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Abstract 

Some small territories, such islands, actually experience a high penetration rate of PV inside a small electricity grid. 
In this context, the variability of the PV output is an issue for the supply-demand balance. The spatial and temporal 
smoothing of the variability of the PV production is an important information for the grid operator.  
Previous works on this topic were mainly done for large-scale continental grids. They pointed out the relation 
between the production variability with the number and the dispersion factor of the PV systems. This paper presents 
an analysis of the variability of PV output for a small insular territory: Reunion island. This island has a large variety 
of microclimates and a strong penetration rate of PV (almost 30% of the installed power). For this little grid, the 
spatial and temporal effects on the variability of the PV output differ slightly with previous works. 
 
© 2013 The Authors. Published by Elsevier Ltd.  
Selection and/or peer-review under responsibility of ISES 
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1. Introduction 

Between 2005 and 2011, the French government set up an incentive policy in order to develop the 
electricity production from photovoltaic. In the overseas territories, as Reunion Island, the feed-in tariffs 
proposed for the next 20 years were specifically high [1]. It results an exponential increase of the installed 
PV systems (Fig. 1). For these small grids, an important penetration rate of such a variable means of 
production can destabilize the supply-demand balance. A regulatory limit of 30% of the instantaneous 
power produced from intermittent renewables (PV, wind turbines) was defined in order to avoid this risk. 
This legal constraint was reached in 2012 in Reunion. In this context, the knowledge of spatial and 
temporal short-term variability of the PV output power is essential. In one hand, it will help the grid 
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operator to better manage the different means of production. Second, it will permit to stretch the 
mandatory limit of 30% and so to increase the penetration rate of PV. 

The short-term variability of the solar resource is generated by variable cloudiness conditions. The 
considered time scales range from few seconds to one hour. The solar fluctuations on short time scales 
were firstly studied in terms of frequency distribution of the instantaneous clearness index [2][3][4][5]. 
More recently, numerous articles dealing with the PV output power variability propose new indices in 
order to quantify the temporal fluctuations of the solar resource. Lave and Kleissl [6][7] used the 
statistical distributions of the Ramp Rates (RRs). RRs relate to the sudden changes in power output or in 
solar irradiance. Hoff and Perez introduced the standard deviation of the change in power output to 
quantify the short-term variability [8][9][10]. These works were mainly focus on continental territories. 
This work will focus on this second approach in order to assess the temporal and spatial variability of the 
PV production. 

Reunion Island exhibits a particular meteorological context dominated by a large diversity of 
microclimates. Two main regimes of cloudiness are superposed: the clouds drived by the synoptic 
conditions over the Indian Ocean and the orographic cloud layer generated by the local reliefs. Badosa et 
al. did a first study about the solar variability in Reunion [11]. They characterized the daily fluctuations 
using hourly profiles of irradiance of 7 ground stations. Identical weather conditions can be encountered 
in Hawaii. Hoff and Perez included this island in their study about the correlation of the solar variability 
between different sites [11]. They used the same method for Hawaii and for the continental territories of 
the US. 

In this work, the spatial and temporal variability will be studied and compared with the results of 
previous works on the topic. 

2. Methodology 

This section describes the methods and indices used in order to quantify the variability of the PV 
power output. This variability is directly linked with the variability of the solar resource. Thus, the 
proposed methods and indices are mainly derived from the ground measurements or assessment from 
satellite images of the solar irradiance. 

 

 
Fig. 1. Evolution of the feed-in tariffs [1] and installed PV power in Reunion 
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2.1. Temporal variability 

The variability of a single PV system is quantified by the standard deviation  of the change in power 
output  for a considered time interval  [10].  

 
       (1) 

 
For a PV fleet, the variability is evaluated considering the aggregate power output and it can be derived 

from the variability of each single system. In order to quantify the PV fleet variability, Hoff and Perez 
[11] proposed two models. In the first model, they consider that the changes in the output of the plants are 
uncorrelated. It has been shown previously that the changes in solar irradiance between two locations can 
be partially correlated [9][12]. So, they established a more realistic model for correlated locations. We 
will focus on this second model given in Eq. (2) that requires the knowledge of each plant variability and 
the correlations between the different locations  . 

