems with exit times can be found in Masiloff
[17] and Bardi, Capuzzo-Dolcetta [4, Chapter IV]. Error
estimates for a semi-Lagrangian scheme for the classical
minimum time problem are presented in [5]. In the context
of differential games error estimates are derived in [19]. Nu-
merical examples for semi-Lagrangian schemes for optimal
control problems with exit times are shown in [9], where
also an error estimate for the fully discretized problem is
presented under an assumption on the approximation error
of the value function.

In this paper we consider a minimum time problem with
different Lp-penalizations. We show that for given p the
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corresponding minimum time converges to the minimum
time of the non-penalized problem if the penalization pa-
rameter tends to zero. Moreover, the minimum time function
can be characterized as the solution of a Hamilton-Jacobi
Bellman (HJB) equation. To solve the problem numerically
we formulate the discrete dynamic programming principle
and set up a semi-Lagrangian scheme. Various numerical
examples are presented illustrating the effect of the choice
of the penalization parameters on the value function and the
trajectory. For p = 1 we observe sparse controls.

Semi-Lagrangian schemes were first introduced to solve
linear and nonlinear hyperbolic problems in [8], since the
60’s they have been very popular among the meteorological
community since they have good stability properties which
allow to use large time steps in the integration of evolutionary
problems. In the framework of control problems it has been
shown that they can be obtained in a very natural way by
applying a discrete dynamic programming principle, see e.g.
[10], [11]. For a general overview about semi-Lagrangian
schemes we refer to the monograph [13]. Convergence and
a priori error estimates have been proved for many classical
control problems such as the minimum time problem, the
infinite horizon, see [5], [14], [12]. In view of control
applications, it is also important to note that an efficient
algorithm for Hamilton-Jacobi Bellman equations in high
dimensions has been presented in [6].

The presented results are interesting for optimal feedback
control of partial differential equations, in particular, L1-
control costs have given increasing attention in the last
years leading to sparse controls which is interesting, e.g., in
actuator placement problems, see [20]. The approximation of
sparse controls for semilinear elliptic equations was analyzed
in [7]. Directional sparsity for optimal control of partial
differential equations was considered in [15]. Convergence
and regularization results for optimal control problems with
sparsity functional are derived in [21].

The paper is organized as follows. In Section II we
introduce the control problem and characterize the value
function as the solution of an HJB equation. Furthermore, we
show a convergence result for the solution of the regularized
problem with respect to the penalization parameter γ. In
Section III we discretize the problem and formulate the
discrete dynamic programming principle. In Section IV we
present several numerical examples studying the behaviour
for different penalization parameters γ and p on the value
function and the trajectory.



II. THE CONTROL PROBLEM

In this section the minimum time problem with penaliza-
tion is introduced and the corresponding value function is
characterized as the solution of a stationary HJB equation.
We recall some regularity results and consider the conver-
gence of the optimal time, state, and control of the penalized
problems for penalization parameter γ tending to zero.

Throughout the paper we consider the Banach space Rn,
n ∈ N, equipped with the norm

‖x‖p :=

(
n∑
i=1

|xi|p
) 1
p

, x ∈ Rn

for 1 ≤ p <∞ and for time horizon T > 0 we use the usual
notation for Lebesgue spaces

Lp((0, T ),Rn) =
{
f : (0, T )→ Rn measurable |∫ T

0

‖f(t)‖pp dt <∞
}
. (II.1)

Further, we define the set of admissible controls by

A = Lp((0, T ), A) (II.2)

with A ⊂ Rm, m ∈ N, compact. We define a target

T = {x ∈ Rn | ‖x‖ ≤ δ } (II.3)

for δ > 0 small. ‖·‖ denotes the Euclidean norm in Rn.
Further, let C > 0 be a generic constant. Throughout the
paper we make the following assumptions:

Assumption 2.1: Let the dynamics f : Rn × A → Rn be
continuous and locally Lipschitz uniformly in α ∈ A.
Further we make the following controllability assumption:

Assumption 2.2: There holds

inf
α∈A

f(x, α) · n(x) < 0 ∀x ∈ ∂T ,

where n(x) is the outer normal to T at x.
Under these assumptions on the dynamics we introduce the
controlled dynamical system{

y′(s) = f(y(s), α(s)),

y(0) = x
(II.4)

for control α ∈ A and initial point x ∈ Rn. Sometimes we
write yαx to indicate that we mean the state corresponding to
control α with initial point x.

