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a b s t r a c t

Large-amplitude, geometrically non-linear vibrations of free-edge circular plates with geometric imper-fections are addressed in this work. The dynamic 
analog of the von Kármán equations for thin plates, with a stress-free initial deflection, is used to derive the imperfect plate equations of motion. An expansion 
onto the eigenmode basis of the perfect plate allows discretization of the equations of motion. The associated non-linear coupling coefficients for the 
imperfect plate with an arbitrary shape are analytically expressed as functions of the cubic coefficients of a perfect plate. The convergence of the numerical 
solutions are systematically addressed by comparisons with other models obtained for specific imperfections, showing that the method is accurate to handle 
shallow shells, which can be viewed as imperfect plate. Finally, comparisons with a real shell are shown, showing good agreement on eigenfrequencies and 
mode shapes. Frequency-response curves in the non-linear range are compared in a very peculiar regime displayed by the shell with a 1:1:2 internal 
resonance. An important improvement is obtained compared to a perfect spherical shell model, however some discrepancies subsist and are discussed.
1. Introduction

Geometric imperfections have been recognized since a long
time for having a major effect on the linear and non-linear char-
acteristics of thin-walled structures: from one structure to another
one, even though manufactured by the same technique, it has been
observed that eigenfrequencies and buckling loads can be differ-
ent. In particular, a number of experimental and theoretical studies
conducted in the 60–80s of the last century clearly establish that
the initial deflection of thin structures such as plates and shells,
that are unfortunately unavoidable when dealing with real struc-
tures, is a major cause for explaining the important discrepancies
observed between theoretical results (calculated with an assumed
perfect structure) and experimental observations (Donnell, 1976;
Chia, 1980; Coppa, 1966; Tobias, 1951; Kubenko and Koval’chuk,
2004). Other important factors that could have been incriminated
such as inaccuracy in the boundary conditions, inhomogeneity of
the material or slight variations of the thickness, are not consid-
ered in this study and have been addressed in Chen et al. (2005),
Gupta et al. (2007).

Among other thin shells, circular cylindrical shell with im-
perfections have been thoroughly studied, because of their wide
importance in various engineering fields. The first investigations
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on the subject were generally limited to the effect of axisym-
metric imperfections on the buckling loads (Koiter, 1963; Rosen
and Singer, 1974). Asymmetric imperfections were then intro-
duced in Rosen and Singer (1976). Geometrically non-linear, large-
amplitude vibrations are considered in Gonçalves (1994). Recent
papers give overview of the numerous results available for cylin-
drical shells, where forced and parametric excitation, flutter, exper-
imental measurements of imperfections and fitting to theoretical
models, are detailed, see Amabili (2003), Amabili and Païdoussis
(2003), Kubenko and Koval’chuk (2004) and references therein.

The influence of imperfections on the behaviour of plates has
also been reported by many investigations. Rectangular plates are
generally treated for their wide use in practice, as well as for the
ease of using Cartesian co-ordinates. Free vibrations with large am-
plitude are treated in Celep (1976). Quantitative results on the
effect of an imperfection on eigenfrequencies and buckling loads
are given in Hui and Leissa (1983). The type of non-linearity (hard-
ening or softening behaviour of non-linear oscillations) is also ad-
dressed by Hui (1984). These two studies clearly establish that
large deviations from the perfect theory are present, for ampli-
tude of imperfections being only a fraction of the plate thickness.
However, all the presented results are obtained via a crude ap-
proximation consisting in keeping only one mode in the Galerkin
expansion, so that some of their results must be reconsidered
with more accurate expansions. Forced vibrations with experimen-
tal results are shown in Yamaki and Chiba (1983), Yamaki et al.
(1983). The transition from the hardening behaviour of flat plates
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to the softening behaviour of imperfect rectangular plates is also
addressed in Lin and Chen (1989), as well as in Ostiguy and Sassi
(1992), where the response to simultaneous forced and parametric
excitation is investigated.

The case of circular plates has received less attention. Hui, with
a single-mode expansion and axisymmetric restriction, studied the
type of non-linearity with various (mainly clamped and simply
supported) boundary conditions (Hui, 1983). Yamaki et al., with a
three-mode expansion and also with an axisymmetric restriction,
studied both theoretically and experimentally the forced response
of clamped circular plates (Yamaki et al., 1981a, 1981b).

In all the precedent studies, the method used for analyzing
the results is in most of the cases a Galerkin expansion, based
either on ad-hoc basis functions, or on the eigenmodes of the
perfect structure. However, a number of them used a single-
mode expansion, see e.g. Celep (1976), Hui and Leissa (1983), Hui
(1984), Lin and Chen (1989), Hui (1983). As precised by a num-
ber of studies (Yamaki and Chiba, 1983; Yamaki et al., 1981a;
Ilanko, 2002), these truncations are too severe and may lead to in-
correct results, especially when dealing with non-linear vibrations.
More particularly, it has been demonstrated in Nayfeh et al. (1992),
Touzé et al. (2004) that, when predicting the type of non-linearity
(hardening/softening behaviour) of a structure with an initial cur-
vature, single-mode truncation leads to erroneous results.