 

     (2) 

 
The temporal short-term variability of the PV output power is directly linked with the fluctuation of 

the global horizontal irradiance GHI. In order to take only into account the effects of these fluctuations, it 
is important to remove the seasonal variation of the solar radiation. This deterministic part is commonly 
modeled by the global irradiance observed for a clear sky GHIclear. The clear sky index Kt* as defined in 
Eq. 3 was created for this purpose. 

 
       (3) 

 
Finally, the variability of the solar resource for a site can be assessed using the changes in clear sky 

index for a considered time interval . 

2.2. Cloud speed 

It has been shown that the cloud speed affects significantly the solar variability for a site and also the 
correlation between sites [8]. Several methods were developed to derive the cloud speed. Hoff and Perez 
assess a relative cloud speed using satellite images [10]. Their method is based on the concept of cloud 
motion vectors initially developed for forecasting. Two recent articles propose some methods in order to 
derive the cloud speed from ground measurements [13][14]. These methods need a large number of 
sensors or cameras and are not suitable in order to cover a large area. Finally, Lave and Kleissl use the 
NOAA North American Mesoscale (NAM) numerical weather forecast [15]. They assessed the height of 
the cloud layers with the vertical profile of the relative humidity. In this work, we used a similar method 
with the help of the Global Forecast System (GFS) model. The spatial resolution is 0.5° (55km x 55km) 
and the temporal resolution is 3 hours. A linear interpolation of the weather parameters was done in order 
to fit with the considered time scale. The main cloud layer is supposed to be situated at an altitude where 
the relative humidity is the highest (Fig. 2). The wind speed and direction at this altitude are used as an 
approximation of the cloud motion. If the vertical profile of the relative humidity is never higher than 
90%, a clear sky is considered. 
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Fig. 2. Plot of the profile of relative humidity and wind speed on January 1st 2011 at Reunion. In this example, the main cloud 

layer was found to be at about 1200m, with a speed of 4.76 m/s. 

2.3. Pair sites correlation 

As presented in the sub-section 2.1, the temporal variability of a fleet of PV systems is dependent on 
the correlation of the variability between the different locations. The correlation coefficient (Pearson’s 
formula) of changes in clear-sky index is defined in Eq. 4. This pair site correlation coefficient is highly 
dependent on the distance between sites, the time scale and the cloud speed [10]. 

 

       (4) 

 

 
Fig. 3. Pair site correlation coefficients presented by time interval as a function of distance, time scale and projected cloud speed. 
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Fig. 4. Mean distance for a fixed correlation coefficient as a function of the time interval for Reunion (ground and satellite) and 

for Hawaii [10]. 

2.4. Spatial variability 

Perez et al. proposed a metric in order to quantify the spatial variability [16]. It corresponds to the 
standard deviation of the satellite derived clear-sky index  of the pixel surrounding the considered 
location as given in Eq. 5. In this formula, N is an odd number greater or equal to 3,  is the satellite 
derived clear-sky index and  is the mean index across the extended area. For this analysis, the number 
of considered pixels N2 is equal to 9 and hourly satellite data are used. In order to differentiate the high 
and low spatial variability, a threshold of 0.1 was defined [16]. 

 

     (5) 

 
 

 
Fig. 5. One-minute  metric trends as a function of satellite derived Kt* for low spatial variability (a) and high spatial variability 

(b). Each blue line represents an individual site. The bold black line represents the mean trend derived for all sites. 
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Fig. 6. Number of minute observations as a function of satellite derived Kt* for low spatial variability (a) and high spatial variability 

(b). Each blue line represents an individual site. The bold black line represents the mean trend derived for all sites. 

