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ABSTRACT 

Designing systems able to interact with students in a 

natural manner is a complex and far from solved 

problem. A key aspect of natural interaction is the ability 

to understand and appropriately respond to human 

emotions. This paper details our response to the 

continuous Audio/Visual Emotion Challenge (AVEC'12) 

whose goal is to predict four affective signals describing 

human emotions. The proposed method uses Fourier 

spectra to extract multi-scale dynamic descriptions of 

signals characterizing face appearance, head movements 

and voice. We perform a kernel regression with very few 

representative samples selected via a supervised 

weighted-distance-based clustering, that leads to a high 

generalization power. We also propose a particularly fast 

regressor-level fusion framework to merge systems 

based on different modalities. Experiments have proven 

the efficiency of each key point of the proposed method 

and our results on challenge data were the highest among 

10 international research teams. 
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INTRODUCTION 

Intelligent Tutoring Systems (ITS) are computer systems 

that aim to provide instruction and feedback to learners, 

(sometime with or) without the intervention of a human 

expert. Many years after the introduction of ITS in 

education and professional settings, they have 

demonstrated their capabilities and limitations. One of 

these latter is shared with traditional learning: the 

requirement of individualized learning [20]. Current 

ITSs are not adaptive due to their lack of interactivity 

and emotionality. Recent research in Learning Analytics 

can improve interactivity by predicting one student’s 
learning style [3]. Here, we’ll focus on user emotions 

understanding that belongs to Affective Computing 

research area [19]. It is well known that emotion can 

either enhance or inhibit learning [7]. Positive emotions, 

usually considered as pleasant states, impact positively 

learning, curiosity and creativity. Kort et al. [11] 

proposed a four-quadrant learning model where the first 

dimension is the affect “sign” (positive or negative) and 

the second one, the “learning activity” (from unlearning 
to constructive learning). One may notice that this model 

is not far from Rusell’s two dimensional (valence-

arousal) model of affect. 

So, in ITS and, more generally, in HCI, a current 

challenge is to give the computer the ability to interact 

naturally with the user with some kind of emotional 

intelligence. Interactive systems should be able to 

perceive pain, stress or inattention and to adapt and 

respond to these affective states. An essential step 

towards this goal is the acquisition, interpretation and 

integration of human affective state within the HCI. To 

recognize affective states, human-centered interfaces 

should interpret various social cues from both audio and 

video modalities, mainly linguistic messages, prosody, 

body language, eye contact and facial expressions. 

Automatic recognition of human emotions from audio 

and video modalities has been an active field of research 

over the last decade. Most of the proposed systems have 

focused on the recognition of acted or prototypal 

emotions recorded in a constrained environment and 

leading to high recognition rates. These systems usually 

describe affects via a prototypal modeling approach 

using the six basic emotions introduced in the early 70s 

by Ekman [4]. Another standard way to describe facial 

expressions is to analyze the set of muscles movements 

produced by a subject. These movements are called 

facial Action Units (AUs) and the corresponding code is 

the Facial Action Coding System (FACS) [5]. The first 

challenge on Facial Expression Recognition and 

Analysis (FERA'11) focused on these two kinds of affect 

description. Meta-analysis of challenge results are 

summarized in [29]. These methods generally use 

discrete systems whether based on static descriptors 

(geometrical or appearance features) and on static 

classifiers such as Support Vector Machines [27]. 
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However, these descriptions do not reflect real-life 

interactions and the resulted systems can be irrelevant to 

an everyday interaction where people may display subtle 

and complex affective states. To take this complexity 

into account, this classical description via prototypal 

modeling approach has recently evolved to a 

dimensional approach where emotions are described 

continuously within an affect space. The choice of the 

dimensions of this space remains an open question but 

Fontaine [6] showed that four dimensions cover the 

majority of affective variability: Valence (positivity or 

negativity), Arousal (activity), Expectancy (anticipation) 

and Power (control). The Affective Computing research 

community has recently focused on the area of 

dimensional emotion prediction and the first workshop 

on this topic (EmoSPACE'11 [9]) was organized three 

years ago, followed by the Audio/Visual Emotion 

Challenge (AVEC'11 [25]).  

