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3 Departamento de Matemática, Universidade Federal do Rio de Janeiro, Ilha do

Fundão. 21941-909 Rio de Janeiro. RJ - Brazil.

E-mail: benoit.kloeckner@u-pec.fr, manuel@im.ufrj.br and

arturoscar.lopes@gmail.com

Abstract. We employ techniques from optimal transport in order to prove decay of

transfer operators associated to iterated functions systems and expanding maps, giving

rise to a new proof without requiring a Doeblin-Fortet (or Lasota-Yorke) inequality.

Our main result is the following. Suppose T is an expanding transformation acting

on a compact metric space M and A : M → R a given fixed Hölder function, and

denote by L the Ruelle operator associated to A. We show that if L is normalized

(i.e. if L (1) = 1), then the dual transfer operator L ∗ is an exponential contraction

on the set of probability measures on M with the 1-Wasserstein metric.

Our approach is flexible and extends to a relatively general setting, which we name

Iterated Contraction Systems. We also derive from our main result several dynamical

consequences; for example we show that Gibbs measures depends in a Lipschitz-

continuous way on variations of the potential.

AMS classification scheme numbers: 37D35, 60J05

Keywords: Wasserstein distance, coupling method, iterated function system

1. Introduction and statement of the main results

It has already been noticed that the 1-Wasserstein distance issued from optimal

transportation theory is very convenient to prove exponential contraction properties

for Markov chains (see e.g. [HM08, Sta13, Oll09]). In this article, we observe that

this idea applies very effectively to the dynamics of expanding maps: indeed the dual

transfer operator of an expanding map with respect to a normalized potential can be

seen as a Markov chain, for which we prove exponential contraction. We shall notably

deduce from this result several Lipschitz stability results for expanding maps: stability



Contraction in the Wasserstein metric 2

of Gibbs measures in terms of a variation of the potential, stability of the maximal

entropy measure in terms of a variation of the map, etc.

By these results and the simplicity of the proofs, we hope that the present article

will make a clear case about the usefulness of the application of coupling techniques and

objects from optimal transport to dynamical systems and thermodynamical formalism

(general references for this last topic are [PP90] and [Bal00]).

Note that a similar coupling has been used in e.g. [BFG99] in order to show decay

of correlations for Gibbs measures of low-regularity potential in the case of the full shift.

However, in contrast to the ideas from optimal transport used in here, their argument

is based on an estimate through a dominating Markov chain.

While we stick here to the more standard case of Hölder potentials, we take a

more geometric point of view that allows us firstly to handle a much broader family

of dynamical systems and secondly to derive a number of corollaries. Namely, the

contraction in the Wasserstein metric easily implies a spectral gap and decay of

correlations, but also the stability results alluded to above.

Our main result and method of proof are also similar to a recent result of the third

named author for some random Markov shifts ([Sta13]); again the present result is less

general in some aspects and more general in others since here we only consider non-

random dynamical systems but are able to cover a wide range of expanding maps and

iterated function systems.

We consider the following setting: let (Ω, d) be a compact metric space, k ∈ N

and F a map which assigns to x ∈ Ω a k-multiset F (x) ⊂ Ω. That is, allowing

multiple occurrences of elements, F (x) contains k elements (a typical example is given

by F (x) = T−1(x) where T is a k-to-1 map). We then refer to F as a k-iterated

contraction system (ICS) if there exists θ < 1 such that for all x, y ∈ Ω there exists a

bijection xi 7→ yi between F (x) and F (y) with d(xi, yi) ≤ θd(x, y) for all i = 1, . . . , k.

We will say that a transformation T of Ω is a regular expanding map if T−1({x}) defines

an ICS once its elements are given suitable multiplicities. For more details we refer to

section 2.

Observe that this class of dynamical systems contains, among others, expanding

local diffeomorphisms of compact Riemannian manifolds and iterated function systems

(IFS) given by k contractions on Ω. A general reference for IFS is [MU03].

The transfer operator with respect to a given continuous function A : Ω → R is

defined as usual by, for f : Ω → R continuous,

L (f)(x) =
∑

y∈F (x)

eA(y)f(y).

Furthermore, let ρ refer to the spectral radius of L acting on continuous functions and

suppose that h : Ω → R is strictly positive and Lipschitz continuous with L (h) = ρh;

we will show that such an h exists and is unique up to multiplication by constants in
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proposition 3.1 and corollary 5.2 below. Then the normalized operator defined by

P(x) = L (h · f)(x)/ρh(x)

satisfies P(1) = 1 and is conjugate to L up to the constant ρ; the iterates are related

through ρnh · Pn(f) = L n(h · f)(x). By uniqueness of h, P(x) is uniquely determined

by F and A. Also note that in case of an ICS which is defined through a map T ,

the above operator can be obtained by substituting A by the normalized potential

A+ log h− log h ◦ T − log ρ.

Let us briefly introduce the definition of the 1-Wasserstein metric (the only one

that we will use here) and recall some of its basic properties.

Let Ω be a compact metric space. The 1-Wasserstein distance is defined on the set

P(Ω) of (Borel) probability measures on Ω by

W1(µ, ν) = inf
π∈Γ(µ,ν)

∫

Ω×Ω

d(x, y) dπ(x, y)

where Γ(µ, ν) is the set of measures on Ω × Ω whose marginals are µ and ν. Elements

of Γ(µ, ν) are called transport plans from µ to ν or couplings.

Let us quote a few basic properties: W1 is indeed a metric; the infimum in its

definition is always attained by some transport plan, then called optimal and generally

not unique; the topology induced by W1 is the weak-∗ topology (this is only true because

Ω is compact). Last, realizing the infimum in the definition of W1(µ, ν) is a infinite-

dimensional linear program and thus has a duality. In this specific case, this is known

as Kantorovich duality and reads:

W1(µ, ν) = sup
ϕ

∣

∣

∣

∫

ϕ dµ−

∫

ϕ dν
∣

∣

∣

where the supremum is on all 1-Lipschitz functions ϕ : Ω → R.

Whenever it is needed, we will write W d
1 to stress the underlying metric d; when

no confusion is expected, we will simply use the same decoration on the distance and

the Wasserstein distance (e.g. W ′
1 will denote the Wasserstein distances with respect

to a metric d′). Note that the definition of W1 extends to all pair of positive measures

having the same total mass.

General references on Transport Theory and the Wasserstein distance are [Vil03],

[Vil09], [AGS08] and [Gig11].

Our central result is the following.