The discounted minimum time problem for (II.4) is given
by

v(x) = min
α∈A

∫ tx(α)

0

e−λsds,

subject to the constraint
d

ds
yαx (s) = f(yαx (s), α(s)), s ∈ (0, tx(α)),

yαx (0) = x

and yαx (tx(α)) ∈ T

(P 0
T )

with

tx(α) =

{
+∞, if { t > 0 | yαx (t) ∈ T } = ∅,
min { t > 0 | yαx (t) ∈ T } , else

and λ ≥ 0. Here we use the notation yαx for the state to
express its dependence on the initial state x and the control α.

The regularized minimum time problem for (II.4) is given
by

v(x) = min
α∈A

∫ tx(α)

0

e−λsds+ γ

∫ tx(α)

0

‖α(s)‖pp e
−λsds,

subject to the constraint
d

ds
yαx (s) = f(yαx (s), α(s)), s ∈ (0, tx(α)),

yαx (0) = x,

and yαx (tx(α)) ∈ T
(P γT )

for 1 ≤ p <∞, λ ≥ 0, γ > 0.
We assume that both problems have a solution, which is

guaranteed under local controllability assumptions on the
target (see [4] for more precise definitions and general
conditions for existence). For a discussion of necessary
optimality conditions we refer to [18]. To shorten the notation
we introduce

lγ : RN ×A→ R, lγ(x, α) = 1 + γ ‖α‖pp . (II.5)

Furthermore, we define

R = {x ∈ Rn | v(x) <∞} ,

which depends in particular on γ. The dynamic programming
principle for these problems is given by

v(x) = inf
α∈A

{∫ tx(α)∧t

0

lγ(yαx (s), α(s))e
−λsds

+ χ{ t<tx(α) }v(y
α
x (t))e

−λt
}

(II.6)

for all x ∈ RN if λ > 0, for all x ∈ R if λ = 0, all
t ≥ 0, and given γ ≥ 0, see [4, pp. 254]. Here, χ denotes
the characteristic function. The corresponding Hamiltonian
is given by

Hγ(x, p) = sup
α∈A

(−f(x, α)p− lγ(x, α)) (II.7)

for x, p ∈ Rn.
Under this assumption we obtain from [4, Chapter IV,

Proposition 3.13] the following characterization of the value
function.

Proposition 2.3: Let Assumption 2.1 and 2.2 be satisfied.
Then,

(i) if λ > 0 the value function v is the complete solu-
tion in the space of bounded and continuous functions
BC(T c), T c = Rn \ T , of{

λu+Hγ(x,∇u(x)) = 0 in T c,
u(x) = 0 on ∂T .

(II.8)



(ii) if λ = 0 the value function v is the unique solution of
Hγ(x,∇u(x)) = 0 in R \ T ,

u(x) = 0 on ∂T ,
lim
x→x0

u(x) = +∞ for x0 ∈ ∂R
(II.9)

continuous in R \ int T ,
(iii) if λ = 0, the function u defined by Kruzkov transform

u(x) =

{
1− e−v(x), x ∈ R,
1, else

(II.10)

for given value function v is the complete solution in
BC(T c) of

u(x) + sup

{
− f(x, α)T∇u(x)− lγ(x, α)

+ (lγ(x, α)− 1)u

}
= 0 in T c,

u(x) = 0 in ∂T .
A formal definition of ”complete solution” can be found
in [4, Chapter IV, p. 256]. For γ = 0 we obtain the
HJB equation for the minimum time problem (P 0

T ). In the
following we will prove convergence of the minimum time
of the penalized problem with respect to the regularization
parameter γ and weak convergence of the optimal state and
control to the corresponding state and control of the non-
penalized problem. Thereby we restrict the consideration to
linear systems of the type{

y′(s) = Fy(s) +Bα(s),

y(0) = x
(II.11)

with matrices F ∈ Rn×n and B ∈ Rm×n. In case of a
nonlinear dynamics the specific character of the nonlinearity
has to be taken into account when analyzing the weak
convergence.