In this paper, we report the method we proposed to 

participate to the second edition of AVEC in 2012. Next 

section will be devoted to a state of art on multimodal 

affect recognition systems. Based on this latter, we’ll 
describe the system we designed. Then we’ll detail 
consecutively the feature extraction process, the 

dimensional predictors’ training and the final 

combination. The following sections are dedicated to 

evaluation and meta-analysis of the challengers. Finally, 

conclusion and future works are presented. 

MULTIMODAL AFFECT RECOGNITION 

Usually, the most important parts of multimodal emotion 

recognition systems are the learning database, the 

extracted features, the predictor and the fusion method. 

More precisely, one of the main key points concerns the 

features' semantic level. Some methods use low-level 

features. For example, Wollmer et al. [30] propose an 

approach using features based on the optical flow. 

Dahmane et al. [2] use Gabor filter energies to compute 

their visual features. Ramirez et al. [21], conversely, 

prefer to extract high-level features such as gaze 

direction, head tilt or smile intensity. Similarly, Gunes et 

al. [8] focus on spontaneous head movements. 

Another key aspect of this new dimensional approach is 

the need for the system to take the dynamic of human 

emotions into account. Some methods propose to directly 

encode dynamic information in the features. For 

example, Jiang et al. [10] extend the purely spatial 

representation LPQ to a dynamic texture descriptor 

called Local Phase Quantisation from Three Orthogonal 

Planes (LPQ-TOP). Cruz et al. [1] propose an approach 

that aligns the faces with Avatar Image Registration, and 

subsequently compute LPQ features. Mcduff et al. [12] 

predict valence using facial Action Unit spectrograms as 

features. In this study, we focus on mid-level dynamic 

features, extracted using different visual cues: head 

movements, face deformations and also global and local 

face appearance variations. Most methods use visual 

cues directly as features.  In our method, dynamic 

information is included by computing the log-magnitude 

Fourier spectra of the temporal signals that describe the 

evolution of the previously introduced visual cues. Since 

an accurate and robust system should take advantage of 

interpreting signals from various modalities, we also 

include audio features to bring complementary 

information.  

For the prediction step, different machine learning 

algorithms can be used. Several methods are based on 

context-dependent frameworks. For example, Meng et al. 

[14] propose a system based on Hidden Markov Models. 

Wollmer et al. [30] investigate a more advanced 

technique based on context modeling using Long Short-

Term Memory neural networks. These systems provide 

the advantage to encode dynamics within the learning 

algorithm. Another solution is to base the system on a 

static predictor as, for instance, the well-known Support 

Vector Machine [1, 24]. Dynamic information being 

already included in our features, we chose a static 

predictor. The proposed method uses a kernel regressor 

based on the Nadaraya-Watson estimator [15]. For 

selecting representative samples, we perform a clustering 

step in a space of preselected relevant features. 

To merge all visual and vocal information, various 

fusion strategies may be relevant. Feature-level fusion 

(also called early fusion) can be performed by merging 

extracted features from each modality into one 

cumulative structure and feeding it to a single classifier. 

This technique is appropriate for synchronized 

modalities but some issues may appear for 

unsynchronized or heterogeneous features. 

Another solution is decision-level fusion (or late fusion); 

each extracted feature set feeds one classifier and all the 

classifier outputs are merged to provide the final 

response. For example, Nicolaou et al [17] propose an 

output-associative fusion framework. In our case, the 

fusion is based on a simple method linearly combining 

outputs corresponding to the predictions of the four 

dimensions with different systems to make the final 

predictions. This way, the system is able to capture the 

correlations between the different dimensions. 

DESIGNED SYSTEM 

This is our response to the continuous Audio/ Visual 

Emotion Challenge (AVEC'12) [26]. This challenge uses 

the SEMAINE [13] corpus as benchmarking database. 