Theorem 1.1 (Contraction property). Let F be an iterated contraction system with

contraction ratio θ ∈ (0, 1) and let A be a Lipschitz-continuous potential on Ω. Then the

dual P∗ of the normalized transfer operator P is exponentially contracting on probability

measures in the Wasserstein metric. That is, for all n ∈ N and all µ, ν ∈ P(Ω) we

have

W1((P
∗)nµ, (P∗)nν) ≤ CλnW1(µ, ν).

where C and λ < 1 are constants depending only on θ, the Lipschitz constant Lip(A)

and diamΩ.
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There are several features of this result that we wish to stress before giving

applications. First, there is no dimension restriction: our purely metric arguments are

very flexible and do not depend on a Doeblin-Fortet inequality (also known as Ionescu-

Tulcea-Marinescu or Lasota-Yorke inequality, [DF37]), so that the proof also applies to,

say, expanding circle maps and expanding maps on higher-dimensional manifolds.

This metric setting also enables us to extend the result from Lipschitz to Hölder

regularity without difficulty: the result applies equally well to Ω endowed with the metric

dα when α ∈ (0, 1], and any potential which is α-Hölder in the metric d. The conclusion

then involves the 1-Wasserstein metricWα of dα (also known as the α-Wasserstein metric

of d), but if needed one can use the obvious inequalities

W1 ≤ (diamΩ)1−α Wα ≤ (diamΩ)1−α W α
1 .

We only state our results with respect to Lipschitz regularity to avoid making the

notation heavier.

Note that the constants C and λ are explicit, though convoluted (and λ may be

much closer to 1 than θ).

The Wasserstein metric is in our opinion a natural metric (for example it metrizes

the weak-∗ topology on probability measures when Ω is compact), but its relevance is

much deeper, as it strongly relates to the geometry of the phase space. One notable

feature is that through Kantorovich duality, a control on the 1-Wasserstein metric im-

plies a control on the integral of Lipschitz functions; we will use this to provide below

several corollaries whose proofs rely on the metric being W1, but whose statement are

free from any reference to optimal transport.

Let us now give some consequences of Theorem 1.1. Unless stated otherwise, we

always consider an iterated contraction system F with contraction ratio θ ∈ (0, 1) on a

phase space Ω and a Lipschitz potential A, we denote by L the transfer operator and

by P its normalization. The dependency of constants on Lip(A), θ, diamΩ will be kept

implicit and C, λ will always denote the constants given in Theorem 1.1.

The first obvious consequence of the contraction is that P∗ fixes a unique probability

measure µA; note that in case F is given by an expanding map T , this µA is the well-

known invariant Gibbs measure associated with the potential A.

We proceed with a property of classical flavor.

Corollary 1.2 (Spectral gap). The action on Lipschitz functions of P is exponentially

contracting on a complement of the set of constant functions (which by normalization is

the 1-eigenspace of P).

More precisely, for each Lipschitz function ζ : Ω → R with
∫

ζ dµA = 0, we have

‖Pnζ‖Lip ≤ C2(ζ)λ
n

where C2(ζ) = C(1 + diamΩ) Lip(ζ) and ‖·‖Lip = ‖·‖∞ + Lip(·) denotes the Lipschitz

norm.
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This result is well-known in many cases, and the references are too numerous to be

given here; see for example the already-cited [PP90]. Our method has two strengths:

we obtain the result in the broad framework of ICS, and we get explicit dependency of

the constant in term of metric quantities (diameter, Lipschitz constant, etc.)

We now turn to stability results (see Section 6).

Corollary 1.3 (Lipschitz-continuity of the Gibbs map). Assume that A,B are

normalized Lipschitz potentials for the same ICS F and let µA and µB refer to the

corresponding Gibbs measures. Then

W1(µA, µB) ≤ C3 ‖A−B‖∞

where C3 =
C

1−λ
diamΩ.‡ In particular, for any Lipschitz test function ϕ, we have

‖

∫

ϕ dµA −

∫

ϕ dµB‖ ≤ C3 Lip(ϕ) ‖A−B‖∞ .

This result is new, as far as we know. In many cases, classical differentiability results

for the map A 7→
∫

ϕ dµA imply that it is locally Lipschitz in the Lipschitz norm, but

we are not aware of a global result with a bound depending only on ‖A − B‖∞ and

Lip(A).

Note that if we translate Corollary 1.3 in α-Hölder potentials, the Gibbs map is

still locally Lipschitz on the space of α-Hölder potentials, with the space of measures

endowed with Wα. The estimate with test functions then stands for α-Hölder test func-

tions.

We turn to results which are specific to the case of regular expanding maps; i.e. we

now assume that F is obtained from a map T . First, Corollary 1.3 implies the following.

Corollary 1.4 (Continuity of the metric entropy). If A and B are normalized Lipschitz

potentials, then

‖h(µA)− h(µB)‖ ≤ C4‖A− B‖∞

where C4 =
C Lip(A)

1−λ
diamΩ + 1 and h denotes the metric entropy.

Continuity of the metric entropy is known in many cases, but we obtain it at once

for a wide class of expanding maps and with an explicit bound.

We are also able to deal with variations of the map T ; as an illustration of our

method, we concentrate on a simple case where potential variation will not interfere.

We will use the following notation for the uniform distance between maps acting on the

same space:

d∞(T1, T2) := sup
x∈Ω

d(T1(x), T2(x)).

‡ Only Lip(A) appears in C and λ, by no accident: we only need to control one Lipschitz constant,

not both.
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In the next result sys(Ω) denotes the systole of the manifold Ω, i.e. the length of the

shortest non-homotopically trivial curve (see [Gro81] for general results and references

on the topic).

Corollary 1.5 (Continuity of the maximal entropy measure). Let T1 and T2 be two

C1 expanding maps on the same manifold Ω with the same number k of sheets, assume

that one of them is 1/θ-expanding, and let µi be the maximal entropy measure of Ti for

i = 1, 2.

If ‖T1 − T2‖∞ ≤ 1
4
sys(Ω) then

W1(µ1, µ2) ≤ C5 d∞(T1, T2)

where C5 =
2C
1−λ

and C is computed with Lip(A) = 0.

The continuity of the maximal entropy measure is known in some cases, see notably

the work of Raith [Rai97], [Rai03]. Again, our result benefits from precise estimates and

broad generality (although we do not cover all cases covered by the above references).

The restriction on ‖T1 − T2‖∞ can possibly be waived; e.g. it would be sufficient

to prove that the space of expanding maps on a manifold is connected by small jumps.

It is also very likely that Corollary 1.5 extends in some form to many other classes

of expanding maps (e.g. piecewise uniformly expanding interval maps), but we do not

have a general argument that would avoid a cumbersome list of specific results; its main

part is a general result, Corollary 6.2 below.