The aim of the present study is thus to reconsider some of
the precedent results on imperfect plates, while specifically over-
stepping the limitations underlined in the current state-of-the-art.
More particularly, the following points are addressed. Firstly, the
axisymmetric restriction for the case of circular plates is not re-
tained. Secondly, free-edge boundary conditions, that are generally
not treated in the literature, are considered. Thirdly, a Galerkin ex-
pansion using an arbitrary number of expansion functions is used,
hence overstepping the usual limitation to a one-mode expansion.
The initial shape of the structure as well as its deflection in vi-
brations are expanded on the same expansion functions, the mode
shapes of a circular plate. It leads to analytical expressions of the
coupling coefficients, as functions of the non-linear cubic coeffi-
cients of the perfect plate. The convergence of the numerical solu-
tions is systematically addressed by comparing the obtained results
with the spherical shallow shell model developed in Thomas et al.
(2005b), as well as with finite-elements solutions. It is shown that
converged solutions are available with a reasonable number of ex-
pansion functions, for amplitudes of imperfections up to 30 times
the thickness of the plate. This allows considering a shallow shell
model directly from a plate model.

Finally, comparisons with experimental results on a real shell
are reported. Numerical problems related to the approximation
of the measured geometry are discussed. The linear results pro-
vided by the imperfect plate model are compared to measure-
ments, showing an important improvement with comparison to
the predictions brought by a perfect shallow shell model. At the
non-linear level, frequency-response curves are drawn, in the spe-
cific regime obtained when forcing the first axisymmetric mode,
the eigenfrequency of which is twice those of the two companion
modes with six nodal diameters. The complete experimental report
has already been addressed in Thomas et al. (2007), showing that
the non-linear terms predicted by a perfect spherical shell model
are very far from the measured ones. Although showing a better
agreement with experiment, some discrepancies subsist in some
non-linear coefficients, giving an incorrect prediction of the insta-
bility regions. Finally the complete model predicts the correct type
of non-linearity of the shell, but with an enhanced non-linearity.
2. Theoretical formulation

2.1. General case

2.1.1. Local equation
A thin plate of diameter 2a and thickness h (with h � a), made

of a homogeneous isotropic material of density ρ , Poisson’s ratio ν
and Young’s modulus E , is considered. The equations of motion for
perfect circular plates subjected to large deflections, moderate ro-
tations and with small strain, used in the sequel, are known as the
dynamic analogues of the von Kármán equations, where damping
and forcing have been added. In-plane and rotatory inertia are ne-
glected so that an Airy stress function F is used. Hence, at a given
point of co-ordinates (r, θ), the equations of motion are given in
terms of the Airy stress function F and the transverse displace-
ment w along the normal to the mid-surface of the plate, for all
time t:

D��w + ρhẅ = L(w, F ) − cẇ + p, (1a)

��F = − Eh

2
L(w, w), (1b)

where
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(
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(
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)(
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)
, (2)

D = Eh3/12(1 − ν2) is the flexural rigidity, c is a viscous damp-
ing coefficient and p represents the external load normal to the
surface of the plate. ( ¨ ) denotes a twice differentiation with re-
spect to time t and (·),αβ is the partial derivative with respect to
α and β . The expression of the Airy stress function F as a func-
tion of the membrane stresses can be found in Touzé et al. (2002).
Laplacian operator writes:

�(·) = (·),rr + 1

r
(·),r + 1

r2
(·),θθ . (3)

As shown in Fig. 1, the geometric imperfections are included in
the formulation by splitting the transverse displacement w into a
static part w0 and a dynamic part w̃ , so that:

w(r, θ, t) = w̃(r, θ, t) + w0(r, θ). (4)

In order to satisfy the static equilibrium initial state, both p and
F are similarly split in two quantities, a time-dependent one and
a static one:

F = F̃ + F0, (5a)

p = p̃ + p0. (5b)

Substituting Eqs. (5) in Eqs. (1), one obtains:

D��w̃ + D��w0 + ρh ¨̃w
= L(w̃, F̃ ) + L(w0, F̃ ) + L(w̃, F0) + L(w0, F0)

− c ˙̃w + p̃ + p0, (6a)

�� F̃ + ��F0 = − Eh

2

[
L(w̃, w̃) + 2L(w̃, w0) + L(w0, w0)

]
. (6b)

The static equilibrium leads to the following relationships:

D��w0 = L(w0, F0) + p0, (7a)

��F0 = − Eh

2
L(w0, w0). (7b)

Since a purely geometric imperfection, without initial in-plane
stress, is considered in this study, the static membrane stress term



Fig. 1. Definition of the geometric imperfection w0. (a) Top view with polar coordinates. (b) Cross-section on a selected radius.
F0 is enforced to zero, so that the non-linear partial differential
equations (PDEs) governing the motion of the imperfect circular
plate reads:

D��w̃ + ρh ¨̃w = L(w̃, F̃ ) + L(w0, F̃ ) − c ˙̃w + p̃, (8a)

�� F̃ = − Eh

2

[
L(w̃, w̃) + 2L(w̃, w0)

]
. (8b)

As longitudinal inertia is neglected, F̃ is slaved to transverse dis-
placement via Eq. (8b). Because of the bilinearity property of L(·, ·),
Eq. (8b) shows that F contains both a linear and a quadratic term
in w̃ , the linear one being directly related to the imperfections w0.
In the right-hand side of Eq. (8b), L(w0, F̃ ) is then responsible
for a linear coupling between transverse motion and membrane
stretching, stemming from the geometric imperfections. This term,
together with L(w̃, F̃ ), also produces a quadratic non-linear term,
explained by the loss of symmetry of the imperfect plate in the
transverse direction. Finally, in the same manner than for a per-
fect plate, a cubic non-linear term is created by L(w̃, F̃ ), which is
independent of w0.