Theorem 2.4: Let α0 be a minimizing control of the non-
regularized problem (P 0

T ) and αγ of the regularized problem
(P γT ). We denote the corresponding state and time by (y0, t0)
and (yγ , tγ), respectively. Then there holds

tγ → t0 ∈ R

for γ → 0. Further, after reparametrization of both solutions
such that they satisfy{

y′(s) = t(Fy(s) +Bα(s)) in (0, 1),

y(0) = x,
(II.12)

there exists subsequences with

(αγ , yγ)⇀ (α0, y0) ∈ Lp((0, 1),Rm)×H1((0, 1),Rn)
(II.13)

for γ → 0 and 1 < p <∞.
Proof: The minimum time t0 and corresponding control

α0 are feasible for the regularized problem. Therefore for

given γ ≥ 0 the minimum time tγ and corresponding optimal
control αγ of (P γT ) satisfy

tγ + γ

∫ tγ

0

‖αγ(s)‖pp ds ≤ t0 + γ

∫ t0

0

∥∥α0(s)
∥∥p
p
ds.

(II.14)

Hence, we have

lim sup
γ→0

tγ ≤ t0. (II.15)

After reparameterization the triple (αγ , yγ , tγ) satisfies{
y′(s) = tγ(Fy(s) +Bα(s)) in (0, 1),

y(0) = x
(II.16)

and there holds

‖yγ‖H1((0,1),Rn) ≤ C
(
‖αγ‖L∞((0,1),Rm) + ‖x‖

)
(II.17)

using (II.15), Gronwall’s inequality, and the boundedness of
A. Since the controls are bounded we obtain that the state
yγ is uniformly bounded in H1((0, 1),Rn). Thus there exist

(α∗, y∗, t∗) ∈ Lp((0, 1), A)×H1((0, 1),Rn)×R+
0 ,

1 < p <∞, such that for a subsequence

αγ ⇀ α∗ in Lp((0, 1), A),

yγ ⇀ y∗ in H1((0, 1),Rn),

tγ → t∗ in R+
0 .

Thereby we used the fact that A is closed with respect to
weak convergence. We further obtain

yγ → y∗ in C0((0, 1),Rn). (II.18)

Consequently, the limit satisfies the state equation{
y∗t (s) = t∗(Fy∗(s) +Bα∗(s))

y∗(0) = x.
(II.19)

Furthermore using the continuity of y∗ and the convergence
of yγ in C0((0, 1),Rn) we have

‖y∗(t∗)− yγ(tγ)‖ ≤ ‖y∗(t∗)− yγ(t∗)‖ + ‖yγ(tγ)− yγ(t∗)‖
≤ ‖y∗(t∗)− yγ(t∗)‖ + ‖yγ(tγ)− y∗(tγ)‖
+ ‖y∗(tγ)− y∗(t∗)‖ + ‖y∗(t∗)− yγ(t∗)‖ −→ 0

for γ → 0 implying that y∗(t∗) = 0. Hence, (α∗, y∗, t∗) is
feasible for the non-regularized problem.

With the condition t∗ ≤ t0 from (II.15) and since t0 is
minimal we conclude t0 = t∗. Since t0 is unique, the whole
family tγ converges to t0.



III. DISCRETIZATION OF THE SEMI-LAGRANGIAN
SCHEME

In this section we apply the discrete dynamic programming
principle to obtain a characterization of the time discrete
value function. Furthermore we formulate a semi-Lagrangian
scheme.

For the discretization of the dynamical system we choose
an explicit Euler scheme. For fixed time step h > 0 we define
the temporal mesh

0 = t0 < t1 < · · · < tN

with ti+1 − ti = h, i = 0, . . . , N − 1. For solving the
dynamical system we apply an explicit Euler scheme{

ym+1 = ym + hf(ym, αm),

y(0) = x
(III.1)

for αm ∈ A and x ∈ Rn. The control is given by

αh(s) = αm, s ∈ [tm, tm+1), m = 0, . . . , N − 1.

We consider the discrete minimum time problem with
penalization and characterize the value function using the
dynamic programming principle.