Note that Corollary 1.5 deals with the regularity of a natural invariant measure

in terms of a varying expanding map, in the same spirit of many previous works (see

[Rue98], [BS08], [Bal08], [HM10] and [BCV12]) in which the absolutely invariant mea-

sure was considered. These papers are all in the so called Linear Response Theory.

Here, the maximal entropy measures we deal with are most of the time singular with

respect to Lebesgue measure and singular one with respect to the other, a setting where

many previous approaches are difficult to apply.

Our method depends on an argument which only applies to operators L ∗ when

they map probability measures to probability measures. Therefore, it is essential to

normalize these operators, thus to have a Ruelle-Perron-Frobenius theorem in the set-

ting of ICS. This is the role of Proposition 3.1, and it is worth noting that the method

of proof, even though obviously inspired by the construction of conformal measures in

[DU91], seems to be new. We require in corollaries 1.4 and 1.5 that the potentials are

already normalized, as we would otherwise need to control the variations of the map that

sends a potential to its normalized counterpart. While this map is probably known to

be locally Lipschitz for quite some time, it is difficult to locate such a result in the clas-

sical literature; in [GKLM15] a proof of this fact is given, which could be made effective

(i.e. giving an explicit local Lipschitz constant in term of the potential). It follows that

the metric entropy and the maximal entropy measure are locally Lipschitz-continuous

(in the potential and the expanding map respectively) even without the normalization

condition. The constants C4 and C5 should then be adjusted, but could certainly be
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made explicit.

Note that below, we introduce a pretty general framework which enables us to treat

IFS in the same setting as expanding maps; our main motivation for this is simply to

treat expanding maps on manifolds and piecewise uniformly expanding (onto) maps

together; but an IFS comes naturally with a transfer operator, to which most of the

above results apply. In particular, it is possible to deduce from our results that two self

similar IFS which are close one to another have their “natural measures” close one to

the other.

2. Definitions and examples

In this section we introduce the precise setting in which we will work. We tried to set

unified notation applicable in as broad a generality as possible, which explains why our

definitions are not totally standard.

2.1. Iterated contraction systems

Iterated contraction systems, to be defined below, are a natural generalization of

iterated function systems. The only departure from the usual setting is that instead

of considering a finite set of contracting maps, we consider one multiset-valued map

with contraction properties. The reason for this choice is that it makes this notation

immediately applicable to expanding maps, see Section 2.3

Definition 2.1. We shall define a multiset with k elements (or k-multiset) as the orbit

of a k-tuple under the action of the permutation group Sk; we will denote a multiset

using the usual set braces, repeating elements if needed: for example {1, 2, 2, 5} is a

multiset with 4 elements.

The set of elements of a multiset is called its underlying set.

Then the multiplicity function 1A of a multiset A whose elements are in some

“universal” set Ω is the functions which maps every element of Ω to its multiplicity as

an element of A; the multiplicity function contains all the information on A. The sum

of multisets A and B is the multiset A ⊎B whose multiplicity function is 1A + 1B.

A bijection f between k-multisets A and B is the data of k pairs (ai, bi) such that

A = {a1, . . . , ak} and B = {b1, . . . , bk}; beware that the functional notation bi = f(ai)

would be misleading as we could have ai = aj while f(ai) 6= f(aj); we therefore

sometimes write f(i) = (ai, bi), with the understanding that for any permutation π,

the map fπ := i 7→ (aπ(i), bπ(i)) is identified with f .

The set of all k-multisets whose elements are taken in some set Ω is denoted by

M k(Ω).

When summing and multiplying over multisets, each element appears in the sum as
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many times as it appears in the multiset:
∑

x∈{1,2,2,5}

x = 1 + 2 + 2 + 5.

Let us give a few motivating examples.

Example 2.2. Consider an IFS, that is a family of k contracting maps F1, . . . , Fk of Ω.

The multiset valued map defined by F (x) = {F1(x), . . . , Fk(x)} is an ICS: the bijection

between F (x) and F (y) is simply given by the pairs (Fi(x), Fi(y)). The contraction ratio

of F is the largest contraction ratio of the Fi.

This is a very particular kind of ICS, since we have globally defined sections of F

(i.e., maps that selects continuously for each x an element of F (x)); but F (x) is not a

set whenever two Fi’s take the same value at x.

Definition 2.3. Let Ω be a complete metric space, k be a positive integer, and F be a

map Ω → M k(Ω).

We say that F is an iterated contraction system ( ICS for short, k-ICS or ICS with

k terms if we want to make k explicit) if there is a number θ ∈ (0, 1) (called contraction

ratio) such that for all x, y ∈ Ω there is a bijection f = (xi, yi)i between F (x) and F (y)

such that for all i,

d(xi, yi) ≤ θd(x, y).

The iterates of F are the ICS F t : Ω → M kt(Ω) (where t ∈ N) defined by

F 1 = F and F n+1(x) =
⊎

y∈Fn(x)

F (y);

note that θn is a contraction ratio for F n.

If A is a subset of Ω, we denote by F (A) the union of all the underlying sets of the

F (a), when a runs over A.

Example 2.4. Consider the map

T : x 7→ 2x mod 1

acting on S1 = R/Z, and for each x ∈ S1 let F (x) = T−1({x}). Then F is an ICS with

contraction ratio 1/2.

This is a very particular kind of ICS, since F (x) is always a set; but as is well-

known we do not have globally defined sections, so that it is not possible to obtain F

from an IFS. However, this ICS has the nice property that each x admits a neighborhood

on which sections can be defined (we say that F admits local sections).

Example 2.5. The following map acting on the closed unit disc of C is an ICS with

contraction ratio 1/2:

F : re2iπα 7→
{r

2
eiπα,

r

2
eiπ(α+1)

}

Note that F (x) is a set except when x = 0, as F (0) = {0, 0}. This ICS does not even

admit local sections around the origin.
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Just like an IFS, an ICS admits a unique attractor, i.e. a non-empty compact set

A such that A = F (A) (proof: the map A 7→ F (A) is a contraction in the Hausdorff

metric, thus has a unique fixed point). Moreover this attractor can be approximated by

iterating F on any given non-empty compact set.

2.2. Markov chains associated to an ICS and potentials

Let F be an ICS on a complete metric space Ω; up to restricting F to its attractor, we

assume that Ω is compact and that Ω = F (Ω).

Definition 2.6. A Markov chain on Ω is said to be compatible with F if at each

x ∈ Ω, its kernel P (x, ·) is supported on the underlying set of F (x). In other words,

if the position at time t of the Markov chain is x, we ask that with probability one the

position at time t+ 1 is an element of F (x).