2.1.2. Free-edge boundary conditions
Boundary conditions are similar to those of a free-edge perfect

circular plate (Touzé et al., 2002), as well as those of a shallow
spherical shell (Thomas et al., 2005b). Their expressions stem for
the vanishing of the external loads at the edge. They read, for all t
and θ :

F̃ and w̃ are bounded at r = 0, (9a)

F̃ ,r + 1

a
F̃ ,θθ = 0, F̃ ,rθ + 1

a
F̃ ,θ = 0, at r = a, (9b)

w̃,rr + ν

a
w̃,r + ν

a2
w̃,θθ = 0, at r = a, (9c)

w̃,rrr + 1

a
w̃,rr − 1

a2
w̃,r + 2 − ν

a2
w̃,rθθ − 3 − ν

a3
w̃,θθ = 0,

at r = a. (9d)

2.1.3. Dimensionless equations
In order to balance the magnitude of all involved quantities, the

equations are rewritten in dimensionless form, by introducing:

w̃ = h ¯̃w, w0 = hw̄0, r = ar̄. (10)

Dimensionless factors are defined as followed:

F̃ = Eh3 ¯̃F , t =
√

ρha4

D
t̄,

p = h4 E
4

p̄, c = Eh3

2

√
ρh

c̄ (11)

a 2a D
Substituting the above definitions in Eqs. (8) and dropping the
overbars in the results for the sake of clearness, equations of mo-
tion of imperfect plates with free-edge and subjected to large de-
flection finally writes:

��w̃ + ¨̃w = ε
[
L(w̃, F̃ ) + L(w0, F̃ ) − 2μ ˙̃w + p̃

]
, (12a)

�� F̃ = −1

2

[
L(w̃, w̃) + 2L(w̃, w0)

]
, (12b)

with ε = 12(1 − ν2).

2.1.4. Modal expansion
In this section, the equations of motion (12) are discretized by

expanding the unknowns w , w0 and F onto the eigenmodes of the
linear system associated to Eqs. (1a), (1b) via:

w0(r, θ) =
N0∑

p=1

apΦp(r, θ) + zg, (13a)

w̃(t, r, θ) =
Nw∑
p=1

qp(t)Φp(r, θ), (13b)

F̃ (t, r, θ) =
N F∑

p=1

ηp(t)Ψp(r, θ). (13c)

In the above equations, the {Φi}i∈N are the transverse vibration
mode shapes of the perfect plate and the {Ψi}i∈N are membrane
modes, defined by, for all i ∈ N

∗:

��Φi − ω2
i Φi = 0, (14a)

��Ψi − ζ 4
i Ψi = 0, (14b)

together with boundary conditions (9a)–(9c) for Φi and (9b), (9c)
for Ψi . In the above equations, ωi is the i-th natural flexural fre-
quency of the perfect plate. The analytical expressions for Φi and
Ψi as well numerical values for ωi and ζi can be found in Touzé
et al. (2002). Moreover, shape functions {Φi}i∈N and {Ψi}i∈N are
assumed to be normalized, so that for all p ∈ [1 Nw ],∫∫
S

Φ2
p dS = 1,

∫∫
S

Ψ 2
p dS = 1 (15)

where S is the surface of the plate, i.e. the domain defined by
(r, θ) ∈ [0 1] × [0 2π ]. By using the orthogonality property of the
eigenmodes, amplitudes ap and center of mass’ offset zg write:

ap =
∫∫
S

w0Φp dS, (16a)

zg =
∫∫

w0 dS. (16b)
S



In Eqs. (13a)–(13c), N0 and Nw are the number of transverse
eigenfunctions and N F the number of in-plane eigenfunctions, se-
lected for discretizing the system. In the numerical results pre-
sented in the sequel, N F has been fixed to 12, a sufficient value for
obtaining a 5-digits accuracy for the cubic non-linear coefficients,
as already shown in Touzé et al. (2002), Thomas et al. (2005b). On
the other hand, N0 and Nw remain variable so as to study the con-
vergence of the results. By multiplying Eq. (12b) by Ψu , Eq. (12a)
by Φu , integrating both results over the surface S of the plate, and
using the orthogonality property of the modes, one obtains the fol-
lowing set of oscillators with linear and non-linear coupling terms,
for all u ∈ [1 Nw ]:

q̈u + ω2
uqu = −ε

[
Nw∑
p=1

αu
pqp +

Nw∑
p=1

Nw∑
r=1

βu
prqpqr

+
Nw∑
p=1

Nw∑
r=1

Nw∑
s=1

Γ u
rspqpqrqs + 2μq̇u − p̃u

]
. (17)

Expressions for p̃u and Γ u
rsp are, according to Eqs. (15):

p̃u =
∫∫
S

Φu(r, θ)p̃(r, θ, t)dS, (18a)

Γ u
rsp = −1

2

N F∑
q=1

1

ξ4
q

∫∫
S

Φu L(Φp,Ψq)

∫∫
S

Ψq L(Φr,Φs)dS. (18b)

The cubic coefficients Γ u
rsp are those of the perfect case, presented

in Touzé et al. (2002). The new linear and quadratic coupling coef-
ficients αu

p and βu
pr appearing in Eq. (17) stem from the geometric

imperfection w0, and are thus expressed as functions of the am-
plitudes ap of the expansion of w0 introduced in Eq. (13a). They
write:

αu
p = −

N0∑
r=1

N0∑
s=1

2Γ u
rpsaras, (19a)

βu
pr = −

N0∑
s=1

(Γ u
rps + 2Γ u

srp)as, (19b)

Thanks to the projection of the imperfection onto the perfect
plate’s natural modes, one obtains very simple expressions for the
coefficients αu

p and βu
pr for a plate with an arbitrary imperfection.