Theorem 3.1: For λ = 0 the value function of the
minimum time problem is characterized by

vh(x) = min
αh∈A

{
νvh(x+ hf(x, αh))− ν

}
+ 1 (III.2)

with
ν = e

−h(1+γ‖αh‖p
p
)

and x ∈ Rn.
Proof: The dynamic programming principle for the time

discrete minimum time problem is given as follows

vh(x) = inf
αh∈A

{
h
(
1 + γ ‖αi‖pp

)
+vh(x+hf(x, α

h))

}
,

for x ∈ Rn, see [4, Proposition 4.1, p. 389]. We have

e−vh(x) = sup
αh∈A

{
e

(
−h−γh‖αh‖p

p

)
−vh(x+hf(x,αh))

}
and applying Kruzkov transform

Vh(x) :=

{
1− e−vh(x), if x ∈ R,
1, if x 6∈ R

we obtain

Vh(x) = 1− sup
αh∈A

e

(
−h−γh|‖αh‖p

p

)
−Vh(x+hf(x,αh))

= inf
αh∈A

{
1− e−Vh(x+hf(x,αh)) − 1

eh(1+γ‖α
h‖pp)

+ 1

}
.

Again applying Kruzkov transform we obtain

vh(x) = inf
αh∈A

{
v(x+ hf(x, αh))− 1

eh(1+γ‖α
h‖pp)

+ 1

}
and hence,

vh(x) = min
αh∈A

{
νv(x+ hf(x, αh))− ν

}
+ 1,

with

ν = e
−h

(
1+γ‖αh‖p

p

)

which gives the assertion.
Equation (III.2) is the starting point for the numerical scheme
applied to the minimum time problem. We discretize equa-
tion (III.2) in space. The HJB equation is defined on the
full space. To solve the equation numerically we consider a
bounded computational domain Ω ⊂ Rn. Let

Ω =
⋃
j

Sj

be a regular triangulation of the computational domain for
a family of simplices Sj and let xi denote the nodes of the
triangulation with i = 1, . . . , L, L ∈ N. We set

k = max
j

diam(Sj)

and define

IT = { i ∈ I | xi ∈ T ∩Ω } ,
Iout = { i ∈ I | xi + hf(xi, α) 6∈ Ω ∀α } ,
Iin = I \ (Iout ∪ IT ),
I = { 1, . . . , L } .

(III.3)

Then we consider

vh(xi) = min
{
νvh(xi + hf(xi, α

h))− ν
}
+ 1 i ∈ Iin,

vh(xi) = 0 i ∈ IT ,
vh(xi) = 1 i ∈ Iout.

(P khT )
For the computation of the numerical examples we solve
(P khT ).

IV. NUMERICAL EXAMPLES

In this section we present two numerical examples il-
lustrating the properties of our scheme, in terms of the
effects produced by including a penalization term of the
control in the minimum time problem formulation. The
numerical implementation follows the general guidelines for
the construction of low-order semi-Lagrangian schemes for
HJB equations, and in particular is based on the solvers
described in, for instance, [4, Appendix A] and [1]. For
the scheme (P khT ), the computation of the arrival point
vh(xi + hf(xi, α

h)) is replaced by a linear interpolation
I1[V ] defined upon the grid point values V = {vh(xi)}Li=1

(we refer to [13, pp. 46-47] for specific details), and the
resulting system is solved via the fixed point iteration

V n+1 = S(V n)

[S(V )]i =


min

{
νI1[V ](xi + hf(xi, α

h))− ν
}
+ 1
i ∈ Iin,

0 i ∈ IT ,
1 i ∈ Iout

which in our case is stopped when two consecutive iterations
hold ‖V n−V n+1‖ ≤ k2. We set the discount factor λ = 0.01
for both examples.



A. 2D Eikonal equation

The first test case that we consider is a minimum time
problem for a two-dimensional Eikonal equation. The do-
main is Ω = [−1, 1]2, and the system dynamics are given
by

f(x, y, a) =

(
ax
ay

)
, ‖a‖2 = ‖(ax, ay)T ‖2 ≤ 1 .

The control set A = {‖a‖2 ≤ 1, a ∈ R2} is discretized
into 32 different directions, whereas the grid contains 812

points with k = 0.025. The target set T is specified as T =
{x ∈ R2 | ‖x‖2 ≤ 0.2 }, and the discretization parameters
hold h = 0.9k. It is well-known that for the unpenalized
minimum time problem, the exact solution corresponds to the
distance function to the target, and the optimal trajectories
point to the origin.

