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eUniversité de Toulouse ; INP, INSA ; IRIT, LAAS ; F-31400 Toulouse, France

Abstract

We study a multi-class time-sharing discipline with relative priorities known as Discriminatory
Processor Sharing (DPS), which provides a natural framework to model service differentiation in
systems. The analysis of DPS is extremely challenging and analytical results are scarce. We develop
closed-form approximations for the mean conditional (on the service requirement) and unconditional
sojourn times. The main benefits of the approximations lie in its simplicity, the fact that it applies
for general service requirements with finite second moments, and that it provides insights into the
dependency of the performance on the system parameters. We show that the approximation for the
mean conditional and unconditional sojourn time of a customer is decreasing as its relative priority
increases. We also show that the approximation is exact in various scenarios, and that it is uniformly
bounded in the second moments of the service requirements. Finally we numerically illustrate that the
approximation for exponential, hyperexponential and Pareto service requirements is accurate across
a broad range of parameters.

1 Introduction

The Discriminatory Processor Sharing queue (DPS) is a versatile queueing model providing a natural
framework to model service differentiation in systems. It is a multi-class extension of the well-studied
egalitarian Processor Sharing (PS) policy, where the various classes are assigned positive weight factors.
The service capacity is shared simultaneously among all customers present in proportion to the respective
class-dependent weights. More precisely, given there are K classes of customers, if at time t there are
nk(t) class-k customers present in the system, k = 1, . . . ,K, under DPS each class-k customer is served

at rate gk/
∑K
j=1 gjnj(t), where g1, . . . , gK , are the class-dependent weights. The DPS queue has received

lot of attention due to its application to model the impact of service differentiation in systems.
When all the weights are equal, the DPS queue is equivalent to the PS queue. The PS queue has gained
a prominent role in evaluating the performance of a variety of resource allocation mechanisms (see for
example [19, 15, 29]), and in recent years it has received renewed attention as a convenient abstraction
for modeling the flow-level performance of bandwidth-sharing protocols in packet-switched networks, in
particular TCP, see for example [10, 24]. In multiple practical situations, the actual service shares that
users obtain may show substantial variation among users with heterogeneous characteristics. For example,
TCP flows that share a common bottleneck link but traverse distinct routes, may experience diverse packet
loss rates and round-trip delays. Besides TCP-related effects, the heterogeneity in bandwidth shares may
also be due to deliberate service differentiation among competing flows (for example different quality-
of-service in the Internet). For instance packet scheduling algorithms, such as Weighted Fair Queueing
(WFQ) and Weighted Round-Robin (WRR), have been proposed as potential instruments to implement
differentiated bandwidth sharing.
In this context, the Discriminatory Processor-Sharing (DPS) provides a natural approach for modeling
the flow-level performance of TCP. The DPS model was introduced by Kleinrock in [18]. Despite the
simplicity of the model description and the fact that the properties of the egalitarian PS queue are quite

∗A conference version of this paper was published in [14].
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thoroughly understood, the analysis of DPS has proven to be extremely difficult. For example, results
on an important basic metric like the mean sojourn time in the system have only been derived in a very
implicit manner or under certain limiting regimes (time-scale decomposition, heavy-traffic, overload etc.).
In a seminal paper Fayolle, Mitrani & Iasnogorodski [9] studied the mean conditional (on the service
requirement) and unconditional sojourn time. For general service time distributions, the authors obtained
the mean conditional sojourn time as the solution of a system of integro-differential equations. In addition,
the authors provided a thorough analysis for the case of exponentially distributed service requirements.
However, except for the case of two classes, no closed-form expression is available and numerical analysis
is needed in order to calculate the mean sojourn times. Since we use the results of [9] in order to evaluate
the accuracy of our approximation, we will give further details on them in Section 2. Avrachenkov et
al. [3] established that the mean queue lengths of all classes are finite under the usual stability condition,
regardless of the higher-order moments of the service requirements. Asymptotics of the sojourn time have
also received considerable attention for example in [5] and [4]. An important result in this area establishes
the asymptotic equivalence between the sojourn time distribution and the service time distribution.
Time-scale separations have been studied in [25] and [6]. In particular, the authors of [6] approximate
the distribution of the sojourn time for a DPS queue with admission control. However the expressions
derived in [6] need to be solved numerically. The performance of DPS in overload and its application
to model TCP flows is considered in [2]. The application of DPS to analyse the performance of TCP is
also considered in [17]. For more applications of DPS in communication networks see [7, 8, 13]. DPS
under a heavy-traffic regime (when the traffic load approaches the available capacity) was analysed in
Grishechkin [11] assuming finite second moments of the service requirement distributions. Subsequently,
assuming exponential service requirement distributions, a direct approach to establish a heavy-traffic
limit for the joint queue length distribution was described by Rege & Sengupta [20] and extended to
phase-type distributions in [26]. We refer to Section 2 for more details on heavy-traffic results. Game-
theoretic aspects of DPS have been studied in [28] and [12]. For an extensive overview of the literature
on DPS we refer to the survey [1].
Motivated by the difficulty in analyzing the system in exact form, in this paper we derive a closed-form
approximation for the mean conditional and unconditional sojourn time in the system. We first obtain
a light-traffic approximation using the framework obtained in [23]. To the best of our knowledge, we are
the first to obtain a light-traffic approximation of a time-sharing system, that is, when all users in the
system simultaneously get served. We then use results from the heavy-traffic literature in order to obtain
a polynomial approximation for any value of the load of the mean conditional sojourn time for service
requirements with finite second moments. Unconditioning on the service time distribution, this allows us
to readily obtain an approximation for the mean unconditional sojourn time. We will show that in some
cases our approximation becomes exact, for example when there is only one class in the system or when
all the weights are the same. The approximation provides insights into the performance of the system.
We show that the approximation for the mean conditional sojourn time of a class-k user is decreasing
(resp. increasing) as the weight gk (resp. gj , j 6= k) increases. Another important observation is that
the approximation is uniformly bounded in the second moments of the service requirements. This was
a major property of PS, which is in sheer contrast with FCFS queues, where the mean waiting time
explodes as the second moment grows. In the particular case of exponential service time distributions
we see that the expression greatly simplifies and that the approximation for the mean unconditional
sojourn time is exact when the mean service times for all classes are the same. Finally, we numerically
investigate the accuracy of the approximation by comparing it with the exact results obtained in [9].
We consider exponential, hyper-exponential and Pareto service time distributions, and our results show
that our approximation works extremely well across various parameter values. An important benefit of
the approximation is that it provides insights into the dependency of the performance on the system
parameters (weights, service time distributions, etc), and we thus believe it will provide an interesting
tool in order to implement service-differentiation in real systems.
The remainder of the paper is organized as follows. In Section 2 we provide a detailed model description
and gather results from Fayolle et al. [9] and Grishechkin [11] that will be used in the paper. In Section 3 we
develop a light-traffic analysis. The light and heavy-traffic interpolation approximation for the conditional
and unconditional sojourn time is presented in Section 4. Section 5 presents the results for the particular
case of exponentially distributed service requirements. In Section 6 we numerically test the accuracy of
the obtained approximations.

2 Model description and preliminaries

We consider a multi-class single-server queue withK classes of customers. Class-k customers, k = 1, . . . ,K,
arrive according to independent Poisson processes with rate λk ≥ 0. We denote the overall arrival rate by



3

λ =
∑K
k=1 λk. A class-k customer has a generally distributed service requirement denoted by Bk and we

assume E[B2
k] <∞, k = 1, . . . ,K. The traffic intensity for class-k customers is denoted by ρk := λkE[Bk]

and the total traffic intensity is denoted by

ρ :=

K∑
k=1

ρk =

K∑
k=1

λkE[Bk] = λ

K∑
k=1

αkE[Bk] = λE[B],

where αk = λk/λ denotes the probability that an arrival is of class k and the random variable B is the
service requirement of an arbitrary arriving customer.
The K customer classes share a common resource of capacity one. There are strictly positive weights
g1, . . . , gK associated with each of the classes. Whenever there are nk class-k customers, k = 1, . . . ,K,
in the system, each class-k customer is served at rate

gk∑K
j=1 njgj

.