Indeed, these specific coefficients can be computed easily, once
the cubic non-linear coefficients of the perfect circular plate are
known. This property is the main advantage of the present for-
mulation, as any imperfection is expressed from the perfect case
through very simple analytical formulas. In order to compare the
linear characteristics (eigenfrequencies, mode shapes) and non-
linear coefficients of the imperfect plate with benchmark cases,
one can also write Eq. (17) in the basis of the eigenvectors of the
imperfect structure. Let A = {εαu

p + ω2
uδup}u,p∈[1;Nw ] be the linear

part of (17) in matrix form. Diagonalization of A gives numerically
the eigenfrequencies and mode shapes of the imperfect plate by
the formula:

{Ωuδup}u,p∈[1;Nw ] = P−1AP, (20)

where P is the matrix of eigenvectors. Applying the change of co-
ordinates q = PX with q = {qi}i∈[1;Nw ] and X = {Xi}i∈[1;Nw ] , one
can write:

Ẍu + Ω2
u Xu = −ε

[
Nw∑
p=1

Nw∑
r=1

gu
pr X p Xr +

Nw∑
p=1

Nw∑
r=1

Nw∑
s=1

hu
rsp X p Xr Xs

− 2μu Ẋu + G̃u

]
, (21)
where the Xu are the modal coordinates, associated to the imper-
fect plate eigenmodes. A modal damping term μu is assumed, Gu

is the modal forcing, and gu
pr and hu

rsp are the new coupling coef-
ficients of the imperfect plate. Denoting by Pij the generic term of
matrix P, and P−1

i j the one of P−1, they read:

gu
pr =

Nw∑
i, j,k=1

β i
jk P−1

ui P jp Pkr, (22a)

hu
rsp =

Nw∑
i, j,k,n=1

Γ i
jkn P−1

ui P jr Pks Pnp . (22b)

2.2. Validation: the case of a spherical imperfection

2.2.1. Asymptotic expansion and comparison
When a spherical imperfection is considered, the circular plate

becomes a shallow spherical shell. The corresponding equations of
motion have been thoroughly analyzed in Thomas et al. (2005b)
and the linear (eigenfrequencies and mode shapes) as well as
non-linear characteristics have been directly obtained, providing a
reference solution. Consequently, the results of the present model
can be compared to those from Thomas et al. (2005b). Firstly, the
PDEs of motion are compared. A spherical imperfection w0 with
height H , and curvature R , writes, in its dimensionless form:

w0(r) = 1

h

(√
R2 − a2r2 + H − R

)
, (23)

with

H = R −
√

R2 − a2. (24)

With the shallow assumption a/R � 1, a first-order Taylor
expansion of the spherical imperfection expression defined by
Eq. (23), as well as L(w0, F̃ ) and L(w̃, w0) appearing in Eqs. (12),
yields respectively:

w0(r) = 1

h

(
H − a2r2

2R

)
+ O

(
a

R

)
, (25a)

L(w0, F̃ ) = − a2

Rh
� F̃ + O

(
a

R

)
, (25b)

L(w̃, w0) = − a2

Rh
�w̃ + O

(
a

R

)
. (25c)

Substituting these approximate terms into Eqs. (12), the PDEs of
motion of the shallow spherical shell are those obtained in Thomas
et al. (2005b):

��w + Rh

a2
χ�F + ẅ = εL(w, F ) + ε

a2

Rh
[−2μẇ + p], (26a)

��F − a2

Rh
�w = −1

2
L(w, w), (26b)

where

χ = 12
(
1 − ν2) a4

R2h2
(27)

is the only free geometrical parameter. This analytic development
shows that the equations of the shallow shell are recovered when
only the first-order term of the geometric imperfection is con-
sidered. Hence the shallow spherical shell model described by
Eqs. (26) is closer to a parabolic shell model, as the leading term
of the asymptotic expansion (25a) is quadratic in the radius r,
whereas the present model with an exact expansion of the spheri-
cal imperfection should be valid for a larger range of imperfection
amplitudes. This will be further discussed in the next sections
where numerical comparisons are given.



Fig. 2. Dimensionless natural angular frequencies Ωp of a spherical shell with re-
spect to curvature parameter χ , according to the spherical shell model (Thomas et
al., 2005b) (−) and calculated with the imperfect plate model in which a spherical
imperfection is selected (o). Mixed and axisymmetric modes indicated to the right
are, by order of appearance: (0,1), (1,1), (2,1), (0,2), (3,1), (1,2), (4,1), (2,2),
(0,3), (5,1), (3,2), (1,3) and (6,1).

2.2.2. Comparison on linear eigenfrequencies, mode shapes and
non-linear coefficients

The linear characteristics and non-linear coupling coefficients,
stemming respectively from the present model and from the shal-
low shell model derived in Thomas et al. (2005b), are systemati-
cally compared. The imperfection is given by Eq. (23). The variation
of the eigenfrequencies is shown in Fig. 2, for increasing values
of the curvature parameter χ . The modes are labeled by (k,n),
where k is the number of nodal diameters and n the number
of nodal circles. A perfect agreement is observed, except for the
purely asymmetric modes (k,0) for k > 7. This is directly related
to the truncation used in Eq. (13b). Fig. 2 has been obtained with
Nw = 51 modes. They are: purely asymmetric modes from (2,0)
to (10,0), purely axisymmetric modes from (0,1) to (0,13), mixed
modes (1,1) to (6,1), (1,2) to (3,2) and (1,3). Hence the or-
thoradial wave with 7 nodal diameters is represented by only one
mode in the truncation, whereas two modes, (6,0) and (6,1), are
present for the orthoradial wave with 6 nodal diameters. It has
been checked that adding mode (7,1) to the truncation give a per-
fect result for the eigenfrequency of (7,0).