For the penalized optimal control problem, such symmetry
is preserved for any value of γ, as long as p = 2, as shown
in Figure 1. Note that with this choice of parameters, all
the controls lying in the boundary of the control set (the
unitary ball with p = 2) introduce the same control cost;
although the value function is different from the unpenalized
control problem, the optimal control field remains the same.
A radically different situation is observed when p = 1, as the
introduction of such a norm leads to optimal sparse solutions.
In Figure 2, it can be observed that the optimal trajectories
computed with p = 1 differ from those with p = 2 around
a vicinity of the coordinate axis, i.e. there is a non-trivial
section of the state space where the optimal trajectories are
related to the directions (1, 0), (0, 1), (−1, 0), and (0,−1)
instead of the directions pointing to the origin.

−1

0

1

−1

0

1

0

0.5

1

1.5

 

γ=0

 

γ=1, p=2

 

 

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

−1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 1: Eikonal equation. Results with p = 2: value function (left)
and optimal trajectories (right). Note that this setting yields similar
trajectories as in the unpenalized minimum time problem (top).
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Fig. 2: Eikonal equation. Results with p = 1: value function
(left) and optimal trajectories (right). The application of the || · ||1
norm induces a change in the shape of the value function and a
sparsity pattern in the control field which is reflected in the optimal
trajectories, creating a sector in the state space where sparse controls
are preferred instead of directions pointing to the origin.

B. Van der Pol oscillator

In a second example, we consider a two-dimensional, non-
linear system dynamics given by the Van der Pol oscillator

f(x, y, a) =

(
y

(1− x2)y − x+ a

)
,

with test parameters given by

Ω = [−2 , 2]2 , A = [−1 , 1] , h = 0.3k .
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Fig. 3: Van der Pol oscillator. Value functions (left) and associated
control fields (right), with different values of γ and p. In the top,
with γ = 0, the minimum time problem yields a bang-bang control
structure. The inclusion of a penalization with p = 1 (middle),
preserves the shape of the value function, but replaces the bang-
bang control field with an (approximate) bang-zero-bang structure.
Finally, for p = 2 (bottom), the control field transits along all the
available discrete values, whereas there is no significant change in
the value function with respect to the case p = 1.
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Fig. 4: Van der Pol oscillator: computations along a trajectory. Left:
different control signals for different values of p. Right: Optimal
trajectories associated to the control signals.

The control space is discretized into 10 equidis-
tant points, and the target set is specified as T =
{x ∈ R2 | ||x||2 ≤ 0.2 }. The grid contains 1012 grid points
with k = 0.04. An interesting result can be observed in
Figures 3 and 4, in the sense that the inclusion of penalization
costs in the control changes the bang-bang structure of the
control field (see for instance [2]), and replaces it by an
approximated bang-zero-bang control for the case p = 1,
whereas for p = 2 it translates in the uses of all the discrete
control values. The phenomenon of a zero-arc was already
mentioned in [18] and was later also analyzed in [3]. In
Figure 3, it can be seen that there is a change in the control
field when the control penalization is considered, whereas
no significant change in the shape of the value function is
observed, which differs from the previous test.

The effect in the computation of a trajectory can be ob-
served in Figure 4; variations on the optimal trajectories are
not significant, while the associated control signals exhibit a
different use of the control capabilities of the system. This
result is relevant from a point of view of applications where
it is desirable to have a setting avoiding the use of maximum
control energy over long periods of time.

V. CONCLUDING REMARKS

In this paper we have introduced a semi-Lagrangian
scheme for the solution of a Hamilton-Jacobi-Bellman equa-
tion related to penalized minimum time problems. Although
the minimum time problem with penalization in the control
has been studied in an open loop context, the present work
aims at developing a discrete dynamic programming frame-
work yielding to feedback controllers. In this context, the

extension of the existing results for minimum time problems
is not trivial, and further developments in this direction are
currently undertaken. The numerical experiments presented
are consistent with what is reported in the literature of
both semi-Lagrangian schemes and penalized minimum time
optimal control problems, and suggest that the application of
dynamic programming is a correct approach to follow.
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