We denote by Sk(λ, b) the conditional sojourn time of a tagged class-k customer with a given service
requirement b, when the arrival rate is λ. We are interested in approximating Sk(λ, b) := E[Sk(λ, b)],
the mean conditional sojourn time of the tagged class-k customer. We further denote by Sk(λ) :=∫∞
0
Sk(λ, b)dFk(b) the mean unconditional sojourn time of the tagged class-k customer, where P(Bk ≤

b) = Fk(b) is the distribution function of Bk, and S(λ) :=
∑K
k=1 αkSk(λ) is the mean unconditional

sojourn time of an arbitrary customer.
The analysis of DPS is extremely difficult compared to that of egalitarian PS, which arises as a special
case when all gk are equal. Fayolle et al. [9] obtained that the derivatives of the mean conditional sojourn
times of the various classes satisfy the following system of integro-differential equations:

∂Sk(λ, b)

∂b

= 1 + λ

K∑
j=1

∫ ∞
0

αj
gj
gk

∂Sj(λ, y)

∂y
[1− Fj(y +

gj
gk
b)]dy + λ

∫ b

0

∂Sk(λ, y)

∂y

K∑
j=1

αj
gj
gk

[1− Fj(
gj
gk

(b− y))]dy,

(1)

for k = 1, . . . ,K. The natural boundary conditions are Sk(λ, 0) = 0, k = 1, . . . ,K.
The only known analytical solution for this system of equations has been obtained under the assumption
of exponentially distributed service requirements. In this case we denote by µj := 1/E[Bj ], ∀j. In [9] it
is proved that

Sk(λ, b) =
b

1− ρ
+

m∑
j=1

gkcjβj + dj
β2
j

(
1− e−βjb/gk

)
, (2)

where −βj , j = 1, 2, . . . ,m, are the m distinct negative roots of

K∑
j=1

λjgj
µjgj + s

= 1, (3)

and where cj and dj , j = 1, . . . ,m, are a function of the input parameters and βj , j = 1, . . . ,m.
Furthermore, for the mean unconditional sojourn time with exponentially distributed service require-
ments, it is shown in [9] that Sk(λ), k = 1, . . . ,K, is the unique solution of the following system of
equations:

Sk(λ)

1−
K∑
j=1

λjgj
µjgj + µkgk

− K∑
j=1

λjgjSj(λ)

µjgj + µkgk
=

1

µk
. (4)

A closed-form solution for this system of equations (4) is available only for the case of K = 2, and is
given by

S1(λ) =
1

µ1(1− ρ)

(
1 +

µ1ρ2(g2 − g1)

D

)
(5)

and

S2(λ) =
1

µ2(1− ρ)

(
1 +

µ2ρ1(g1 − g2)

D

)
, (6)

where D = µ1g1(1− ρ1) + µ2g2(1− ρ2).
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The above shows how hard and challenging it is to study analytically the DPS model. For this reason,
as mentioned in the introduction, research has focused on analysing the DPS queue in limiting regimes,
like tail asymptotics, heavy-traffic limits, fluid limits etc. In this paper, we take a different approach,
and we develop a light and heavy-traffic interpolation based approximations for Sk(λ, b) and Sk(λ). In
the numerical section we will use Equations (2), (4)-(6) in order to numerically verify the accuracy of our
interpolation approximations.
The approximation is obtained by interpolating the mean sojourn times obtained under the light-traffic
regime and the heavy-traffic regime.
The light-traffic regime consists in letting ρ ↓ 0, or equivalently λ ↓ 0. Hence, it concerns the performance
when the system is almost empty. Therefore, in Section 3 we analyze the mean conditional sojourn time
in the light-traffic regime.
The heavy-traffic regime consists in letting ρ ↑ 1, or equivalently λ ↑ 1/E[B]. Hence, it concerns the
performance when the system is close to congestion. Heavy-traffic results have been obtained in [11,
20, 26]. For our analysis, we use the results by Grishechkin [11, Theorem 4.1] who studied a general
M/G/1/GPS system of which our model is a particular case. In particular, for the DPS queue as
studied in this paper Grishechkin derives the distribution of the conditional sojourn times, scaled by
1− λE[B] = 1− ρ, as λ ↑ 1/E[B]. In particular, the mean of this distribution is given by

E[ lim
λ↑1/E[B]

(1− λE[B])Sk(λ, b)] =
b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (7)

For our interpolation result, we are interested in limλ↑1/E[B](1 − λE[B])Sk(λ, b) = limλ↑1/E[B](1 −
λE[B])E[Sk(λ, b)]. Although we cannot verify that the limit and expectation can be interchanged, we use
the expression in (7) as an approximation for limλ↑1/E[B](1− λE[B])Sk(λ, b). Numerical experiments as
performed in [26] indicate that indeed the limits can be interchanged.

3 Light-traffic analysis

In this section we analyse the mean conditional sojourn time of the tagged class-k customer under the
light-traffic regime. The light-traffic regime concerns the performance of the system for small values of
the arrival rate λ, i.e., when the system is almost empty. We will approximate Sk(λ, b) by a Taylor series
expansion of Sk(λ, b) at λ = 0. Assuming that the first n derivatives of Sk(λ, b) with respect to λ at λ = 0
exist we have the following approximation for the mean conditional sojourn time of a class-k customer
when λ is close to zero:

S
LT

k (λ, b) := S
(0)

k (0, b) + λS
(1)

k (0, b) + · · ·+ λn

n!
S
(n)

k (0, b). (8)

We will refer to this as the light-traffic approximation of order n. Here S
(0)

k (0, b) = Sk(0, b) and we refer

to it as the zeroth light-traffic derivative. Moreover, S
(m)

k (0, b),m = 1, 2, . . . , denotes the m-th derivative

of Sk(λ, b) with respect to λ at λ = 0, i.e., ∂mSk(λ,b)
∂λm

∣∣∣
λ=0

. We have based our analysis on Reiman and

Simon [23] where it is shown how to obtain the derivatives of arbitrary order m ≥ 0 at λ = 0 under a
general admissibility condition. Following the discussion in [23, Appendix A] we make an assumption on
the service requirements Bk, that is,

E[eηBk ] <∞ (9)

for some η > 0,∀k. This finite exponential moment condition entails admissibility; it is likely stronger
than needed but its purpose here is to provide a convenient framework where calculations can be justified.
In this paper we set n = 1 in (8) as this will already provide us with an accurate approximation of the
performance. Let A(s, t) denote the number of arrivals in the interval [s, t) in addition to the tagged
customer who is assumed to arrive at time 0. Then, the zeroth and first light-traffic derivatives satisfy

Sk(0, b) := E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
]

(10)

and

S
(1)

k (0, b) :=

∫ ∞
−∞

(
E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]
− E

[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
])

dt, (11)

where τ is the arrival time of the first customer, see [23].
In Section 3.1 we provide a brief intuitive approach of how to obtain the light-traffic derivatives (10) and
(11) and we refer to Reiman and Simon [23] for more details. In Section 3.2 we then calculate the first
order light-traffic approximation for the DPS queue.
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3.1 Light-traffic approach

In this section we provide an intuitive approach of how to obtain the zeroth and first light-traffic deriva-
tives. This approach is based on the analysis of J. Walrand in [27, Chapter 6.3.]. Higher order light-traffic
derivatives can be obtained in a similar way.
Consider a system that starts at time −Z and that keeps going until time T, being Z, T > 0 given. Let
Sk(λ, b,−Z) denote in this case the sojourn time of the tagged class-k customer who arrives in the system
at time t = 0 and note that limZ→∞ Sk(λ, b,−Z) = Sk(λ, b). Let A(s, t) denote the number of arrivals
in the interval [s, t) in addition to the tagged customer who is assumed to arrive at time 0. Throughout
this section we assume that the limits (with respect to Z and T ) and expectations can be interchanged.
We then have

E [min{Sk(λ, b,−Z), T}] =

∞∑
a=0

E
[
min{Sk(λ, b,−Z), T}

∣∣∣A(−Z, T ) = a
]
· (λ(T + Z))a

a!
e−λ(T+Z), (12)

where E
[
min{Sk(λ, b,−Z), T}

∣∣∣A(−Z, T ) = a
]

is the expected minimum between the sojourn time and

T , conditioned that there are exactly a arrivals. Evaluating it at λ = 0 gives

E [min{Sk(λ, b,−Z), T}]

∣∣∣∣∣
λ=0

= E
[
min{Sk(0, b,−Z}, T}

∣∣∣A(−Z, T ) = 0
]
, (13)

and now taking the limit Z, T →∞ we obtain the zeroth light-traffic derivative

Sk(0, b) := lim
Z,T→∞

E [min{Sk(λ, b,−Z), T}]

∣∣∣∣∣
λ=0

= E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
]
,

where the second equality follows from (13).
Next, consider the derivative with respect to λ in Equation (12) and evaluate it at λ = 0. This gives

∂

∂λ
E [min{Sk(λ, b,−Z), T}]

∣∣∣∣∣
λ=0

= −E
[
min{Sk(0, b,−Z), T}

∣∣∣A(−Z, T ) = 0
]
· (T + Z) + E

[
min{Sk(0, b,−Z), T}

∣∣∣A(−Z, T ) = 1
]
· (T + Z)

=

∫ T

−Z

(
E
[
min{Sk(0, b,−Z), T}

∣∣∣A(−Z, T ) = 1, τ = t
]
− E

[
min{Sk(0, b,−Z), T}

∣∣∣A(−Z, T ) = 0
])

dt,(14)

where τ is the arrival time of the first customer. The second equality holds because the arrivals follow a
Poisson process. Hence given that the number of arrivals in [−Z, T ) is one (A(−Z, T ) = 1), we have that
τ is uniformly distributed on [−Z, T ).
Now taking Z, T →∞ we obtain the first light-traffic derivative

S
(1)

k (0, b) := lim
Z,T→∞

∂

∂λ
E [min{Sk(λ, b,−Z), T}]

∣∣∣∣∣
λ=0

=

∫ ∞
−∞

(
E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]
− E

[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
])

dt,

where the second equality follows from (14).
As stated above, higher order light-traffic derivatives can be obtained in a similar way.
In the next section we use the expressions (10) and (11) to calculate the zeroth and first light-traffic
derivatives of the DPS model.