Profiles of two mode shapes, namely (0,1) and (2,0) are com-
pared in Fig. 3, showing a very good agreement. As the imperfec-
tion introduced in the plate equation is here defined by Eq. (23), it
is concluded that the higher-order terms of the Taylor expansion of
the spherical imperfection have a minor effect on the linear char-
acteristics.

Some of the non-linear cubic coefficients from the two models
are now compared. Fig. 4 shows the convergence of hu

uuu defined
in Eq. (21) for three modes, i.e. u = (0,1), (0,2) and (2,0), and
for increasing values of χ , with respect to an increasing number
of modes N0 used to reconstruct the geometry (and for a fixed Nw
equal to N0). Whereas the cubic coefficient for mode (2,0) shows
a quick convergence, an important difference subsists for the two
others. Moreover, for mode (0,1), the converged value appears to
be different from the one obtained with the shallow shell model.
In order to understand the origin of this discrepancy, the cubic co-
efficients of modes (0,1) and (0,2) are compared in Fig. 5, where
now the shallow shell model of Thomas et al. (2005b) is compared
to the present model, where the geometric spherical imperfection
is truncated to its first-order term, Eq. (25a). A very good agree-
ment is now observed, which means that the non-linear coupling
coefficients are more sensitive on the geometric imperfection than
the eigenfrequencies. Inspecting back the formulas (23) and (25a),
one can conclude that the present model has a larger range of
application for a spherical imperfection, whereas the model devel-
oped in Thomas et al. (2005b) is more related to a parabolic shell,
according to Eq. (25a). Finally, Figs. 4, 5 show that the number
N0 needed to approximate the geometry have a stronger influence
on non-linear characteristics than on linear ones, as a larger N0
is needed to obtain accuracy on the cubic coefficients. Numerous
computations led on other cubic coefficients show that if N0 = 13
Fig. 3. Profiles of (0,1) and (2,0) mode shape for χ = 10−11 and χ = 2 × 104; according to the spherical shell model (Thomas et al., 2005b) ((−) and (-·-)), and to the
present model ((+) and (o)).

Fig. 4. Cubic coefficients hu
uuu of modes (0,1), (2,0) and (0,2) with respect to χ according to the spherical shell model (Thomas et al., 2005b) (−) and computed from the

present model for N0 = 4 (e), N0 = 7 (1) and N0 = 13 (o).



Fig. 5. Cubic coefficients hu
uuu of modes (0,1) and (2,0) with respect to χ according to the spherical shell model (Thomas et al., 2005b) (−) and computed from the present

model with a spherical imperfection truncated to its leading-order term (Eq. (25a)), for N0 = 4 (e), N0 = 7 (1) and N0 = 13 (o).

Fig. 6. (a) Finite element mesh and (b) cross-section view of the imperfection having the shape of mode (0,1). (c) evolution of natural angular frequencies of the imperfect
plate having the shape of mode (0,1) with respect to the amplitude wm of the imperfection normalized by h, according to CAST3M (−) and calculated from the present
model (o).
axisymmetric modes are kept in the truncations (i.e. from (0,1) to
(0,13)), then only a 2-digits accuracy in the non-linear coefficients
is warranted, the 3-digits accuracy being reached for the majority
of coefficients.

3. Results on typical imperfections

In this section, the linear characteristics predicted by the
present model are compared to a numerical solution obtained with
a finite elements discretization procedure, in the case of known
imperfections, having successively the shape of mode (0,1), (0,2)

and (2,0), so the truncation in Eq. (13a) is reduced to N0 = 1 in
each case. The convergence is addressed, showing that the present
model is reliable for imperfection amplitude being more than ten
times the thickness with a limited number of expansion functions.
The non-linear coefficients with known imperfections have been
addressed in Touzé et al. (2007), where the type of non-linearity
(hardening/softening behaviour) has been computed.

3.1. Imperfection having the shape of mode (0,1)

An axisymmetric imperfection having the shape of mode (0,1)

is first considered. The imperfection is shown on Fig. 6(a), (b), and
writes: w0(r) = a(0,1)Φ(0,1)(r), where a(0,1) is the only non-zero
parameter in the expansion of Eq. (13a).

Fig. 6(c) shows the evolution of the first fourteen eigenfrequen-
cies with respect to the amplitude of the imperfection wm , defined
on Fig. 6(b), from 0 (perfect plate) to ten times the thickness. The
linear results provided by the present method are compared to a
numerical solution obtained with the finite-element code CAST3M
(Verpeaux et al., 1988) with DKT (Discrete Kirchhoff Triangle) ele-
ments (see e.g. Batoz et al. (1980) for a description of the element).



Table 1
Number Nw of axisymmetric transverse modes needed to reach the correspondent
accuracy on the eigenfrequency Ω(0,1) and on the diagonal cubic coefficient hd

ddd of
mode d = (0,1) (for an imperfection having the shape of mode (0,1), with ampli-
tude equal to 10h).