Note that compatibility only depends on the underlying set-valued map of F .

We will be interested by very specific compatible Markov chains, where the transition

probabilities are given by a normalization of a potential function only depending on the

target points: these Markov chains indeed occur in the thermodynamical formalism,

which is our main motivation.

Definition 2.7. A potential is simply a continuous function A : Ω → R; it is said to

be normalized with respect to F if for all x ∈ Ω we have
∑

y∈F (x)

eA(y) = 1,

where we sum over the multiset F (x).

The Markov chain associated to a normalized potential A is defined by letting

m · eA(y) be the transition probability from x to y whenever y is an element of F (x)

of multiplicity m.

We denote by L ∗
F,A (leaving asside any subscripts that are clear from the context)

the operator on finite, signed measures, defined by
∫

ϕ(x) d(L ∗µ)(x) =

∫

∑

y∈F (x)

eA(y)ϕ(y) dµ(x)

whenever ϕ is a continuous test function. In other words, L ∗ is the dual of the transfer

operator defined by

Lϕ(x) =
∑

y∈F (x)

eA(y)ϕ(y).

Note that, if A is normalized, then L (1) = 1 and L ∗ maps probability measures to

probability measures.

In case of a non-normalized potential, the associated Markov chain is obtained

through a normalization of L through the construction of an invariant function in

proposition 3.1 as shown below (see definition 3.2).
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The simplest example of a normalized potential is the constant one: A(y) = − log k

where k is the number of terms of F . For example if F is an IFS with uniform

contraction ratio, the stationary probability of the Markov chain associated to A is

the usual canonical measure on the fractal attractor defined by F .

Other examples are easy to construct when F is an IFS with the “strong separation

property”: F has global sections F1, . . . , Fk with disjoint images, and any sufficiently

negative continuous function on F1(Ω)∪ . . .∪Fk−1(Ω) can be extended to a normalized

potential by suitably choosing its values on Fk(Ω).

2.3. The case of expanding maps

The definition of expanding maps may vary in the literature; the one we adopt fits what

we will need in the proof of the contraction property, and includes in the same framework

shifts, some IFS, classical smooth expanding maps, piecewise expanding unimodal maps

and other examples.

Definition 2.8. If Ω is a compact metric space, a continuous map T : Ω → Ω is said

to be regular expanding if T−1 : x 7→ T−1({x}) is the underlying set-valued map of a

k-ICS F , where k = max{#T−1({x}) | x ∈ Ω}.

We say that T has k sheets, and if θ is a contraction ratio of F then we say that T

is 1
θ
-expanding.

It is not clear from this definition that F is uniquely defined by T ; but in the cases

we will consider, the set of points x having a maximal number of inverse images is dense

in Ω, so that F is in fact uniquely defined by T .

Example 2.9. Let Ω be a compact Riemannian manifold, and T : Ω → Ω be a C1 map

such that ‖DxT (v)‖ ≥ 1
θ
‖v‖ for some θ ∈ (0, 1) and all (x, v) ∈ TΩ. Then T is regular

expanding; indeed T is a local diffeomorphism, thus a covering map and F (x) = T−1(x)

defines an IFS: the uniformly expanding property of DxT easily ensures the contracting

property for F , using the lifting property on a minimizing geodesic from x to y to pair

their inverse images.

Note that few manifolds admit expanding maps, an obvious example being the torus

of any dimension. The keyword here is “infra-nil-manifold”, but we will not elaborate

on this topic.

Example 2.10. Let Ω = [a, b] be a closed interval, and T : Ω → Ω be a piecewise C1

expanding unimodal map; that is, for some c ∈ (a, b) the map T is C1 with T ′ > 1 on

[a, c] and C1 with T ′ < −1 on [c, b], and we have T (a) = T (b) = a and T (c) = b.

Then T is regular expanding; it has 2 sheets and is (min |T ′|)−1-expanding, and its

associated ICS F is in fact an IFS (the linear order on [a, b] enables one to define global

sections). For all x 6= b, F (x) has two distinct elements while F (b) = {c, c}.

More examples of this kind are provided by letting T (x) zig-zag between a and b

more than once, or by considering higher-dimensional analogues, such as the following

triangle foldings.



Contraction in the Wasserstein metric 11

Example 2.11. Let Ω be a simplex in Rd which is subdivided into a tiling of smaller

simplices. Consider a map ϕ defined on the vertices of this simplicial decomposition,

with values in the set of vertices of Ω, and not mapping two adjacent vertices to the same

vertex. Define a map T : Ω → Ω by extending affinely the map ϕ over each subsimplex.

If all of these affine maps are dilating (e.g. if the subsimplices are all small enough),

then T is a regular expanding map which has as many sheets as there are simplices in

the decomposition.

An explicit example is given by a right-angled isocele triangle, which is folded along

the altitude issued from the right-angled vertex and then rotated and dilated into the

original triangle.

Just like the piecewise expanding unimodal maps above, all these examples can be

considered both as IFS and expanding maps.

Example 2.12. Let F1, . . . Fk : Ω → Ω be an IFS on some compact space Ω, assume the

strong separation property (i.e. the Fi(Ω) are pairwise disjoints) and up to restriction,

assume Ω is the attractor (i.e. Ω = F1(Ω) ∪ . . . ∪ Fk(Ω)). Define on Ω the map T that

sends x ∈ Fi(Ω) to F−1
i (x). Then T is obviously a regular expanding map.

When an IFS does not have the strong separation property, we do not usually get

a well-defined expanding map. This is not a big issue since our real focus here is on

the random backward orbits, which are well-defined for all IFS even when they have big

overlaps.

Example 2.13. Let Ω = {1, . . . , k}N endowed with the metric

dθ(x, y) = θi(x,y)

where x = (xj)j, y = (yj) and i(x, y) = min{j ∈ N | xj 6= yj} for any fixed θ < 1. The

shift map σ : Ω → Ω is the transformation such that σ(x0, x1, x2, ...) = (x1, x2, x3, ...),

for any x = (x0, x1, x2, ...) ∈ Ω. It is obviously a regular expanding map with k sheets

and expanding ratio 1
θ
.

The present framework does not cover subshifts of finite type, first because we

assume a bijection between F (x) and F (y) for all x, y (but it might be possible to use

the multiset approach to solve this issue), second because we ask a bijection (xi, yi)i
between F (x) and F (y) that pairs only close elements together. It might be possible to

extend the proof of the contraction property below to the case when the average distance

between xi and yi is small, but at best at the cost of some technical complication.

2.4. Iterates of the transfer operator

We will need to consider iterates of the transfer operator, so let us fix some notation

and prove a useful estimate, to be used several times below.