3.2 Light-traffic approximation

In this section we derive the first-order light-traffic approximation. As we will see in Sections 4, 5 and 6,
the first order light-traffic approximation provides us with an insightful and accurate approximation of
the performance.
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Equation (10) represents the situation where nobody enters the system except the tagged customer.
Therefore, Sk(0, b) is equal to the service requirement of the tagged customer, which we denote by b.
Hence,

Sk(0, b) = b. (15)

Let us denote by Sk,t,ut,but
the sojourn time of the tagged class-k customer when there is exactly one

arrival at time t on R, ut describing the class of the customer arriving at time t and but
denoting the

service requirement of the customer arriving at time t. Hence, E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]

and

E[Sk,t,Ut,BUt
] are equivalent, where Ut and BUt

are dependent random variables and are distributed as
follows: with probability αi we have Ut = i and BUt

is distributed as Bi, i = 1, . . . ,K. We can write
Sk,t,ut,but

as follows:

Sk,t,ut,but
=



t+ but
+ b if t ≤ 0 ≤ t+ but

and b
gk
>

t+but

gut
gk+gut

gk
b if t ≤ 0 ≤ t+ but

and b
gk
≤ t+but

gut

b if t+ but < 0

b+ but
if 0 < t < b and b−t

gk
>

but

gut

t+ (b− t) gk+gut

gk
if 0 < t < b and b−t

gk
≤ but

gut

b if 0 < b < t.

(16)

The first expression describes the case where the customer arrives before the tagged customer and leaves
after the tagged customer arrives, but before the tagged customer leaves. Hence, by the work conserving
property, the tagged customer stays in the system until all the work present at time 0 is done, that is,
but
−(−t)+b. We recall that the work-conserving property states that as long as the system is non-empty,

the server does not idle. The second term describes the case where the other customer is in the system at
time 0 and is still present as the tagged customer departs. Hence, the tagged class-k customer is served

at rate gk
gk+gut

, so that its sojourn time is b
(

gk
gk+gut

)−1
. The fourth expression describes the case where

the customer arrives after the tagged customer and leaves before the tagged customer. Hence, by the
work-conserving property of the system, the sojourn time of the tagged class-k customer is given by the
total amount of work that needs to be done, that is, b+ but . The fifth term describes the case where the
customer arrives after the tagged customer, and departs after the tagged customer departs. Then, the
sojourn time of the tagged customer is composed of t, the time it was in the system until the customer

arrived, plus (b− t)
(

gk
gk+gut

)−1
, the remaining service requirement multiplied by the inverse of the rate

at which the the tagged class-k customer is served. The third and sixth case is when the tagged customer
does not coincide with the other customer. Hence, the sojourn time is given by its service requirement,
b.
From Equations (11), (15) and (16) we then obtain the following expression for the first derivative.

Lemma 3.1. We have

S
(1)

k (0, b) =

∫
R

(
E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]
− b
)

dt =

∫
R

(E[Sk,t,Ut,BUt
]− b)dt

= E

[
1

2

(
1 +

gk
gUt

)
min{BUt

, b
gUt

gk
}2 −

(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt

, b
gUt

gk
}+

gk + gUt

gk
bBUt

]
. (17)

See Appendix A for the proof.

From (8), (15) and (17) we now derive the following approximation for the mean conditional sojourn time
when λ is small.

Corollary 3.2. The light-traffic approximation (of order 1) of the mean conditional sojourn time for a
tagged class-k customer with service requirement b is given by

S
LT

k (λ, b) = Sk(0, b) + λS
(1)

k (0, b)

= b(1 + ρ) + λE

[
1

2

(
1 +

gk
gUt

)
min{BUt

, b
gUt

gk
}2 −

(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt

, b
gUt

gk
}+

gUt

gk
bBUt

]
. (18)
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Remark 1. We consider in the paper the light-traffic approximation of order 1. Calculating the second
light-traffic derivative would imply having to consider events that either 0, 1, or 2 customers arrive in the
system (besides the tagged customer). The latter would result in going through 22 different cases, while
for the first derivate we only needed to go through 6 cases, see Equation (16).
We will see in Sections 4, 5 and 6 that already the first order light-traffic approximation provides an
insightful and accurate approximation of the performance

We can infer several nice properties from (18). For instance, we will show in Section 4 that (18) is
decreasing in gk and increasing in gj , j 6= k. In other words, the approximation for the mean sojourn
time reduces as its own weight increases, and it increases as the weight of any other class increases.
Another interesting observation is that the light-traffic approximation of the mean conditional sojourn
time can be uniformly bounded in the second moment. This important feature helps obtaining a good
performance in the presence of highly variable service distributions (like the ones observed in nowadays
communication systems). See Section 4.4 for details.

4 Light and heavy-traffic interpolation

In this section we present the light and heavy-traffic interpolation result. This technique was popularized
by Reiman and Simon [21, 22, 23] and consists in interpolating

tk(λ) := (1− ρ)Sk(λ, b) = (1− λE[B])Sk(λ, b),

by a polynomial t̂k(λ) of order n+ 1:

t̂k(λ) = h0 + h1λ+ . . .+ hn+1λ
n+1. (19)

To determine the coefficients h0, . . . , hn we use the so-called light-traffic conditions

t̂k(0) = tk(0) and t̂
(m)
k (0) = t

(m)
k (0), for m = 1, . . . , n, (20)

and the heavy-traffic condition
t̂k
(
(1/E[B])−

)
= tk

(
(1/E[B])−

)
, (21)

where tk
(
(1/E[B])−

)
is given by

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
, see (7).

Once we have obtained the coefficients we undo the normalisation so that

S
INT

k (λ, b) :=
t̂k(λ)

1− λE[B]
, 0 ≤ λ < 1/E[B], (22)

provides an approximation for the mean conditional sojourn time Sk(λ, b). We refer to this approximation
as the light and heavy-traffic interpolation of order n+ 1.
In the following proposition we characterise (22) in terms of the light-traffic derivatives and the heavy-
traffic equation. To the best of our knowledge, this is a new result and it applies to any model, i.e., it is
not restricted to the DPS model.

Proposition 4.1. The light and heavy-traffic interpolation of order n+ 1 can be written as

S
INT

k (λ, b) =

n∑
i=0

λi

i!
S
(i)

k (0, b) + tk
(
(1/E[B])−

) (λE[B])n+1

1− λE[B]
. (23)

Proof. From the light-traffic condition (20) we obtain

h0 = S
(0)

k (0, b) and hi =
S
(i)

k (0, b)

i!
− E[B]

S
(i−1)
k (0, b)

(i− 1)!
, i = 1, 2, ..., n,

and from the heavy-traffic condition (21) we obtain

hn+1 = E[B]n+1

(
tk
(
(1/E[B])−

)
−

n∑
i=0

hi
E[B]i

)

= E[B]n+1

(
tk
(
(1/E[B])−

)
− S(0)

k (0, b)−
n∑
i=1

1

E[B]i

(
S
(i)

k (0, b)

i!
− E[B]

S
(i−1)
k (0, b)

(i− 1)!

))

= E[B]n+1

(
tk
(
(1/E[B])−

)
− 1

E[B]n
S
(n)

k (0, b)

n!

)
.

Equation (23) follows after substituting these expressions in (22).
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Notice that in the previous section we derived the light-traffic derivatives up to order 1. Hence, this allows
us to obtain the light and heavy-traffic interpolation of order 2 as stated in the following proposition.