3-digits accuracy 4-digits accuracy
Ω(0,1) [adim] 4 6

2-digits accuracy 3-digits accuracy
hd

ddd [adim] 5 7

A 3260 finite elements mesh, shown on Fig. 6(a), has been used for
the computation. A perfect agreement is found between the two
solutions. One can observe that the imperfection has a huge effect
on the eigenfrequencies of axisymmetric modes and mixed modes.
For instance, the eigenfrequency of mode (0,1) is twice the value
of the perfect plate for wm = 1.5h only. On the other hand, the
eigenfrequencies of the purely asymmetric modes (k,0) are quite
unchanged when increasing the imperfection.

As the problem is fully axisymmetric, the convergence of the
results is investigated by increasing the number Nw of axisym-
metric modes in the truncation. Table 1 shows the number Nw

needed to warrant a given accuracy, for the eigenfrequency Ω(0,1)

as well as for the cubic non-linear coefficients hd
ddd , with d = (0,1).

As in the case of the spherical imperfection, it is observed that
the convergence is faster for the linear characteristics. However,
a good convergence is here obtained as only 7 modes are nec-
essary to guarantee a 3-digits accuracy on the cubic coefficients.
Other eigenfrequencies and other cubic coefficients have also been
tested, showing the same order of magnitude for reaching conver-
gence.
3.2. Imperfection having the shape of mode (0,2)

An axisymmetric imperfection having the shape of mode (0,2)

is now considered, in the same manner as in the previous section.
The imperfection is shown on Fig. 7(a), (b), and writes w0(r) =
a(0,2)Φ(0,2)(r). Fig. 7(c) shows the evolution of the first eigenfre-
quencies with respect to the amplitude of the imperfection wm ,
defined on Fig. 7(b). Once again, the linear results provided by the
present method are compared to a numerical solution obtained
with CAST3M, with the same mesh than in the previous section,
shown on Fig. 7(a). A perfect agreement is found between the two
solutions.

Contrary to the precedent cases (the spherical shell and the im-
perfection of the form of mode (0,1)), the effect on the purely
asymmetric modes (k,0) is not negligible now. Dimensionless
eigenfrequency of (2,0), which is 5.089 for a plate reach 13.035
for an amplitude of imperfection corresponding to 10h.

The convergence of the results is shown in Table 2 for mode
(0,2). Concerning the convergence of the eigenfrequency, a limited
number of modes in the expansions is sufficient to reach a fair
accuracy. For the cubic coefficients, as already observed, a larger
Nw is needed to attain convergence.

3.3. Imperfection having the shape of mode (2,0)

The effect of an asymmetric imperfection is now investigated.
For any structure with perfectly axisymmetric geometry, the eigen-
frequencies associated with asymmetric modes (k,n) with k �= 0
have a multiplicity of two, corresponding to two degenerated
modes called companions or preferential configurations (Morand and
Ohayon, 1995; Touzé et al., 2002). In the case studied here, be-
cause of the asymmetric imperfection, some eigenfrequencies of
Fig. 7. (a) Finite element mesh and (b) cross-section view of the imperfection having the shape of mode (0,2). (c) Evolution of natural angular frequencies of the imperfect
plate having the shape of mode (0,2) with respect to the amplitude wm of the imperfection normalized by h, according to CAST3M (−) and calculated from the present
model (o).



Fig. 8. (a) Finite element mesh, (b) top view with nodal radii of each configuration, (c) cross-section view of the imperfection having the shape of mode (2,0, c). (d) Evolution
of natural angular frequencies of the imperfect plate having the shape of mode (2,0, c) with respect to the amplitude wm of the imperfection normalized by h, according to
CAST3M (−) and calculated from the present model (o).
Table 2
Number Nw of axisymmetric transverse modes sufficient to reach the correspon-
dent accuracy on the angular frequency Ω(0,2) and on the diagonal cubic coefficient
hd

ddd of mode d = (0,2) (the imperfection have the shape of mode (0,2) and its
amplitude is equal to 10h).

3-digits accuracy 4-digits accuracy
Ω(0,2) [adim] 4 8

2-digits accuracy 3-digits accuracy
hd

ddd [adim] 7 8

Fig. 9. Mode shapes of mode (0,1), (2,0, s), (2,0, c) of an imperfect plate having
the shape of mode (2,0, c) for amplitude of imperfection wm(2,0) equal to 0 (perfect
circular plate), 2.1h and 4.75h.

degenerated modes split. Thus, distinction is systematically done
between the sine (·, ·, s) and cosine (·, ·, c) configurations of com-
panion modes. Imperfection is chosen to have the shape of mode
(2,0, c), and is shown in Fig. 8(a), (b). It can be written

w0(r, θ) = a(2,0,c)Φ(2,0,c)(r) = a(2,0,c)R(2,0)(r) cos 2θ, (28)

with R(2,0)(r) the profile of the shape, shown on Fig. 8(c).
Results on angular frequencies are reported in Fig. 8(d). A ex-

cellent agreement is observed between results from the present
model and from the finite element simulation. The asymmetric im-
perfection have now a weighty effect on both axisymmetric and
asymmetric modes. Indeed, the natural frequency of mode (0,2)

undergoes a huge variation, as well as the natural frequency of
mode (2,0, c) which is twice its value in the perfect flat plate for
wm = 1.8h.