This database has been continuously annotated by 

humans in real-time and a delay between the affect 

events and the labels has thus been introduced.  

The main contributions presented in this paper for 

affective signals prediction are the followings. 
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Figure 1: Proposed framework 

 

 The use of the log-magnitude Fourier spectrum to 

include dynamic information for human emotions 

prediction. 

 A new correlation-based measure for the feature 

selection process that increases robustness to 

possibly time-delayed labels. 

 A fast efficient framework for regression and fusion 

designed for real-time implementation. 

The proposed framework, presented in Fig. 1 is based on 

audio-visual dynamic information detailed in the next 

section. As visual cues, we propose a set of features 

based on facial shape deformations, and two sets 

respectively based on global and local face appearance. 

For each visual cue, we obtain a set of temporal signals 

and encode their dynamic using log-magnitude Fourier 

spectra. Audio information is added using the provided 

audio features. Regarding the prediction, we propose a 

method based on independent systems for each set of 

features and for each dimension. For each system, a new 

correlation-based feature selection is performed using a 

delay probability estimator. This process is particularly 

well-adapted to unsure and possibly time-delayed labels. 

The prediction is then done by a non-parametric 

regression using representative samples selected via a k-

means clustering process. We finally linearly combine 

the 16 outputs during a fusion process to take into 

account dependencies between each modality and each 

affective dimension. 

FEATURES 

In this section, we present the four different sets of 

features we used. We propose three multi-scale dynamic 

feature sets based on video; the fourth one is based on 

audio.  

For the sets of visual cues, we first extract temporal 

signals describing the evolution of facial shape and 

appearance movements before calculating multi-scale 

dynamic features on these signals. The feature extraction 

process is described in Fig. 2. 

Signal extraction 

We extract three kinds of signals: one based on shape 

parameters, and two others based on global and local 

face appearance.  

Shape parameters 

The first set of features we used is based on face 

deformation shape parameters. The initial step of this 

feature extraction process is face detection performed by 

Viola and Jones’ state-of-art algorithm. Then, we use the 

3D face tracker proposed in [22]. It detects the face area 

and estimates the relative position of 66 landmarks using 

a Point Distribution Model (PDM). The position of the i
th

 

landmark si in the image can be expressed as:  

 

where the mean location of each landmark and the 

principal subspace matrix are computed from training 

shape samples using principal component analysis 

(PCA). Here, p = {s , R , t} denotes the PDM parameters, 

which consist of global scaling s , rotation R and 

translation t. Vector q represents the deformation 

parameters that describe the deformation of si along each 

principal direction. 

As output of this system, we obtain temporal signals: 

some of them correspond to the external parameters and 

give information on the head position, and the others 

characterize deformations related to facial expressions. 
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Global appearance 

The second set of features we used is based on global 

face appearance. First, we warp the faces into a mean 

model using the point locations obtained with the face 

tracker. This way, the global appearance will be less 

sensitive to shape variations and head movements, 

already encoded in the first set. Then, we select the most 

important modes of appearance variations using PCA. 

We obtain a set of temporal signals by projecting the 

warped images on the principal modes. 

Local appearance 

The third set is based on local face appearance. First, we 

extract local patches of possibly interesting areas 

regarding deformations related to facial expressions. We 

extract an area around the mouth in order to capture 

smiles, areas around the eyes to capture the gaze 

direction, around the eyebrows to capture their 

movements, and areas where the most common 

expression-related lines can appear (periorbital lines, 

glabellar lines, nasolabial folds and smile lines). We 

chose to avoid the worry lines area because of the high 

probability it has to be occulted by hairs. Then, we use 

PCA as for the global warped images to compute 

temporal signals corresponding to the evolution of the 

local appearance of the face during time. 

 

 

Figure 2: Feature extraction overview 

 

Dynamic features 

For each of these three sets, we calculate the log-

magnitude Fourier spectra of the associated temporal 

signals in order to include dynamic information. We also 

calculate the mean, the standard deviation, the global 

energy, and the first and second-order spectral moments. 