Proposition 4.2. The light and heavy-traffic interpolation (of order 2) of the mean conditional sojourn
time for a tagged class-k customer with service requirement b is given by

S
INT

k (λ, b)

= b+ λbE[B] + λE
[

1

2

(
1 +

gk
gUt

)
min{BUt , b

gUt

gk
}2 −

(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt , b

gUt

gk
}+ b

gUt

gk
BUt

]
+

(λE[B])2

(1− λE[B])

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (24)

Proof. This follows from Equation (23) together with (15), (17) and (7).

In [14] Proposition 4.2 was proved by calculating the coefficients h0, h1, h2 using Equations (20) and (21).
Thanks to Proposition 4.1, the proof of Proposition 4.2 is now immediate.
In Section 6 we will numerically evaluate the accuracy of the approximation formulas derived in Propo-
sition 4.2. In the subsections below, we first make several interesting observations.

Remark 2. In Appendix B we describe an alternative way to obtain the light-traffic derivatives. This
method makes use of Equation (1), and hence it applies only to the DPS model. It allows us to derive
higher order light-traffic approximations. We observe numerically, see Figures 14-17, that the light-traffic
approximation (of order 2) gets more accurate, whereas the accuracy of the interpolation (of order 3) for
intermediate loads does not necessarily get better.

4.1 Processor Sharing

For the standard Processor Sharing queue the mean conditional sojourn time is known and is given by
b/(1−ρ), [16]. If either (i) there is only one class or (ii) all weights are the same, our model is equivalent to
a processor-sharing queue. Below we will verify that our approximation as stated in (24) indeed coincides
with b/(1− ρ).
We first consider the case of one class, that is, αi = 0, ∀i 6= k and αk = 1. Then Equation (24) is equal
to

b(1 + ρ) + λkE

[
min{BUt

, b}2 −
(
b+BUt

)
min{BUt

, b}+ bBUt

]
+ b

ρ2

(1− ρ)

= b(1 + ρ+
ρ2

(1− ρ)
) =

b

1− ρ
,

where we used that min{BUt
, b}2 −

(
b+BUt

)
min{BUt

, b}+ bBUt
= 0.

We now assume all weights are the same, i.e., gi = gk, ∀i, k = 1, . . . ,K. Equation (24) is then equal to

b(1 + ρ) + λE

[
min{BUt

, b}2 −
(
b+BUt

)
min{BUt

, b}+ bBUt

]
+

bρ2

(1− ρ)

E[B2]∑K
j=1 αjE[B2

j ]

= b(1 + ρ+
ρ2

(1− ρ)
) =

b

1− ρ
.

Hence, both cases coincide with the PS queue.
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4.2 Priority queue

We now consider the case when the weight of the tagged customer grows large, i.e., gk → ∞. Hence,
class k is prioritized in the limit. Then, the approximation simplifies to

lim
gk→∞

(
b(1 + ρ)

+

K∑
ut=1

λut
E

[
1

2

(
min{But

, b
gut

gk
}2 +

gk
gut

min{But
, b
gut

gk
}2
)
−
(
b
gut

gk
min{But

, b
gut

gk
}+But

min{But

gk
gut

, b}
)

+
gut

gk
bBut

]
+

b(λE[B])2

(1− λE[B])

E[B2]

gk
∑K
j=1
j 6=k

αjE[B2
j ]/gj + αkE[B2

k]

)

= b(1 + ρ) + E

[
K∑

ut=1
ut 6=k

λut

(
1

2

(
0 + 0

)
−
(
0 + bBut

)
+ 0

)]

= b(1 + ρk).

Note that the conditional sojourn time as gk →∞ is known and its given by b/(1−ρk). Since 1/(1−ρk) =∑∞
i=0 ρ

i
k, we directly see that the approximation is the first order approximation of the exact expression.

The relative error is equal to 100% (b/(1− ρk)− b(1 + ρk)) /b/(1− ρk) = ρ2k100%, and we thus see that
the relative error increases as the load of class k increases.

4.3 Monotonicity in the weights

It can be checked that the approximation for the mean conditional sojourn time of a tagged class-k

customer, S
INT

k (λ, b), is decreasing in gk and increasing in gi, i 6= k.
This can be seen as follows. Conditioning on Ut we can write

S
INT

k (λ, b) = b(1 + ρ) +

K∑
i=1,i6=k

λiE
[

1

2

(
1 +

gk
gi

)
min{Bi, b

gi
gk
}2 −

(
b
gi
gk

+
gk
gi
Bi
)

min{Bi, b
gi
gk
}+ b

gi
gk
Bi

]

+
(λE[B])2

(1− λE[B])

b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
,

where for Ut = k we used that min{Bk, b}2 −
(
b+Bk

)
min{Bk, b}+ bBk = 0.

Now, if Bi ≤ gi
gk
b, then

1

2

(
1 +

gk
gi

)
min{Bi, b

gi
gk
}2 −

(
b
gi
gk

+
gk
gi
Bi
)

min{Bi, b
gi
gk
}+ b

gi
gk
Bi =

1

2
B2
i (1− gk

gi
),

which is decreasing in gk and increasing in gi. If Bi >
gi
gk
b, then

1

2

(
1 +

gk
gi

)
min{Bi, b

gi
gk
}2 −

(
b
gi
gk

+
gk
gi
Bi
)

min{Bi, b
gi
gk
}+ b

gi
gk
Bi =

1

2
b2
gi
gk

(1− gi
gk

) + bBi(
gi
gk
− 1),

which is decreasing in gk and increasing in gi (can be derived by taking the derivative and the fact that

Bi >
gi
gk
b). The monotonicity of S

INT

k (λ, b) in gk and gi now follows immediately.

4.4 Uniformly bounded in the second moment

A very relevant property of processor sharing is that the mean sojourn time depends on the service time
distribution only through its mean [15]. This has been an important argument to claim the interest of
time-sharing disciplines with respect to more classical scheduling policies like FCFS. Indeed, the classical
Pollaczek-Khinchine formula for the mean waiting time in a FCFS queue shows that it explodes as the
second moment of the service time distribution grows large. For a DPS queue, Equation (1) does not
allow to reach any conclusion regarding the dependence of the mean conditional sojourn time on the
moments of the service time distribution.
It then becomes interesting to observe that the approximation (24) is uniformly bounded in the second
moments of the service time distribution. To see this, we first note that min{BUt , b

gUt

gk
}2 ≤ BUtb

gUt

gk
,
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which directly implies that the first three terms in (24) are uniformly bounded by a function that de-
pends on the service requirements only through its first moment. We are now left with the heavy-traffic

term
E[B2]∑K

j=1 αjE[B2
j ]/gj

. Let j∗ be such that E[B2
j∗ ] ≥ E[B2

j ], ∀j. We then have
E[B2]∑K

j=1 αjE[B2
j ]/gj

=∑
j αjE[B2

j ]∑K
j=1 αjE[B2

j ]/gj
≤

E[B2
j∗ ]

αj∗E[B2
j∗ ]/gj∗

=
gj∗

αj∗
. We thus finally conclude that (24) can be upper bounded

by an expression that depends only on the first moment of the service time distributions. This indicates
that the DPS queue provides a satisfactory performance even in the presence of service time distributions
with a high variability.

4.5 Mean unconditional sojourn time

As a corollary of Proposition 4.2, we obtain the mean unconditional sojourn time of the tagged class-k
customer.

Corollary 4.3. The light and heavy-traffic interpolation (of order 2) of the mean unconditional sojourn
time for a tagged class-k customer is given by

S
INT

k (λ) :=

∫ ∞
0

S
INT

k (λ, b)dFk(b)

= E[Bk](1 + ρ)

+λE
[

1

2

(
1 +

gk
gUt

)
min{BUt

, Bk
gUt

gk
}2 −

(
Bk

gUt

gk
+

gk
gUt

BUt

)
min{BUt

, Bk
gUt

gk
}+Bk

gUt

gk
BUt

]
+

(λE[B])2

(1− λE[B])

E[Bk]

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj
. (25)

5 Exponential service requirements

In this section we focus on the case in which the service requirements of the customers are exponentially
distributed. We recall that a random variable Bi is exponentially distributed if P(Bi ≤ bi) = 1−e−bi/E[Bi].
In Section 5.1, we further simplify the expression for the light and heavy-traffic interpolation of the mean
conditional and unconditional sojourn time and compare the latter for two classes of customers with the
exact formulas as stated in Equations (5) and (6). In Section 5.2, we calculate the relative error (for
different service requirements) and we verify that our approximation for the mean unconditional sojourn
time for an arbitrary customer is exact when the service requirements of all customers are the same.

5.1 Mean conditional and unconditional sojourn time

In the case of exponentially distributed service requirements, our approximations for the mean condi-
tional and unconditional sojourn time can be significantly simplified. This is a direct consequence of
Proposition 4.2 and Corollary 4.3, respectively.