Assume that F is an iterated contraction system and A : Ω → R is Lipschitz.

For each x ∈ Ω consider the following multiset F̄ t(x) of admissible sequences with

respect to F , of length t + 1 and starting at x: F̄ t(x) contains each sequence
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s = (x0 = x, x1, x2, . . . , xt) with xn+1 ∈ F (xn) for all 0 < n < t. Furthermore, the

sequence (x0 = x, x1, x2, . . . , xt) occurs with multiplicity given by the product of the

multiplicities of xn+1 in F (xn), for 0 < n < t. This multiset is in a natural bijection

with F t(x), but refines it by identifying the orbits followed from x to each of the elements

of F t(x).

Then for each admissible sequence s = (x, x1, . . . , xt) of length t, we define

At(s) :=

t
∑

n=1

A(xn)

so that, for ϕ : Ω → R continuous,

L
t
Aϕ(x) =

∑

s=(x,x1x2,...,xt)∈F̄ t(x)

eA
t(s)ϕ(xt).

By definition of an ICS, for all x and y there is a bijection between F̄ t(x) and

F̄ t(y) such that for all admissible s = (x, x1, x2, . . . , xt), the corresponding r =

(y, y1, y2, . . . , yt) satisfies d(xn, yn) ≤ θnd(x, y) for all n. As A is Lipschitz, we hence

have that

|At(s)− At(r)| =

∥

∥

∥

∥

∥

t
∑

n=1

A(xn)−

t
∑

n=1

A(yn)

∥

∥

∥

∥

∥

≤

t
∑

n=1

Lip(A)d(xn, yn)

≤ Lip(A)

t
∑

n=1

θnd(x, y) ≤
Lip(A)

1− θ
d(x, y).

For all t, all x, y, and all appropriately paired s = (x, x1, . . . , xt) ∈ F̄ t(x) and

r = (y, y1, . . . , yt) ∈ F̄ t(y) we therefore have

eA
t(s)−At(r) ≤ eMd(x,y), (1)

where M = Lip(A)(1− θ)−1.

3. Normalized potentials and operators

For a given Lipschitz continuous potential A and an ICS F , we now construct an

LF ;A-invariant function. Recall that the spectral radius of LF ;A acting on the space of

continuous functions C(Ω) with respect to the norm ‖f‖∞ := supx∈Ω |f(x)|, is

ρ = lim
n→∞

(

sup
f∈C(Ω),f 6=0

‖L n(f)‖∞
‖f‖∞

)
1

n

Proposition 3.1. Assume that F is an iterated contraction system and A : Ω → R

is Lipschitz. Then there exists a strictly positive, Lipschitz continuous function h such

that L (h) = ρh.

Proof. We begin with the construction of ρ. Note that by compactness of Ω, A is

bounded from above and below. In particular, for n ∈ N,

knenminx∈Ω A(x) ≤ L
n(1)(x) ≤ knenmaxx∈Ω A(x)
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for all x ∈ Ω. Hence, for a fixed x0 ∈ Ω,

ρ̃ := lim sup
n→∞

(L n(1)(x0))
1/n

is bounded away from 0 and ∞. Note that we immediately have ρ̃ ≤ ρ, but we will get

equality later.

Now, fix a bijection (si, ri)1≤i≤kn as above between F̄ n(x) and F̄ n(y). Then

|L n(1)(x)− L
n(1)(y)| ≤

∑

i

∣

∣eA
n(si) − eA

n(ri)
∣

∣

≤
∑

i

eA
n(si)

∣

∣1− eA
n(ri)−An(si)

∣

∣

≤
∣

∣eMd(x,y) − 1
∣

∣L
n(1)(x)

≤ M̃L
n(1)(x)d(x, y), (2)

with M̃ = (exp(M diam(Ω)) − 1)/ diam(Ω). This estimate has several important

consequences. First of all, as the diameter of Ω is bounded, it follows that

sup{L n(1)(x)/L n(1)(y) : x, y ∈ Ω, n ∈ N} < ∞, (3)

which implies that ρ̃ does not depend on the choice of x0; in particular, ρ̃ = ρ.

Hence, the radius of convergence of the power series
∞
∑

n=1

snL n(1)(x)

is equal to 1/ρ for all x ∈ Ω. Moreover, following Denker and Urbanski ([DU91]), there

exists a sequence (an) with a1 = 1, an+1 ≥ an and an+1

an
→ 1 such that

∞
∑

n=1

ans
n
L

n(1)(x)

{

= ∞ : s ≥ 1/ρ

< ∞ : s < 1/ρ.

Note that (an) might be chosen independently from x ∈ Ω by (3). For 0 < s < 1/ρ,

define

hs(x) :=

∑∞
n=1 ans

nL n(1)(x)
∑∞

n=1 ans
nL n(1)(x0)

.

It follows from (3) that ‖hs‖∞ is uniformly bounded, and from (2) that |hs(x)−hs(y)| ≤

M̃hs(x)d(x, y). Hence, by Arzéla-Ascoli, there exists a sequence (sm) with sm ր 1/ρ and

a Lipschitz function h such that limm ‖hsm−h‖∞ = 0 and |h(x)−h(y)| ≤ M̃h(x)d(x, y).

We now exploit the divergence in order to show that L (h) = ρh. Let ε > 0 and

choose Nε such that |an−1/an−1| < ε for all n > Nε. Set Q(s) :=
∑∞

n=1 ans
nL n(1)(x0).

We then have by divergence of Q(s) that

|L (h)(x)− ρh(x)| ≤ lim
m→∞

1

Q(sm)

∣

∣

∣

∣

∣

∞
∑

n=2

(an−1s
n−1
m − ans

n
mρ)L

n(1)(x)

∣

∣

∣

∣

∣

= lim
m→∞

ρ

Q(sm)

∣

∣

∣

∣

∣

∞
∑

n=Nε

(

an−1

ρansm
− 1

)

ans
n
mL

n(1)(x)

∣

∣

∣

∣

∣
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≤ ρh(x) sup
n≥Nε

lim
m→∞

∣

∣

∣

∣

an−1

ρansm
− 1

∣

∣

∣

∣

≤ ερh(x).

Hence, L (h) = ρh.

We now employ the above proposition in order to associate a Markov chain and a

corresponding Markov operator to a given ICS F and a potential A.

Definition 3.2. The Markov chain associated to the Lipschitz potential A is defined by

letting m · eA(y)h(y)/ρh(x) be the transition probability from x to y whenever y is an

element of F (x) of multiplicity m, where ρ and h are as in proposition 3.1.