We chose to compute these features every second for 

different sizes of windows (from one to four seconds). 

This multi-scale extraction gives information about 

short-term and longer-term dynamics. 

Audio features 

The last set of features we used is the audio feature set 

given to the participants of the AVEC'12 Challenge. It 

contains the most commonly used audio features for the 

aimed task of predicting emotions from speech (energy, 

spectral and voice-related features). 

Feature normalization 

Within a set of features, the range of values can be 

highly different from one feature to another. In order to 

give the same prior to each feature, we need to normalize 

them. A global standardization on the whole database 

would be a solution but we chose to standardize each 

feature by subject in order to reduce the inter-subject 

variability. This method should be efficient under the 

hypothesis that the amount of data for each subject is 

sufficiently representative of the whole emotion space. 

PREDICTION SYSTEM 

Using each of the four feature sets, we make separate 

predictions for the four dimensions, leading to a total of 

16 signals.  

Delay probability estimation 

The SEMAINE database has been continuously 

annotated by humans. Therefore, a delay exists between 

videos and labels, which may significantly corrupt the 

learning system [16]. We introduce in this paragraph a 

delay probability estimation method to avoid this issue. 

Let y(t) be the label signal and fi(t), i = { 1, …, n} a set of 

n features. Making the assumption that the features that 

are relevant for our prediction will be more correlated to 

the undelayed label, we can use the sum of the 

correlations between the features and the  seconds 

delayed label signal as a probability index for the label to 

be delayed by  seconds. Thus, we can estimate the delay 

probability P( ) as follows: 

 

where r is the Pearson correlation coefficient. 

 

A is the normalization coefficient defined as: 

 

We calculate P( ) for  varying in a range [0, T] where T 

is the largest expected delay that we fixed at 20 seconds 

to obtain an estimate of the delay probability distribution 

in this range. In our case, the data contain different video 

sequences. We thus estimate the delay probability as the 

mean of the delay probabilities estimated for the 

different sequences. To simplify notations, we refer to 

this estimate as P( ). 
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In Fig. 3, we represent the four different delay 

probability distributions that have been learned on the 

training database for the first feature set. By looking at 

those distributions' maxima, we identify an averaged 

delay between 3 and 4 seconds for valence and arousal, 

and between 5 and 6 seconds for expectancy and power. 

The differences between those delays could be explained 

by the higher complexity of human evaluation for 

expectancy and power. 

 

Figure 3: Delay probability distributions  

Correlation-based feature selection 

We present in this section a feature selection method 

adapted to a possibly time-delayed label. 

The kernel regression proposed in this paper uses a 

similarity measure based on distances between samples. 

Using all the features (including the ones that are not 

useful for our prediction) would corrupt the regression 

by adding an important noise. We need to identify the 

most relevant ones and then reduce the number of 

features that will be used in our distance. 

In order to only select the features that are correlated to 

the label knowing the delay probability distribution, we 

introduce a time-persistent-correlation-based measure:  

 

This way, we consider the correlation between the 

feature and the label, but also between the feature and 

different delayed versions of the label weighted by an 

estimation of the delay probability. As before, with 

different separate video sequences, we need to calculate 

the mean of this measure for the different sequences to 

obtain a correlation score between the i
th

 feature and the 

label. To simplify notations, we refer to this score as 

(fi(t),y(t)). This measure is more robust than a simple 

correlation measure in the case of possibly time-delayed 

label. By selecting features maximizing (fi(t),y(t)), we 

select a relevant set of features. 

Clustering 

 We present in this paragraph a clustering step with 

supervised weighted-distance learning. The feature 

selection step presented in the previous paragraph gives a 

correlation score between the label and each selected 

feature. We use these scores as the weights of a 

diagonally-weighted distance dw, defined as follows:  

 

with W a matrix which components are defined as: 

 

We perform a k-means clustering algorithm to reduce the 

uncertainty of the label by grouping samples that are 

close in the sense of the learned distance dw. We 

calculate the label of each group as the mean of the 

labels of the group. In order to initialize the algorithm, 

we sort out the samples by label values and gather them 

in k groups of the same size. We calculate the 

initialization seeds as the means of the features of each 

group's samples. This initialization is done to ease the 

repeatability of the clustering and because we expect to 

gather samples with neighboring labels after the 

clustering algorithm by using the learned distance dw. 