Corollary 5.1. Assume class-k customers have an exponentially distributed service requirement with
mean 1/µk, k = 1, . . . ,K. The light and heavy-traffic interpolation (of order 2) of the mean conditional
sojourn time for a tagged class-k customer with service requirement b is given by

S
INT

k (λ, b) = b+ λE[B]b+ λ

K∑
j=1

αj
µ2
j

(
1− gk

gj

) (
1− e

−b
gj
gk
µj

)
+

(λE[B])2

(1− λE[B])

b

gk

∑K
j=1 αj/µ

2
j∑K

j=1 αj/(µ
2
jgj)

,

and the mean unconditional sojourn time is given by

S
INT

k (λ) :=

∫ ∞
0

S
INT

k (λ, b)dFk(b)

=
1

µk
+

1

µk
λE[B] + λ

K∑
j=1

αj
1

µj

(gj − gk)

gjµj + gkµk
+

(λE[B])2

(1− λE[B])

1

gkµk

∑K
j=1 αj/µ

2
j∑K

j=1 αj/(µ
2
jgj)

, (26)

where E[B] =
∑K
j=1 αj/µj.

Proof. These results can be derived from Proposition 4.2 and Corollary 4.3 after doing some manipula-
tions.
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In the case of two classes of customers, Fayolle et al [9] have closed-form expressions for the mean
unconditional sojourn time, see Equation (5) and (6). Rewriting (26) for K = 2 in such a way so that
the similarity with Equations (5) and (6) is clear, we obtain

S
INT

k (λ) =
1

µk(1− ρ)

(
1 + ρ2

(
−1 +

∑K
j=1 αj/µ

2
j

gk
∑K
j=1 αj/(µ

2
jgj)

)
+
µkρ−k(g−k − gk)

D

(1− ρ)D

µ1g1 + µ2g2

)
,(27)

with k = 1, 2, −k = mod(k, 2) + 1 and where D = µ1g1(1− ρ1) + µ2g2(1− ρ2).

We directly observe that the difference with respect to the exact expression for the mean unconditional

sojourn time ((5) and (6)) is in the terms ρ2

(
−1 +

∑K
j=1 αj/µ

2
j

gk
∑K
j=1 αj/(µ

2
jgj)

)
and

(1− ρ)D

µ1g1 + µ2g2
.

It can easily be seen that our approximation is exact for the two extreme values of the traffic inten-

sity, ρ = 0 and ρ = 1. That is, the expressions S
INT

k (0) = 1/µk and limλ→1/E[B](1 − ρ)S
INT

k (λ) =
1

µk

(
1 +

µkρ−k(g−k − gk)

D

)
are satisfied.

Let us denote by Rel.Errork the relative error of a class-k customer, that is, Rel.Errork =
Sk(λ)− SINTk (λ)

Sk(λ)
,

k = 1, 2. Now, let us consider g1 + g2 = 1. We then obtain limg1↑1 Rel.Error1 = ρ21 · 100% and

lim
g1↑1

Rel.Error2 =

µ2ρ1 − (1− ρ1)

(
ρ2
ρ1µ2

ρ2
+ µ2ρ1(1− ρ)

)
µ1(1− ρ1) + µ2ρ1

· 100%.

Hence, the relative error of class-1 customers (when g1 ↑ 1) increases as the load of class 1 increases but
does not depend on the parameter of class 2. The same result was obtained in Section 4.2 for the mean
conditional sojourn time for an arbitrary number of classes and general service requirements. Moreover,
the absolute relative error of class-2 customers (when g1 ↑ 1) increases as the load of class 2 decreases.
In Figure 1 we plot the relative error of the mean unconditional sojourn time for K = 2 with respect to
g1. The parameters considered are ρ1 = 0.2, ρ2 = 0.4, µ1 = 1, µ2 = 1, g2 = 1− g1 and from the formulas
presented above we obtain limg1↑1 Rel. Error1 = 4%, limg1↑1 Rel. Error2 = −0.8%, limg1↓0 Rel. Error1 =
−12.8%, limg1↓0 Rel. Error2 = 16%, which coincide with the extreme points in the figure.

5.2 Mean unconditional sojourn time for an arbitrary customer

In this section we calculate the relative error of the mean unconditional sojourn time for an arbitrary
customer when K = 2 and µ1 or µ2 takes extreme values, and we verify that our approximation for the
mean unconditional sojourn time of an arbitrary customer is exact when the service requirements of all
customers are the same.

We denote by Rel.Error the relative error of an arbitrary customer, that is, Rel.Error =

(
1−

∑2
k=1 αkS

INT

k (λ)∑2
k=1 αkSk(λ)

)
·

100%, where S1(λ) and S2(λ) are given in Equations (5) and (6), respectively. Then, if we keep constant
ρ1 and ρ2, such that λ1 = ρ1µ1 and λ2 = ρ2µ2 change, we obtain

lim
µ2↓0

Rel.Error =

ρ1

(
ρ2(g2 − g1)

g1

(
1

1− ρ1
− 1 + ρ

)
− ρ2

(
−1 +

g2
g1

))
ρ1

(
1 + ρ2(g2−g1)

g1(1−ρ1)

)
+ ρ2

· 100% (28)

and limµ1↑∞Rel.Error = limµ2↓0 Rel.Error. The intuition behind the latter equation can be seen as
follows: having µ1 → ∞ and λ1 → ∞, i.e., having many class-1 arrivals of small size, is equivalent to
having µ2 → 0 and λ2 → 0, i.e., having very few class-2 arrivals of large size.
In Figure 2 we plot the relative error of the mean unconditional sojourn time for an arbitrary customer.
We fix ρ1, ρ2 and µ1 and we let µ2 and λ2 = ρ2µ2 change. The chosen parameters are ρ1 = 0.2, ρ2 =
0.6, µ1 = 1, g1 = 1, g2 = 2. We observe that the results obtained from Equation (28), limµ2↓0 Rel.Error =
−0.2105% and limµ2↑∞Rel.Error = 8.307%, coincide with the extreme points in the figures. We know
the expression of the latter equality because limµ2↑∞ = limµ1↑0 and the symmetry of the latter with
Equation (28).
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Figure 1: Relative error for
the mean unconditional sojourn
time for K = 2 with respect to
g1.
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Figure 2: Mean unconditional sojourn time for an arbitrary
customer.

We now show that our light-traffic approximation for the mean unconditional sojourn time of an arbitrary
customer is exact under the assumption that the mean service requirements of all customers are the same,
i.e., E[Bj ] = 1/µ,∀j = 1, . . . ,K. This result holds for an arbitrary number of classes.
As stated earlier, the mean unconditional sojourn time of an arbitrary customer is defined as S(λ) :=∑K
k=1 αkSk(λ). Since we assume exponentially distributed service requirements and E[Bk] = 1/µ,∀k =

1, . . . ,K, the total number of customers in the system is distributed as that in a processor sharing queue
with arrival rate λ =

∑K
k=1 λk and service rate µ. By Little’s law, we therefore have that the total mean

unconditional sojourn time is given by that of an M/M/1 queue, i.e,
1/µ

1− ρ
.

For our light and heavy-traffic interpolation we have

S
INT

(λ) =

K∑
k=1

αkS
INT

k (λ)

=
1 + ρ

µ
+ λ

K∑
k=1

αk

K∑
j=1

αj
µ

(gj − gk)

gjµ+ gkµ
+

(λ/µ)2

(1− λ/µ)

K∑
k=1

αk
1

µgk

∑K
j=1 αj/µ

2∑K
j=1 αj/(µ

2gj)

=
1 + ρ

µ
+

1

µ

ρ2

1− ρ

K∑
k=1

αk
gk

1∑K
j=1 αj/gj

=
1/µ

1− ρ
, (29)

where we used that

K∑
k=1

αk

K∑
j=1

αj
(gj − gk)

gjµ+ gkµ
=

1

µ

K∑
k=1

K∑
j=1

αkαj
gj − gk
gj + gk

=
1

µ

K∑
k=1

K−1∑
j=1

αkαj

(
gj − gk
gj + gk

+
gk − gj
gj + gk

)
= 0.

Hence, the obtained light and heavy-traffic interpolation is exact.
In Figure 2 (left) we observe that when µ2 = 1, so when the service requirements of both classes coincide,
the relative error is 0, as proven in Equation (29).