Another important remark is that the influence of the imper-
fection is concentrated on only one of the asymmetric modes con-
figurations, the other one keeping a constant frequency as a func-
tion of the imperfection amplitude. Moreover, only the asymmetric
modes with an odd number of nodal diameters, like modes (2,0),
(4,0), (2,1) are influenced by the imperfections, which means
that the symmetry is not broken for asymmetric modes having an
even number of nodal diameters. Consequently, eigenfrequencies
of modes (3,0), (1,1), (5,0), . . . , do not split, and their evolutions
are moderate compared to the previous ones. Finally, one can note
that the asymmetric mode configuration that is affected by the im-
perfections is always the one which degenerates from the cosine
companion mode of the perfect plate.

The mode shapes for modes (0,1), (2,0, c) (2,0, s) are shown
on Fig. 9 for 3 different amplitudes of imperfection, only the mode
shape of (2,0, c) is largely affected. Its nodal diameters are un-



Fig. 10. Evolution of natural angular frequencies of modes (2,0, s), (0,1) and
(2,0, c), for the imperfect plate having the shape of mode (2,0, c) with amplitude
from 0 to 35h, according to CAST3M (–) and computed from the present model (o).

Table 3
Number Nw of modes needed to reach the correspondent accuracy on the angular
frequency Ωd and on the diagonal cubic coefficient hd

ddd of mode d = (2,0, c) (the
imperfection have the shape of mode (2,0, c) and its amplitude is equal to 10h).

3-digits accuracy 4-digits accuracy
Ωd [adim] 12 15

2-digits accuracy 3-digits accuracy
hd

ddd [adim] 25 35

changed by increasing the imperfection whereas its global shape
change drastically. As their corresponding eigenfrequencies, the
shape of the companion mode (2,0, s), and the one of the axisym-
metric mode (0,1), are not influenced.

The validity of the present method is now tested for a very
large amplitude of imperfection. Fig. 10 shows the evolution of
natural frequencies of modes (2,0, c), (2,0, s) and (0,1) for an im-
perfection amplitude up to 35 times the thickness h, compared to
the finite element solution. Once again a very good agreement is
observed.

As the problem is not axisymmetric anymore, asymmetric
modes have to be retained in Eqs. (13b) and (17). Thus, com-
putations are performed by keeping 51 perfect plate’s transverse
modes, already enumerated in Section 2.2.2. Convergence results
on the angular frequency and the diagonal cubic coefficient of
mode (2,0, c) are reported in Table 3. Obviously, as compared to
axisymmetric cases, a larger number of modes have to be retained
in the truncation for guaranteeing a good accuracy. For the cubic
coefficients, 25 modes are necessary for obtaining a 2-digits accu-
racy. It is thus observed that asymmetric imperfections are more
difficult to represent, so that the present method will have some
difficulties for irregular geometric imperfections, or localized de-
fects, which would need a high number of modes to be accurately
represented. This will be discussed in the next section with the
application to a real shell.

4. The case of a real shell

In this section, comparisons are drawn between the predic-
tion given by the present model and experimental measurements
realized on a thin shallow spherical shell. Experimental compar-
isons on non-linear responses are available in the literature for
some specific cases. The case of a clamped circular plates is in-
vestigated in Yamaki et al. (1981b), but axisymmetric restriction
is considered, and the imperfection is of the order of one tenth
the plate thickness. A good agreement is found but discrepancies
are observed at large amplitudes. Raman and Mote conducted a
series of experimental measurements on circular disks spinning
near critical speed (Raman and Mote, 2001), but only qualitative
comparisons between theory and experiments are given. For rect-
angular plates and circular cylindrical panels, Amabili obtained a
very good agreement between experiments and theoretical predic-
tions, with imperfection amplitudes of the order of the thickness
(Amabili, 2006b, 2006a, 2008), even though by reducing the ac-
tual geometry to a single expansion function. Here we consider the
real shell as an imperfect plate, so that the amplitude of the im-
perfection is about 28 times the thickness. Comparisons are drawn
on the linear characteristics first. Then non-linear forced responses
are investigated.

4.1. Measurement

A nearly spherical shell of outer diameter 2a = 600 mm and
thickness h = 1 mm, shown in Fig. 11(a)–(b), is considered. It has
already been used in experiments reported in Thomas et al. (2007,
2005a), Touzé and Thomas (2005). It is made of brass, and mate-
rial properties are assumed to be homogeneous and isotropic. In
order to simulate free-edge boundary conditions, the shell is held
with three nylon threads, fixed by means of small holes at the
rim. The profile of the shell is nearly circular but curvature is not
uniform and the global shape presents some asymmetric imperfec-
tions. In the above cited works, the mean curvature Ropt has been
estimated at 1557 mm by fitting a circle to experimental points
obtained with a dial comparator on a diameter of the shell. How-
ever, huge discrepancies were observed between measured eigen-
frequencies and theoretical ones obtained with a spherical shell
model with Ropt = 1557 mm, and especially on the axisymmetric
modes.

To perform a more precise analysis, the complete geometry of
the shell has been measured with a coordinate measuring ma-
chine. 2842 experimental points, shown in Fig. 11(b), have been
taken into account to have a fine description of the imperfection.
Fig. 11(c)–(d) shows the error committed by approximating the
actual shell with a spherical shell of optimal radius of curvature
Ropt = 1557 mm. This error is defined by:

e(r, θ) = w0(r, θ) − wth
0 (r, θ), (29)

where w0(r, θ) is the real (measured) geometry and wth
0 (r, θ) is a

spherical cap of radius Ropt = 1557 mm. One can observe that the
error is of the order of 1.4 times the thickness of the shell.