This step leads to the identification of a set of 

representative samples.  

Kernel regression 

After these learning steps, the prediction is done by a 

kernel regression using the Nadaraya-Watson estimator 

[15]. We use a radial basis function (RBF) combined 

with the previously learned weighted-distance dw as 

kernel. Let xj, j = {1, …, m} be the feature vectors of the 

m representative samples obtained after clustering, and 

yj, j = {1, …, m}, the associated labels. The prediction 

for a sample s described by feature vector xj is given by:  

 

where  is the spread of the radial basis function and K is 

defined as:  

 

As a final step, we proceed to a temporal smoothing to 

reduce the noise of the regressor output. 

FUSION 

Using the regression method described in the previous 

section, we obtain 16 signals, which are the predictions 

of the four dimensions using the four different sets of 

features. In order to fuse these signals and make the final 

prediction of the four dimensions, we chose to use local 

linear regressions to estimate linear relationships 

between the signals and the labels. More precisely, the 

coefficients of these linear relationships are estimated as 

the means of the different linear regressions coefficients 
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weighted by the Pearson's correlation between the 

predicted signal and the label of each sequence. Let yi
j
, 

i={1,…,ns}, j={V,A,E,P} be the labels of the ns video 

sequences of the learning set. Let Si , i={1,…,ns}be the 

matrices containing the 16 predictions of our system on 

the ns sequences of the training set (previously 

standardized). We estimate the four vectors of 

coefficients j of the linear relationships as follows: 

 

where i
j
 = ( Si

T
 Si ) 

-1
 Si

T
 yi

j
 is the ordinary least squares 

coefficients vector for sequence i and label j. 

We can then calculate our final predictions for the four 

dimensions pj , j ={V,A,E,P} as: 

pj = j St where St is a matrix containing the 16 

standardized predictions of all the regressors on the test 

sequence we aim to predict. 

EXPERIMENTS 

In this section, we present some experiments we carried 

out to evaluate the different key points of our method. In 

order to be robust in generalization, we chose to optimize 

the hyperparameters in subject-independent cross-

validation (each training partition does not contain the 

tested subject). We report here the result of the full 

system (with feature normalization by subject, our time-

persistent-correlation measure and our regression 

framework). The contribution of each key-point is deeply 

studied in [18]. The next subsection details the results of 

the challenge data released by the organizers one week 

before the challenge deadline. 

Fusion evaluation 

The proposed fusion method, which is based on a simple 

linear combination of the inputs learned via local linear 

regressions, is particularly fast and well-suited for a real-

time system. 

 

Table 1: Pearson's correlations averaged over all sequences 

of the AVEC'12 development set.  

To evaluate the efficiency of this fusion method and the 

contribution of each feature set, we present the results we 

obtained by learning on the training set and testing on the 

development set in Table 1. Results are given in terms of 

correlation for valence (V), arousal (A), expectancy (E) 

and power (P. We also indicate the mean correlation of 

these four dimensions. S corresponds to the shape 

features. GA to the global appearance features. LA to the 

local appearance features and A to the audio features. F 

corresponds to the fusion. 

Results on the test set 

We learned our system on the concatenation of the 

training and the development sets to compute our 

predictions on the test set. We compare in Table 2 our 

results to those given in the baseline paper [26]. We can 

notice that the results obtained on the test set are quite 

similar to those obtained on the development set. This 

highlights the high generalization power of the proposed 

framework. It can be explained by the small number of 

representative samples for the kernel regression (60 in 

our system) which limits the flexibility of the model and 

allows the system to only capture important trends in the 

data. 