We denote by P∗
F,A,h (leaving again aside any subscripts that are clear from the

context) the operator on finite, signed measures, defined by
∫

ϕ(x) d(P∗µ)(x) =

∫

∑

y∈F (x)

eA(y) h(y)

ρh(x)
ϕ(y) dµ(x)

whenever ϕ is a continuous test function. In other words, P∗ is the dual of the operator

defined by

Pϕ(x) =
∑

y∈F (x)

eA(y) h(y)

ρh(x)
ϕ(y) =

L (hϕ)(x)

ρh(x)
.

We refer to P and P∗ as the normalized operators with respect to A and h. As above,

since P(1) = 1, the dual P∗ leaves invariant the subspace of probability measures.

As a preparation for the the proofs below, we now analyze the regularity of the

iterates of P. For s = (x, x1, . . . , xt) ∈ F̄t as defined above, set

At
h(s) = At(s) + log h(xt)− log h(x)− n log ρ.

As it easily can be seen, we then have that

P
tϕ(x) =

∑

s=(x,...xt),s∈F̄ t(x)

eA
t
h
(s)ϕ(xt).

Furthermore, for r, s ∈ F̄t appropriately paired with r = (y, y1, . . . , yt), it follows that

eA
t
h
(s)−At

h
(r) = eA

t(s)−At(r)h(xt)

h(yt)

h(y)

h(x)

≤ eMd(x,y)
(

1 + M̃θtd(x, y)
)(

1 + M̃d(x, y)
)

≤ e(M+2M̃ )d(x,y) = eM
′d(x,y), (4)

where M ′ = M + 2M̃ .

4. Optimal transport and Wasserstein metric

We will need to use coupling in order to derive our main results. In order to do so, let

us give a simple but useful technical result.
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Proposition 4.1. Assume that there are sets A1, . . . , An such that the probability

measures µ and ν are concentrated on the union of the Ai. Let c = maxi diam(Ai),

C = diam(∪Ai) and m =
∑

i min(µ(Ai), ν(Ai)). Then

W1(µ, ν) ≤ mc+ (1−m)C.

Proof. We let π be a coupling of µ and ν that moves a mass at most m between different

Ai’s, i.e. such that

π({(x, y)|∃i such that both x, y ∈ Ai}) ≥ m.

Once this transport plan is constructed, we compute
∫

Ω×Ω

d(x, y) dπ(x, y) =

∫

∪iAi×Ai

d(x, y) dπ(x, y) +

∫

Ω\∪iAi×Ai

d(x, y) dπ(x, y)

≤ mc + (1−m)C.

To construct π, we first note that it is possible to decompose µ into

µ =
∑

i

(µin
i + µout

i )

where the µ
in/out
i are concentrated on Ai and µin

i (Ai) = min(µ(Ai), ν(Ai)) (and similarly

for ν). Then we set

π =
∑

i

µin
i ⊗ ν in

i + (
∑

i

µout
i )⊗ (

∑

i

νout
i ).

The following proposition is also more or less folklore and very useful; it appears

for example in a proof in [HM08].

Proposition 4.2. Let P be a linear operator on the set of measures on Ω (assumed

to be compact for simplification), such that P is continuous in the weak-∗ topology and

maps probability measures to probability measures.

If for some C > 0 and all x, y in some dense subset of Ω we have

W1(P (δx), P (δy)) ≤ Cd(x, y)

then for all µ, ν ∈ P(Ω) we also have

W1(P (µ), P (ν)) ≤ CW1(µ, ν).

Proof. Let us give a slight variation of the Hairer-Mattingly proof, using density of

finitely supported measures: we only have to prove W1(P (µ), P (ν)) ≤ CW1(µ, ν) when

µ =
∑

i∈I aiδxi
and ν =

∑

j∈J bjδyj and xi, yj are in the dense subset of Ω we are given.

Let

π̃ =
∑

i∈I , j∈J

ci,jδ(xi,yj)

be an optimal transport plan from µ to ν, and for each (i, j), let πi,j be an optimal

transport plan from P (δxi
) to P (δyj).
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Define π =
∑

i,j ci,jπi,j ; it transports P (µ) to P (ν) and we have
∫

Ω×Ω

d(x, y) dπ(x, y) =
∑

i,j

ci,j

∫

d(x, y) dπi,j(x, y)

=
∑

i,j

ci,jW1(P (δxi
), P (δyj))

≤ C
∑

i,j

ci,jd(xi, yj)

= CW1(µ, ν)

proving the claim.

5. Proof of the main result and first applications

We are now in position to prove the main theorem. Throughout this section, assume

that F is a k-ICS with contraction ratio θ, A is a Lipschitz potential on the attractor

Ω of F , and P and P∗ are defined as in definition 3.2. For the reader’s convenience, the

statement of Theorem 1.1 is repeated.

Theorem 5.1 (Contraction property). The normalized operator P
∗ is exponentially

contracting on probability measures: There exist constants C = C(Lip(A), θ, diamΩ)

and λ = λ(Lip(A), θ, diamΩ) < 1 such that for all n ∈ N and all µ, ν ∈ P(Ω) we have

W1((P
∗)nµ, (P∗)nν) ≤ CλnW1(µ, ν).

Proof. We use three reductions of the problem. First, it is sufficient to prove Theorem

5.1 for some iterate (P∗)t of the dual of the normalized operator (using the continuity

of the operator and the flexibility given by the constant C). Second, it is sufficient to

prove it when Ω is endowed with any metric d′ which is Lipschitz-equivalent to d (again

using the constant C to absorb the ratio between the two metrics); an important point

is that we can choose the metric d′ depending on A. Last, thanks to Proposition 4.2,

we only need to prove it when µ and ν are Dirac measures.

So, it is sufficient to find t ∈ N, a metric d′ equivalent to d and a number λ′ ∈ (0, 1)

such that for all x, y ∈ Ω we have

W ′
1((P

∗)tδx, (P
∗)tδy) ≤ λ′d′(x, y)

where W ′
1 is the Wasserstein metric associated to the distance d′.