6 Numerical results

In this section we numerically investigate the accuracy of the approximations obtained in this paper. In
Section 6.1 we consider the mean conditional sojourn time and in Section 6.2 the mean unconditional
sojourn time, whose approximations are stated in Proposition 4.2 and Corollary 4.3, respectively.
As stated in Section 2, Fayolle et al. [9] obtain analytical expressions of the mean conditional and un-
conditional sojourn time under the assumption of exponentially distributed service requirements. For
exponentially distributed service requirements, we will evaluate the accuracy of the approximations by
comparing the exact formulas as obtained in [9], see Equations (2) and (4), with the approximations as
given in (24) and (25).
In order to obtain a more complete understanding on the accuracy of the approximation, we will also
consider hyperexponential and Pareto distributions. Hyperexponential and Pareto distributions have a
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decreasing hazard-rate, and their second moment can be made arbitrarily large, and because of these
features it has been proposed as an appropriate distribution to model service time distributions in the
Internet.
We say thatBi has a hyperexponential distribution withmi phases if P(Bi ≤ bi) = 1−

∑mi

k=1 pike(−bi/E[Bik]),
where pik is the probability that a class-i customer is exponentially distributed with mean E[Bik]. In
order to derive exact expressions for the mean sojourn time when the service requirements are hyperexpo-
nentially distributed, we make the observation that if classes k = 1, . . . ,mi are exponentially distributed
(where class k has arrival rate λk and mean service requirement E[Bk]) and have the same DPS weight,
g1 = . . . = gmi

, then they can be seen as a single (merged) class i with a hyperexponential distribution
with parameters pik = λk/

∑mi

l=1 λl and E[Bik] = E[Bk], for each phase k = 1, . . . ,mi. This allows us
to calculate the performance with hyperexponential distribution using Equations (2) and (4) which are
derived for exponential distributions.
We say that Bi has Pareto distribution with scale parameter ci and shape parameter γi if P(Bi ≤ bi) =

1−
(

1

1 + cibi

)γi
. In order to derive exact expressions for the mean unconditional sojourn time we solved

numerically Equation (1). However, the output was not stable enough and therefore we opted to simulate
the DPS queue instead (using MATLAB). The simulation results are based on averaging 10 runs with
each run comprising 5 · 105 busy periods. A busy period is defined as the interval of time between two
consecutive time epochs when the system becomes empty, such points being regenerative points for the
stochastic process of interest.
Note that the hyperexponential distribution satisfies the sufficient condition to hold admissibility (Equa-
tion (9)), whereas Pareto does not satisfy it; for any value of γi in the Pareto distribution, higher order
moments than γi are unbounded. In the latter we show that even thought condition (9) is not satisfied
the light-traffic interpolation remains accurate.
Throughout this section the performance criteria will be the relative error. For instance, for the mean

conditional sojourn time, we will calculate 100% × Sk(λ,b)−S
INT
k (λ,b)

Sk(λ,b)
, and for the mean unconditional

sojourn time 100%× Sk(λ)−S
INT
k (λ)

Sk(λ)
.

Before explaining in detail the numerical results we have obtained, we summarize our main conclusions:

• The approximation is accurate over a broad range of parameter values.

• For a given set of parameters, the relative error for the mean conditional sojourn time increases as
the service requirement of the tagged customer increases.

• The error increases as the disparity among the weights increases.

• For any given scenario, the largest relative error occurs in an intermediate load between 0 and 1.

• The largest relative errors for the mean conditional sojourn time occur for service requirements b
that are very unlikely to occur. This also explains the high accuracy of our approximation for the
mean unconditional sojourn time.

6.1 Conditional sojourn time

In this section we measure the accuracy of the mean conditional sojourn time given in Proposition 4.2.

Scenario 1. In Figure 3 we consider four classes K = 4 with exponentially distributed service require-
ments. The parameters of the classes are fixed, and we vary the total arrival rate in order for the load
to cover the range of stable values. We consider E[B1] = 2, E[B2] = 5, E[B3] = 7, E[B4] = 10, g1 = 30,
g2 = 25, g3 = 20, g4 = 10, and α1 = 10/36, α2 = 5/36, α3 = 8/36, α4 = 13/36 such that λi = αi ∗ λ,
i = 1, . . . , 4, where λ is the total arrival rate. In Figure 3 we plot the relative error of our approximation
for the mean conditional sojourn time of a tagged class-i customer, for i = 1, . . . , 4, where the size of
the tagged class-i customer, bi, is selected such that the probability of the event is P(Bi ≤ bi) = 0.01,
P(Bi ≤ bi) = 0.50 and P(Bi ≤ bi) = 0.99, respectively. As can be seen, the relative error for the mean
conditional sojourn time remains small and always below 6%.

Scenario 2. In Figure 4 we consider two classes K = 2 with exponentially distributed service require-
ments. We fixed the parameters E[B1] = 2, E[B2] = 1, g1 = 1, g2 = 3, α1 = 0.415, α2 = 0.585 and
λi = αi ∗ λ. We let the service requirement of the class-i tagged customer span between 0 and bi,max
where P(Bi ≤ bi,max) = 0.99 and for each b we plot the largest absolute relative error that can be found
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Figure 3: Scenario 1: Relative error for the mean conditional sojourn time for a tagged class-i customer
with service requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) =
0.99 (right).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

P(B
i
<b

i
)

L
a

rg
e

s
t 

a
b

s
o

lu
te

 r
e

la
ti
v
e

 e
rr

o
r 

(%
)

 

 

Class 1

Class 2

Figure 4: Scenario 2. Largest
absolute relative error for the
mean conditional sojourn time
as a function of P(Bi ≤ bi).
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Figure 6: Scenario 4. Largest
absolute relative error for the
mean conditional sojourn time
as a function of P(Bi ≤ bi).
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Figure 7: Scenario 4: Relative error for the mean conditional sojourn time for a tagged class-i customer
with service requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) =
0.99 (right).

for a ρ ∈ [0, 1). We observe a largest error of at most 6%.

Scenario 3. In Figure 5 we consider again two classes with exponentially distributed service requirements.
As parameters we fix: E[B1] = 2, E[B2] = 1, λ1 = 0.2, λ2 = 1.5λ1 and b = 1. We chose g2 = 1−g1 and let
g1 vary on the horizontal axis. In the figure we plot the mean conditional sojourn time and our approx-

imation. We see that the property stated in Section 4.3 is satisfied, namely as g1 increases S
INT

1 (λ, b)

decreases and S
INT

2 (λ, b) increases. Besides, it can be observed from the figure that the approximation
looses accuracy as one class is given more priority, i.e., g1 → 0 or g1 → 1.

Scenario 4. In Figure 11 we consider two classes with hyperexponential distributed service requirements
with E[B1] = 11/3, E[B2] = 44/3. Each of the hyperexponential distributions has 3 phases. The param-
eters are as follows: for class 1 we take E[B11] = 3.5, E[B12] = 2, E[B13] = 5, p11 = 10/21, p12 = 5/21,
p13 = 6/21, and for class 2 we take E[B21] = 10, E[B22] = 15, E[B23] = 20, p21 = 4/15, p22 = 8/15,
p23 = 3/15. The weights are set to g1 = 2 and g2 = 5. We assume that an arriving customer is of class
1 (class 2) with probability α1 = 7/12 (α2 = 5/12). As in Scenario 1, we select the service require-
ment of the tagged customer such that P(Bi ≤ bi) = 0.01, 0.5 and 0.99. We see that the error increases
as the size of the tagged customer increases. However it is remarkable how accurate the approximation is.

In Figure 6 we consider Scenario 4. We vary the service requirement of the class-i tagged customer
between 0 and bi,max where P(Bi ≤ bi,max) = 0.99 and for each b we plot the largest absolute relative
error that can be found for a ρ ∈ [0, 1). We observe that the error increases as the size of the tagged
customer increases. The largest absolute relative error is of the order of 22% for the class with the
smallest weight and of the order of 3% for the class with the highest weight.

6.2 Unconditional sojourn time

In this section we evaluate the accuracy of the mean unconditional sojourn time given in Corollary 4.3.

In Figure 8 we consider the same parameter setting as in Scenario 1, and we observe that the largest
relative error for the mean unconditional sojourn time is less than 3.5%.

In Figure 9 we consider two classes with hyper-exponentially distributed service requirements. The pa-
rameters are the ones considered in Scenario 4. We conclude that the largest relative error for the mean
unconditional sojourn time is around 3%.

As pointed out in the beginning of the section, we observe that the relative error for the mean uncondi-
tional sojourn time tends to be smaller than the ones observed for the mean conditional sojourn time.
This can be explained by noting that the largest errors in the mean conditional sojourn time tend to
occur for service requirements that happen with a very low probability.

In Figure 10 we consider two classes with hyper-exponentially distributed service requirements. The
parameters are the same as in Scenario 4. We chose g2 = 1 − g1 and let g1 vary on the horizontal axis.
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Figure 8: Relative error for
the mean unconditional so-
journ time in Scenario 1.
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Figure 9: Relative error for
the mean unconditional so-
journ time in Scenario 4.
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Figure 10: Largest absolute rela-
tive error for the mean uncondi-
tional sojourn time with respect
to the weight g1 in Scenario 4.
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Figure 11: Scenario 4: Relative error for the mean conditional sojourn time for a tagged class-i customer
with service requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle), P(Bi ≤ bi) =
0.99 (right).