 

Table 2: Pearson's correlations averaged over all sequences 

of the AVEC'12 test set. 

META-ANALYSIS OF THE CHALLENGE 

Challenger results in terms of mean correlation and root 

mean squared error are compared to the baseline in Fig. 

4. The proposed system gets the highest accuracy on 

both measures.  

The system described in [28] extracts and merges visual, 

acoustic and context relevant features. They propose a 

method that adapts to the morphology of the subject and 

is based on an invariant representation of facial 

expressions. It relies on 8 key expressions of emotions of 

the subject. In their system, each image of a video 

sequence is defined by its relative position to these 8 

expressions. These 8 expressions are synthesized for 

each subject from plausible distortions learnt on other 

subjects and transferred on the neutral face of the 

subject. Expression recognition (particularly smile) in a 

video sequence is performed in this space with a basic 

intensity-area detector. The features extracted from audio 

mode come from the analysis of the speaking turns, 

sentences and keywords. It is possible, with the 

transcripts of a conversation, to automatically find the 

emotional agent of the sequence. Knowing that each 

agent has its own emotional profile and that most of the 

time, subject and agent are emotionally synchronized, 

it’s easy to deduce a statistical mean value of the 

subject’s valence and arousal for the sequence. To fuse 

multimodal features, they use a classical Mamdani Fuzzy 

Inference System. The results show that the duration of 

high intensity smile is an expression that is meaningful 

for continuous valence detection. The main variations in 

power and expectancy are given by context data. The 

mean correlation is not far from our (0.43 instead of 

0.46) and the root mean squared error is lower. 
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The third challenger proposal use temporal statistics of 

texture descriptors extracted from facial video, a 

combination of various acoustic features, and lexical 

features to create regression based affect estimators for 

each modality. The single modality regressors are then 

combined using particle filtering, by treating these 

independent regression outputs as measurements of the 

affect states in a Bayesian filtering framework, where 

previous observations provide prediction about the 

current state by means of learned affect dynamics. 

Tested on the Audio-visual Emotion Recognition 

Challenge dataset, their filtering-based multi-modality 

fusion achieves correlation performance of 0.344. 

Comparing the three first challengers is interesting on 

two aspects. First, these results are not “so” good as 
mean correlation is always lower than 0.5. Looking at 

predictions in detail, we can see that sometime, they are 

quite perfect and sometime, completely at the opposite of 

ground truth. Let us notice that the analysis of ground 

truth labels [28] shows that the mean correlation between 

annotators is 0.45. Given both results, we may ask if we 

face an ill posed problem! Maybe affective states are too 

subtle to be detected by using only the audio-visual 

channels. Nevertheless, each challenger uses (mostly) 

different cues and gets more or less accuracy on the four 

affective dimensions. We can guess that selecting or 

combining in some way all these cues should lead to 

better results. 

CONCLUSION 

We presented a complete framework for continuous 

prediction of human emotions based on features 

characterizing head movements, face appearance and 

voice in a dynamic manner by using log-magnitude 

Fourier spectra. We introduced a new correlation-based 

measure for feature selection and evaluated its efficiency 

and robustness in the case of possibly time-delayed 

labels. We proposed a fast regression framework based 

on a supervised clustering followed by a Nadaraya-

Watson kernel regression. Our fusion method is based on 

simple local linear regressions and significantly 

improves our results. Because of the high power of 

generalization of our method, we directly learned our 

fusion parameters using our regressors outputs on the 

training set. In order to improve the fusion for methods 

that are more sensitive to over-fitting, we would have to 

learn these parameters in cross-validation. Some 

modifications on our system would be needed to increase 

its performance regarding this measure. The SEMAINE 

database on which our system has been learned and 

tested contains videos of natural interactions but 

recorded in a very constraint environment. A perspective 

for adapting these kinds of human emotion prediction 

systems to real conditions, as for Intelligent Tutoring 

Systems, would be to learn the system on "in the wild" 

data. 
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Figure 4: Baseline correlation, mean correlation and root mean squared error of the ten challengers 
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