The principal idea is to apply Proposition 4.1; let us define

d′(x, y) =

{

θ−Nd(x, y) if d(x, y) ≤ θN · diamΩ

diamΩ otherwise

for some N to be specified later. This metric will make Proposition 4.1 more effective

because it localizes the Wasserstein metric to some small scale (all displacements are

now equivalent as soon as they are somewhat big).
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Now fix a positive integer t. Moreover, for x, y ∈ Ω, fix a bijection (si, ri)1≤i≤kt

between F̄ t(x) and F̄ t(y) as in Section 2.4 and apply a slight variant of Proposition 4.1:

let π refer to a transport plan from

(P∗)tδx =
∑

i

eA
t
h
(si)δxt

to

(P∗)tδy =
∑

i

eA
t
h
(ri)δyt

that moves a mass at least (cf. estimate (4))

m(x, y) :=
∑

i

min(eA
t
h
(si), eA

t
h
(ri)) ≥

∑

i

eA
t
h
(si)e−M ′d(x,y)

= e−M ′d(x,y)

by a distance at most d′(xi
t, y

i
t) ≤ θt−Nd′(x, y) and moves the rest of the mass by a

distance at most diamΩ. We get

W ′
1

(

(P∗)tδx, (P
∗)tδy

)

≤ e−M ′d(x,y)θt−Nd′(x, y) + (1− e−M ′d(x,y)) diamΩ

≤ θt−Nd′(x, y) + (1− e−M ′d(x,y)) diamΩ,

which is at most
{

(θt−N +M ′ · diamΩ · θN)d′(x, y) when d′(x, y) < diamΩ

(θt−N + 1− e−M ′ diamΩ) · diamΩ when d′(x, y) = diamΩ

First note that the expressions above only depend on the parameters θ, diamΩ, Lip(A).

Now, taking N large enough and then t large enough ensures that the right-hand-side

is at most λ′d′(x, y) for some uniform λ′ < 1.

If A already is a normalized potential, the constants in the above theorem can be

determined rather explicitly. Namely, it is not difficult to see that one can take for

example

C = θ−N
(

θ +
M

1− θ
diamΩ

)2t

(recall that M = Lip(A)(1− θ)−1) and

λ =
(

1−
1

2
e−

M
1−θ

diamΩ
)

1

t

where N is the solution to

θN
M

1− θ
diamΩ = 1− e−

M
1−θ

diamΩ

and t is such that

θt ≤ θ2N
M

2(1− θ)
diamΩ.

Note that λ depends on t and that C depends on N and also on t. Playing with N

and t we can improve λ. These two values C and λ are important in the next result.
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5.1. Proof of the existence of a spectral gap

Through duality, it is now easy to prove Corollary 1.2 and deduce uniqueness of h.

Corollary 5.2 (Spectral gap). Let µ be the fixed point of P∗ in P(Ω) (i.e. the invariant

Gibbs measure associated to F and A); for each Lipschitz function ζ : Ω → R such that
∫

ζ dµ = 0, we have

‖Pnζ‖Lip ≤ C2(ζ)λ
n

where C2(ζ) = (1+diamΩ)C Lip(ζ) and C, λ are the constants given by Theorem 5.1. In

particular, the function h in proposition 3.1 is unique up to multiplication by constants.

Proof. We first control the uniform norm of Pnζ (this is the part where we need ζ to

have vanishing µ-average): for all x ∈ Ω we have

‖Pnζ(x)‖ =

∥

∥

∥

∥

∫

P
nζ(y) dδx(y)−

∫

ζ dµ

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

ζ(y) d(P∗nδx)(y)−

∫

ζ dµ

∥

∥

∥

∥

≤ Lip(ζ)W1(P
∗nδx, µ) ≤ Lip(ζ) · CλnW1(δx, µ)

≤ C diamΩ · Lip(ζ) · λn.

Next we control with the same kind of trick the Lipschitz constant of Pnζ (this part

holds whatever the integral of ζ): for all x, y we have

‖Pnζ(x)− P
nζ(y)‖ =

∥

∥

∥

∥

∫

P
nζ dδx −

∫

P
nζ dδy

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

ζ d(P∗nδx)−

∫

ζ d(P∗nδy)

∥

∥

∥

∥

≤ Lip(ζ)W1(P
∗nδx,P

∗nδy) ≤ Lip(ζ) · Cλnd(x, y).

This also implies that Pf = f if and only if f is a constant function. Hence, L (f) = f

if and only if f is a multiple of h given by proposition 3.1.

Observe that this result for example implies that an expression like
∞
∑

n=0

P
nζ

is a well-defined Lipschitz function whenever
∫

ζ hdµ = 0. This expression moreover

defines a bounded inverse to the operator I − PF,A restricted to 0-average functions.

When F is induced by a map T , it is also classical to deduce an exponential decay

of correlations from the spectral gap; however, in our general setting and given the way

P is defined, we would need to extend to regular expanding maps the classical relation
∫

f ◦ T · g dµ =

∫

f · P(g) dµ

(for all f ∈ L1(µ) and g continuous). This is certainly doable, but needs to carefully

handle measurable selections; to keep the present article relatively short, we prefer to

postpone these details to a further study of ICS and regular expanding maps.
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6. Stability of the Gibbs map

Unless otherwise specified, we assume throughout this section that the potentials are

already normalized (i.e. L = P) in order to be able to give accessible proofs which reveal

the interplay between coupling techniques and thermodynamic formalism. Moreover,

this also allows to give relatively explicit controls on the associated constants.

6.1. General results

In order to prove that the map which sends an ICS F and a normalized potential A to

the Gibbs measure µF,A is locally Lipschitz, we first need to prove the stability of the

dual transfer operator.

The uniform norm ‖·‖∞ is defined as usual for potentials, and a similar distance is

defined for ICS with the same number of terms defined on a common metric space X

by:

d∞(F1, F2) = sup
x∈X

inf
(yj

1
,yj

2
)j

sup
j

d(yj1, y
j
2)

where the infimum is taken over all bijections between the multisets F1(x) and F2(x).

In other words, d∞(F1, F2) ≤ D exactly when for all x, it is possible to pair the elements

of F1(x) and F2(x) such that no two paired elements are more than D apart.

Proposition 6.1. Let F1, F2 be two ICS with k terms defined on the same compact

metric space X. Let A1, A2 be potentials defined on X which are assumed to be

normalized with respect to F1 and F2 respectively. Let Li = LFi,Ai
be the transfer

operator defined by (Fi, Ai) on the set of continuous functions from X to R. Then for

any probability measure µ on X, we have

W1(L
∗
1 µ,L

∗
2 µ) ≤ diamX · ‖A1 −A2‖∞ + (Lip(A2) diamX + 1)d∞(F1, F2).

This inequality is not optimal from the proof below, but is good enough for small

variations and easy to state. Note that by symmetry, Lip(A2) can be replaced by

Lip(A1), the point being that we only need to control one of the Lipschitz constants.