3. Results and discussion 

3.1. Data 

13 locations distributed in the main PV areas of Reunion were considered for this work. For each of 
these sites, one-minute ground measurements of the GHI were provided by the company Reuniwatt (11 
sites) and the PIMENT laboratory (2 sites). The data of Reuniwatt and PIMENT were recorded 
respectively since 2010 and 2006.  The satellite derived GHI and clear-sky indices were provided by the 
ASRC, State University of New York at Albany. The size of the pixels is 0.05°x0.05° (5.5 km). They 
cover a square of 1.6° (approximately 178 km) of latitude and longitude including Reunion Island and 
surrounding sea. The time step is one hour and the satellite images were observed during 5 years between 
2008 and 2012. 

3.2. Influence of the time scale and cloud speed on the pair site correlation coefficient 

The site pair correlation coefficient decreases with increase of the distance between two sites  for 
both satellite and ground observations. The relationship can be assessed with the formula given in Eq. 6 
and is represented by the continuous line in Fig. 3 [10][11]. The parameter D is called the “decorrelation” 
distance and it corresponds to the distance where the correlation coefficient is equal to 0.5. The 
decorrelation distance is lower for the satellite images because of the spatial smoothing. 

 
        (6) 

 
The time scale of the data influences significantly the value of the decorrelation distance. Hoff and 

Perez assume a linear relationship between the time scale and the parameter D [10]. The results obtained 
with the ground data measurements of Reunion are closed to the linear regression of Hawaii (Fig. 4). A 
better fitting curve can be achieved using a polynomial function. In Fig. 10, a quadratic function was used 
for the ground and satellite observation of La Reunion. 

The raw cloud speed and direction evaluated with the procedure described in sub-section 2.2 were not 
used directly. A projection of the motion vector of the clouds  was done on the distance separating 
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the different locations (Eq. 7). At each time step the distance between the sites was divided by the results 
of the projection and by the time scale. 

 
       (7) 

 
Adding in Eq. 6 the two parameters relative to the time scale  and the projected cloud speed CSproj, 

the pair site correlation coefficient can be assessed using Eq. 8. Fig. 3 shows the results for the ground 
data and the satellite images at different time scales. 

 
       (8) 

 
With at least one year of data, the analysis was done for relatively long time series of solar irradiance. 

The correlation coefficients are calculated over the whole time period. Thus, the results are representative 
of the average behavior during the studied period. 

3.3. Spatial variability versus temporal variability 

Fig. 6 presents the distribution of the ground measurements. For a high spatial variability (
), the distribution of the Kt* is almost constant between 0.4 and 1. Contrariwise, for a low spatial 

variability ( ), 80% of the observations correspond to clear skies with a Kt* ranging between 
0.8 and 1. This second distribution is significantly different from the work of Perez et al. [16] that 
presents a bimodal shape with a large number of observed overcast skies. The measurements were done in 
the main PV areas where the solar potential is the most important of the island (>1.8MWh/m2/year). This 
is why we mainly observed clear sky conditions. 

Fig. 5 presents the trend of the hourly standard deviation of the minute Kt* for each sites as a function 
of the satellite derived Kt* and for the two conditions of spatial variability. In both cases, temporal 
variability of the clearness index seems to follow a similar shape for all the sites. As proposed by Perez et 
al. [16], a robust parameterization of the site-specific short-term variability can be achieved using spatial 
information. 

Satellite data are currently available with a rough time scale of half an hour. The knowledge of the 
relationship between the spatial variability and the short-term temporal variability is essential. It will 
permit to assess the level of temporal variability without needs of high frequency ground measurements. 
This approach is complementary to a spatially distributed method of forecast, like cloud motion vectors 
approach or numerical weather prediction software. 

4. Conclusion 

Different metrics and data sources were used in order to characterize the spatial and temporal 
variability of the solar irradiance. Even if the climatic conditions of Reunion differ highly with the 
continental sites studied in most other works, the trends are relatively well reproduced. Because of the 
proximity of very different microclimates, some light differences are observed for the studied metrics. 
The distance of decorrelation in Reunion is shorter than the continental regions. So, the smoothing effect 
of the spatial distribution is higher for this small territory. The results of this study improve the 
knowledge of the relationships between the spatial and temporal variability. They can be applied to the 
grid management and they can also be used in order to refine the forecast of the PV output power. 
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