For each given g1 we calculate the largest absolute relative error for the mean unconditional sojourn time
as we let ρ range from 0 to 1. We observe that the relative error for the unconditional sojourn time is at
most of 30%, and that this happens when class 2 receives full priority.

Scenario 5. In Figure 12 we consider Scenario 1 but in this case with Pareto distributed service require-
ments. We consider four classes with c1 = 1/4, c2 = 1/10, c3 = 1/14, c4 = 1/20 and γ1 = 3, γ2 = 3, γ3 =
3, γ4 = 3, such that, E[B1] = 2, E[B2] = 5, E[B3] = 7, E[B4] = 10, the weights are set to g1 = 30,
g2 = 25, g3 = 20, g4 = 10 and α1 = 10/36, α2 = 5/36, α3 = 8/36, α4 = 13/36 such that λi = αi ∗ λ,
i = 1, . . . , 4, where λ is the total arrival rate. Notice that E[Bi], gi, αi, i = 1, . . . , 4 are the same as in
Scenario 1. We note that the point ρ = 1 is not obtained from simulations, and that instead it comes
from the heavy-traffic condition and it is therefore exact. We conclude that the largest relative error for
the mean unconditional sojourn time is around 5%.

Scenario 6. In Figure 13 we consider Scenario 4 but in this case with Pareto distributed service require-
ments. We consider two classes with c1 = 3/22, c2 = 3/88 and γ1 = 3, γ2 = 3, such that, E[B1] = 11/3,
E[B2] = 44/3 and the weights are set to g1 = 2 and g2 = 5. We assume that an arriving customer is of
class 1 (class 2) with probability α1 = 7/12 (α2 = 5/12). Notice that E[Bi], gi, αi, i = 1, . . . , 2 are the
same as in Scenario 4. We note that the point ρ = 1 is not obtained from simulations, and that instead
it comes from the heavy-traffic condition and it is therefore exact. We conclude that the largest relative
error for the mean unconditional sojourn time is less than 5%.
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Figure 12: Relative error for
the mean unconditional sojourn
time in Scenario 5.
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revisited. In Proceedings of IEEE INFOCOM, 2005.
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Appendix A: Proof of Lemma 3.1

To calculate S
(1)

k (0, b) we need to calculate
∫∞
−∞ E[Sk,t,Ut,BUt

]dt, where Sk,t,ut,but
is as given in Equa-

tion (16). We first focus on the calculation corresponding to the first term of (16), that is, the case when
t ≤ 0 ≤ t + BUt

and t <
gUt

gk
b − BUt

, (where the inequalities of the random variables hold sample-path

wise). We have ∫ 0

−∞
E

[
1

[
−BUt ≤ t <

gUt

gk
b−BUt

]
(t+BUt + b)

]
dt

=

∫ ∞
0

E

[
1

[
BUt
≥ t > BUt

− gUt

gk
b

]
(−t+BUt

+ b)

]
dt

= E

[∫ ∞
0

1

[
BUt
≥ t > BUt

− gUt

gk
b

]
(−t+BUt

+ b) dt

]
,

as we make use of Tonelli’s Theorem. It follows that∫ ∞
0

1

[
BUt
≥ t > BUt

− gUt

gk
b

]
(−t+BUt

+ b) dt

=

∫ BUt(
BUt−

gUt
gk

b
)+

(−t+BUt
+ b) dt =

[
− t2

2
+BUt

t+ bt

]BUt(
BUt−

gUt
gk

b
)+
. (30)
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We can now consider two cases. If BUt −
gUt

gk
b > 0, then Equation (30) is equal to[

− t2

2
+BUtt+ bt

]BUt

BUt−
gUt
gk

b

= −
B2
Ut

2
+BUt

BUt
+ bBUt

−

−
(
BUt −

gUt

gk
b
)2

2
+BUt

(
BUt
− gUt

gk
b

)
+ b

(
BUt
− gUt

gk
b

)
=

1

2

(
gUtb

gk

)2

+
gUtb

2

gk
.

If BUt −
gUt

gk
b < 0, then Equation (30) is equal to[

− t2

2
+BUtt+ bt

]BUt

0

= −
B2
Ut

2
+BUtBUt + bBUt =

B2
Ut

2
+ bBUt .

We thus obtain

E
[∫ ∞

0

1

[
BUt ≥ t > BUt −

gUt

gk
b

]
(−t+BUt + b) dt

]
= E

[
1

2
min{BUt , b

gUt

gk
}2 + bmin{BUt , b

gUt

gk
}
]
. (31)

Second, we focus on the calculation corresponding to the second term of (16), that is, the case when
t ≤ 0 ≤ t+BUt

and
gUt

gk
b− t ≤ BUt

. We have

∫ 0

−∞
E

[
1

[
gUt

gk
b−BUt

≤ t
]
gk + gUt

gk
b

]
dt =

∫ ∞
0

E

[
1

[
gUt

gk
b−BUt

≤ −t
]
gk + gUt

gk
b

]
dt

= E

[∫ ∞
0

1

[
gUt

gk
b−BUt

≤ −t
]
gk + gUt

gk
bdt

]
,

as we make use of Tonelli’s Theorem. It follows that

∫ ∞
0

1

[
t ≤ BUt −

gUt

gk
b

]
gk + gUt

gk
bdt =

gk + gUt

gk

∫ (
BUt−

gUt
gk

b
)+

0

bdt = b
gk + gUt

gk

(
BUt −

gUt

gk
b

)+

. (32)

We can now consider two cases. If BUt
− gUt

gk
b > 0, then Equation (32) is equal to

b
gk + gUt

gk

(
BUt −

gUt

gk
b

)
.

If BUt
− gUt

gk
b ≤ 0, then Equation (32) is equal to 0. We thus obtain

E
[∫ ∞

0

1

[
gUt

gk
b−BUt

≤ −t
]
gk + gUt

gk
bdt

]
= E

[
gk + gUt

gk
b

(
BUt
−min{BUt

,
gUt

gk
b}
)]

. (33)

Third, we focus on the calculation corresponding to the third term of (16), that is, the case when
t+BUt

< 0 . We have∫ 0

−∞
E[1 [t < −BUt

] b− b]dt =

∫ ∞
0

E[1 [−t < −BUt
] b− b]dt = E

[
b

∫ ∞
0

(1 [BUt
< t]− 1)dt

]
as we make use of Tonelli’s Theorem. It follows that

b

∫ ∞
0

(1 [BUt
< t]− 1)dt = b

∫ ∞
0

−1 [BUt
> t] dt = −b

∫ BUt

0

dt = −bBUt
.

We thus obtain

E
[∫ ∞

0

(1 [BUt < t] b− b)dt
]

= −bE[BUt ]. (34)
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Fourth, we focus on the calculation corresponding to the fourth term of (16), that is, the case when

0 < t < b and b−t
gk

>
BUt

gUt
. We have

∫ ∞
0

E
[
1

[
t < b− gkBUt

gut

]
(b+BUt

)

]
dt = E

[∫ ∞
0

1

[
t < b− gkBUt

gUt

]
(b+BUt

) dt

]
,

as we make use of Tonelli’s Theorem. It follows that

∫ ∞
0

1

[
t < b− gkBUt

gUt

]
(b+BUt

) dt =

∫ (
b−

gkBUt
gUt

)+

0

(b+BUt
) dt. (35)

If b− gkBUt

gUt
> 0 then Equation (35) is equal to

∫ (
b−

gkBUt
gUt

)
0

(b+BUt
) dt = (b+BUt

)

(
b− gkBUt

gUt

)
= b2 +

(
1− gk

gUt

)
bBUt

− gk
gUt

B2
Ut
.

If b− gkBUt

gUt
≤ 0 then Equation (35) is equal to 0. We thus obtain∫ ∞

0

E
[
1

[
t < b− gkBUt

gUt

]
(b+BUt)

]
dt = E

[
b2 + (BUt −min{b, gk

gUt

BUt})b−min{b, gk
gUt

BUt}BUt

]
. (36)

Fifth, we focus on the calculation corresponding to the fifth term of (16), that is, the case when 0 < t < b

and b−t
gk
≤ BUt

gUt
. We have∫ ∞

0

E
[
1

[
b− gkBUt

gUt

≤ t < b

](
−tgUt
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+ b
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](
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]

as we make use of Tonelli’s Theorem. It follows that
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1
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](
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)+ . (37)

If b− gkBUt

gUt
> 0 then Equation (37) is equal to
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−tgUt

gk
+ b

gk + gUt

gk

)
dt =

[
− t2

2

gUt

gk
+ tb

gk + gUt

gk

]b
b−

gkBUt
gUt

=
gk
gUt

BUt(b+
BUt

2
).