Proof. Reasoning as in the proof of Proposition 4.2, we see that it is sufficient to prove

this inequality when µ = δx is a Dirac mass. In this case, we have

L
∗
i δx =

k
∑

j=1

eAi(y
j
i )δyji

;

where y1i , . . . y
k
i are the elements of Fi(x), numbered such that d(yj1, y

j
2) ≤ d∞(F1, F2) for

all j. There is a transport plan between these two measures that moves as much mass

as possible from each of the yj1 to yj2. This plan moves an amount of mass

m(x) :=
∑

j

min(eA1(y
j
1
), eA2(y

j
2
))

by a distance at most d∞(F1, F2), and the rest of the mass is moved by at most diamX .
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We have for all j:

A2(y
j
2) ≥ A2(y

j
1)− Lip(A2)d(y

j
1, y

j
2)

≥ A1(y
j
1)− ‖A1 − A2‖∞ − Lip(A2)d∞(F1, F2)

so that

eA2(y
j
2
) ≥ eA1(y

j
1
)e−‖A1−A2‖∞−Lip(A2)d∞(F1,F2),

from which it comes (using the normalization
∑

eA1(y
j
1
) = 1)that

1−m(x) ≤ ‖A1 − A2‖∞ + Lip(A2)d∞(F1, F2).

We get that the plan under consideration has cost less than

m(x)d∞(F1, F2) + diamX (‖A1 −A2‖∞ + Lip(A2)d∞(F1, F2))

and bounding m(x) by 1 yields the claimed inequality.

Combining this estimate with the contraction property, we obtain that the Gibbs

measure depends on the ICS and the potential in a locally Lipschitz way.

Corollary 6.2. Let F1, F2 be two ICS with k terms defined on the same compact metric

space X.§ Let A1, A2 be potentials defined on X which are assumed to be normalized with

respect to F1 and F2 respectively. Let µi be the Gibbs measure associated with (Fi, Ai),

i.e. the unique probability measure invariant under L ∗
i = P∗

i .

If F2 has contraction ratio θ then we have

W1(µ1, µ2) ≤
C

1− λ
( diamX · ‖A1 −A2‖∞ + (Lip(A2) diamX + 1)d∞(F1, F2))

where C, λ are the constants given by Theorem 5.1 in terms of diamX, θ and Lip(A2).

Note that if we vary both pairs (Fi, Ai), we only get a locally Lipschitz control, as

C and λ both get poor when Lip(A2) goes to infinity, or θ goes to 1. But if we fix one of

them, (F2, A2) say, then we get a globally uniform control of the distance between the

Gibbs measures.

Proof. Consider

un := sup
µ∈P(X)

W1(L
∗n
1 µ,L ∗n

2 µ);

from the previous proposition we know that

u1 ≤ diamX · ‖A1 −A2‖∞ + (Lip(A2) diamX + 1)d∞(F1, F2).

Given any probability measure µ on X , we have

W1(L
∗(n+1)
1 µ,L

∗(n+1)
2 µ)

≤ W1(L
∗n
1 (L ∗

1 µ),L
∗n
2 (L ∗

1 µ)) +W1(L
∗n
2 (L ∗

1 µ),L
∗n
2 (L ∗

2 µ))

≤ un + CλnW1(L
∗
1 µ,L

∗
2 µ)

≤ un + Cλnu1.

§ with possibly different attractors Ω1,Ω2.
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Then by induction on n we get

un ≤ (Cλn−1 + . . .+ Cλ2 + Cλ+ 1)u1 ≤
C

1− λ
u1.

For any fixed probability µ, when n goes to ∞, we have L ∗n
i µ → µi so that we get

W1(µ1, µ2) ≤ lim inf un ≤
C

1− λ
u1

as desired.

We can now easily deduce the results announced in the introduction starting with

the following.

Proof of Corollary 1.3. We simply apply Corollary 6.2 to F1 = F2 = F and A,B,

getting:

W1(µA, µB) ≤
C

1− λ
diamΩ · ‖A− B‖∞ .

The consequence in term of test functions follows by duality.

6.2. Application to expanding maps

Let us now see how the above can be used to prove Corollaries 1.4 and 1.5 above for

expanding maps with respect to normalized potentials.

Proof of Corollary 1.4. Since A and B are normalized, the spectral radii of the LA and

LB are equal to 1. Furthermore, µA and µB are equilibrium states (see, e.g., [Wal78]).

Hence, h(µA) = −
∫

A dµA and h(µB) = −
∫

B dµB. Using the previous inequality we

get:

‖h(µA)− h(µB)‖ ≤

∥

∥

∥

∥

∫

A dµA −

∫

A dµB

∥

∥

∥

∥

+

∫

‖A−B‖ dµB

≤ Lip(A)W1(µA, µB) + ‖A− B‖∞

≤
(C Lip(A)

1− λ
diamΩ + 1

)

‖A− B‖∞ .

To prove Corollary 1.5, we mainly have to show how the ICS F depends on the

given expanding map T . This is the part where we restrict to C1 expanding maps on

manifolds.

Lemma 6.3. Let T1, T2 be C1 expanding map on the same manifold Ω and assume that

‖T1 − T2‖∞ ≤ 1
4
sys(Ω). Then the ICS Fi : x 7→ T−1

i (x) satisfy

d∞(F1, F2) ≤ 2d∞(T1, T2).
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Proof. First, recall that both T1 and T2 are self-covering maps of Ω.

Let x ∈ Ω be any point, and let

{x1, . . . , xk} := T−1
1 (x) = F1(x).

For all j ∈ {1, . . . , k}, let γj be a shortest geodesic from x to T2(xj) and denote by γ−1
j

the same curve parametrized in the other direction; note that these curves have length

at most d∞(T1, T2). We construct a curve γ̃j in Ω as follows.

First, γ̃1
j is the lift of γj with respect to the covering map T1 that starts at xj . Its

endpoint is mapped by T1 to T2(x1). Second, γ̃1
j is the lift of γ−1

j with respect to the

covering map T2 that starts at the endpoint of γ̃
1
j ; its endpoint is denoted by yj and we

have T2(yj) = x. Then γ̃j is the concatenation of γ̃1
j and γ̃2

j .

By construction, γ̃j links xj ∈ F1(x) to yj ∈ F2(x) and, since the Ti are expanding,

has length at most 2d∞(T1, T2). Our assumption on the distance between the Ti ensures

that the yj are pairwise distinct, so that F2(x) = {y1, . . . , yk}; the conclusion then

follows from the definition of the uniform distance between ICS.

Proof of Corollary 1.5. It is well-known (see, e.g., [Wal78]) that the maximal entropy

measure of Ti is the Gibbs measure associated to the constant potential A = − log k

where k is the number of sheets of Ti. We only have to apply Corollary 6.2 with

A1 = A2 = A (so that in particular Lip(A) = 0), using the previous Lemma to control

d∞(F1, F2), to get the desired conclusion.
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