If b− gkBUt

gUt
≤ 0 then Equation (37) is equal to

∫ ∞
0

1

[
b− gkBUt

gUt

≤ t < b

](
−tgUt

gk
+ b

gk + gUt

gk

)
dt =

[
− t2

2

gUt

gk
+ tb

gk + gUt

gk

]b
0

= b2
(
gUt

2gk
+ 1

)
.

We thus obtain ∫ ∞
0

E
[
1

[
b− gkBUt

gUt

≤ t < b

](
−tgUt

gk
+ b

gk + gUt

gk

)]
dt

= E
[
gk
gUt

min{gUt

gk
b, BUt}

(
1

2
min{gUt

gk
b, BUt}+ b

)]
. (38)
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Sixth, we focus on the subtraction between the sixth term of (16), that is, the case when 0 < b < t, and

E
[
Sk(0, b)

∣∣∣A = 0
]

= b. We then have

∫ ∞
0

E [1 [b < t] b− b] dt = −E
[∫ ∞

0

1 [0 < t < b] bdt

]
as we make use of Tonelli’s Theorem. It follows that

−
∫ ∞
0

1 [0 < t < b] bdt = −
∫ b

0

bdt = −b2.

We thus have ∫ ∞
0

E [1 [b < t] b− b] dt = −b2. (39)

In conclusion, summing Equations (31), (33), (34), (36), (38) and (39) we obtain

S
(1)

k (0, b) =

∫
R

(
E
[
Sk(0, b)

∣∣∣A(−∞,∞) = 1, τ = t
]
− E

[
Sk(0, b)

∣∣∣A(−∞,∞) = 0
])

dt

= E

[
1

2
min{BUt

, b
gUt

gk
}2 + bmin{BUt

, b
gUt

gk
}+

gk + gUt

gk
b

(
BUt
−min{BUt

,
gUt

gk
b}
)
− bBUt

+b2 +

(
BUt
− gk
gUt

min{gUt

gk
b, BUt

}
)
b− gk

gUt

min{gUt

gk
b, BUt

}BUt

+
gk
gUt

min{gUt

gk
b, BUt

}
(

1

2
min{gUt

gk
b, BUt

}+ b

)
− b2

]

= E

[
1

2

(
1 +

gk
gUt

)
min{BUt , b

gUt

gk
}2 +

(
b− gk + gUt

gk
b− gk

gUt

b− gk
gUt

BUt +
gk
gUt

b

)
min{BUt , b

gUt

gk
}

+
gk + gUt

gk
bBUt − bBUt + b2 + bBUt − b2

]

= E

[
1

2

(
1 +

gk
gUt

)
min{BUt

, b
gUt

gk
}2 −

(
b
gUt

gk
+

gk
gUt

BUt

)
min{BUt

, b
gUt

gk
}+

gk + gUt

gk
bBUt

]
.

Appendix B: Alternative way to derive light-traffic derivatives

In this section we show that the light-traffic derivatives can also be obtained from the integro-differential
equation (1). The calculations below are only valid for the DPS model, while our approach is constructive
and can easily be adapted to other models. As explained at the beginning of Section 3, for λ small enough,
Sk(λ, b) can be approximated by a polynomial

∞∑
m=0

λmrm(b), (40)

where rm(b) =
S
(m)

k (0, b)

m!
,m = 0, 1, 2, ....

In Section 3.1 we described how the coefficients rm(b) could be derived. This holds true for a large class
of models. We now show how the coefficients could alternatively be obtained for the DPS model. This
can be done using the expression for the mean conditional sojourn time by Fayolle et al (Equation (1)).

For the zeroth coefficient we have from Equation (40)
dSk(0, b)

db
=

dr0(b)

db
and from Equation (1)

dSk(0, b)

db
= 1. This immediately gives us

r0(b) = b. (41)

Since we assumed that for λ close to zero the function Sk(λ, b) can be approximated by
∑∞
m=0 λ

mrm(b),
we have for m = 1, 2, . . .
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rm(b) = lim
λ→0

1

λm

(
Sk(λ, b)−

m−1∑
i=0

λiri(b)−
∞∑

i=m+1

λiri(b)

)
= lim

λ→0

1

λm

(
Sk(λ, b)−

m−1∑
i=0

λiri(b)

)

= lim
λ→0

1

λm

∫ b

0

(
∂Sk(λ, b̃)

∂b̃
−
m−1∑
i=0

λi
dri(b̃)

db̃

)
db̃.

Now, substituting Equation (1) in the above formula, one can easily derive the terms rm(b),m = 1, . . . ,
recursively. For the first and second order derivatives we obtain in this way

r1(b) =

K∑
j=1

αj
gj
gk

∫ b

0

(
E[Bj ] +

(
gk
gj
− 1

)
E[min{Bj ,

gj
gk
b̃}]
)

db̃ (42)

and

r2(b) =

K∑
j=1

αj
gj
gk

K∑
i=1

αi
gi
gk

∫ b

0

db̃

(
E[Bi]

(
E[Bj ] +

(
gk
gj
− 1

)
E[min{Bj ,

gj
gk
b̃}]
)

+

(
gk
gi
− 1

)∫ ∞
gj
gk
b̃

E[min{Bi,
gi
gk

(x− gj
gk
b̃)}] · [1− Fj(x)]dx

+
gk
gj

(
gk
gi
− 1

)∫ gj
gk
b̃

gj
gk

(b̃−b)
E[min{Bi,

gi
gk

(b̃− gk
gj
z)}] · [1− Fj(z)]dz

)
. (43)

We observe that r0(b) coincides with the zeroth light-traffic derivative obtained in Equation (15) and we
verified that r1(b), obtained in Equation (42), coincides with the first light-traffic derivative shown in
Equation (17).
We can now derive the following light-traffic approximation (of order 2) of the mean conditional sojourn
time for a tagged class-k customer with service requirement b when λ is small

S
LT

k (λ, b) =

2∑
m=0

λmrm(b) = r0(b) + r1(b)λ+ r2(b)λ2, (44)

where r0(b), r1(b) and r2(b) are given in Equations (41), (42) and (43), respectively. Using this result
together with Proposition 4.1 and the heavy-traffic result (7) we obtain the third order light and heavy-
traffic interpolation immediately

S
INT

k (λ, b) = r0(b) + r1(b)λ+ r2(b)λ2 +
b

gk

E[B2]∑K
j=1 αjE[B2

j ]/gj

(λE[B])3

1− λE[B]
. (45)

We next assess the impact of having the second light-traffic derivative, thus obtaining a second order
light-traffic approximation and a third order light and heavy-traffic interpolation. Then, we numerically
compare the accuracy of Equations (18) and (44), and Equations (24) and (45).
In Figures 14 and 15 we plot the difference of the relative errors of Equations (18) and (44). Since we know
that all relative errors are positive and since the resulting functions are also positive, this implies that
the higher order light-traffic approximation is always more accurate. However, if we focus on Figures
16 and 17 and compare them with Figures 3 and 11, respectively, we conclude that the accuracy of
the interpolation for intermediate loads does not necessarily improve as the degree of the interpolation
increases. In both cases, having a third order light and heavy-traffic interpolation reduces the largest
relative error only for the case P(Bi ≤ bi) = 0.99.
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Figure 14: Scenario 1: Difference of the relative errors of Equations (18) and (44) for a tagged class-i
customer with service requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle),
P(Bi ≤ bi) = 0.99 (right).

0 0.1 0.2 0.3 0.4
0

5

10

15

20

ρ

 

 

 Class 1

Class 2

0 0.1 0.2 0.3 0.4
0

5

10

15

20

ρ

 

 

 Class 1

Class 2

0 0.1 0.2 0.3 0.4
0

5

10

15

ρ

 

 

 Class 1

Class 2

Figure 15: Scenario 4: Difference of the relative errors of Equations (18) and (44) for a tagged class-i
customer with service requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle),
P(Bi ≤ bi) = 0.99 (right).
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Figure 16: Scenario 1: Relative error for the 3rd order mean conditional sojourn time for a tagged class-i
customer with service requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle),
P(Bi ≤ bi) = 0.99 (right).
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Figure 17: Scenario 4: Relative error for the 3rd order mean conditional sojourn time for a tagged class-i
customer with service requirement bi such that P(Bi ≤ bi) = 0.01 (left), P(Bi ≤ bi) = 0.50 (middle),
P(Bi ≤ bi) = 0.99 (right).