4.2. Geometry

The measured geometry is inserted into the analysis by the fol-
lowing method. A Delaunay triangulation, shown in Fig. 11(b), is
used to obtain a mesh of the geometry wherein the elements are
built according to the experimental points of coordinates (x, y).
The unknown coefficients {ap} of Eq. (13a) are then estimated by:

ap =
∫∫
S

Φp w0 dS ≈
∑

i

Φp(xi, yi)zi Ai, (30)

where (xi, yi, zi) are the coordinates of the barycenter of the i-
th triangular element and Ai the area of the horizontal projection
of the triangle. Fig. 12(a) shows the contribution of each function
Φp in the expansion of this geometry. The first two axisymmet-
ric modes (0,1) and (0,2) have the most proeminent participation
for reconstructing the imperfection, however, as it will be shown
in the remainder of the study, all the other terms with a minor
participation to the reconstruction have an important influence on
the forthcoming analysis. The difference between the measured ge-
ometry w0 and the geometry wr reconstructed with Eq. (13a) is



Fig. 11. Experimental set up for the measurement of the geometry of the shell. (a) Photograph of the coordinate measuring machine. (b) Three-dimensional view of the
measured geometry. (c) Error in mm between the actual geometry and a spherical shell with optimal radius of curvature. (d) Contour plot of (c).
.

Fig. 12. (a) Expansion of the measured geometry of the shell. (b) Maximum error EM (in mm) and Relative error ER as function of the number of axisymmetric modes kept
for reconstructing the geometry. Plain line: projection from the measurement points, without interpolation. Dashed line: projection with an interpolation to increase the
number of computation points. T 1 and T 2 refers to the two truncations that are selected for further analysis.
analyzed in Fig. 12(b), where a fixed number of asymmetric modes
is used in the expansion (38 asymmetric modes are used: (2,0)

to (10,0), (1,1) to (6,1), (1,2) to (3,2) and (1,3)), whereas the
number of axisymmetric modes Naxi
0 is increased from 2 ((0,1)

and (0,2)) to 13 ((0,1) to (0,13)). The maximum error EM and
the relative error ER are plotted, respectively defined by:



Fig. 13. Error in mm between the actual geometry and the reconstructed geometry for the two selected truncations. (a) T 1, (b) T 2.
EM = max
(xi ,yi)

∣∣w0(xi, yi) − wr(xi, yi)
∣∣, (31a)

ER =
√∫∫

S (w0 − wr)2 dS√∫∫
S w2

0 dS
. (31b)

It is observed that the errors do not tend to zero, they first de-
crease but after a minimum value obtained with 7 axisymmetric
modes in the expansion, the errors start to increase. This is ex-
plained by the limited number of measurement points used to
compute the projection. Considering higher modes with shortened
wavelength on the grid given by the 2842 measurement points
leads to a loss of accuracy in the orthogonality property of the
eigenvectors. This has been assessed by computing the Gram ma-
trix composed of the inner scalar products of the functional basis,
where it has been observed that out-of diagonal terms tends to
have non-negligible values when considering higher modes. Hence,
from mode (0,7), the orthogonality property of the basis is not
well recovered and errors in the projection are made. To tackle this
problem, the measured geometry has been oversampled by using a
polar grid with 400 lines in the angular coordinate θ and 120 dis-
cretization points in radial coordinate r. Coefficients {ap} are then
computed using Eq. (30), where the Delaunay triangulation is built
from the oversampled mesh. The convergence, shown in dashed
line in Fig. 12(b) is now better, however the maximum error has
not been made less than 0.24 mm.

In the remainder of the study, two reconstructed imperfections
will be analyzed. The first one, denoted by w T 1

r (or simply T 1),
is obtained from the computation without interpolation, and for
the minimal error obtained, i.e. with all asymmetric modes and
axisymmetric modes from (0,1) to (0,7). The error between w T 1

r
and w0 is shown in Fig. 13(a). It has mainly the shape of mode
(0,8) as the logical consequence of the truncation limited to (0,7).
The height at center is still badly represented with an error of 0.3
mm. Important errors are also present at the edges. The second
truncation, denoted by w T 2

r (or simply T 2), is obtained from the
computation with interpolation, where axisymmetric modes from
(0,1) to (0,13) are kept. The error is shown in Fig. 13(b). Maxi-
mum errors are still at the edge, but a limited amplitude is now
observed in the center region.

4.3. Linear comparison

Eigenfrequencies and mode shapes of the present models T 1
and T 2 are compared against experimental measurements. A finite
element modal analysis is also added to the discussion for a com-
plete comparison. Experimental measurements have been realized
by exciting the shell with an electromagnetic device composed of
Table 4
Comparison of experimental and theoretical eigenfrequencies of the shell, in Hz.
Column Experiment: results from the experimental modal analysis. Column Shell:
eigenfrequencies provided by the spherical shell model. Columns T 1 and T 2: pre-
diction of the imperfect plate model, with truncation T 1 and T 2 to recover the
geometry. Column CAST3M: results provided by the FE analysis.

Modes Experiment Shell T 1 T 2 CAST3M
(2,0) 13.75 17.5 11.02 10.85 10.91 10.68 10.74 11.19 11.32
(3,0) 34 35.5 26.37 25.70 25.73 25.22 25.26 26.46 26.58
(4,0) 57.25 58.25 46.90 45.21 45.27 44.39 44.40 46.47 46.86
(5,0) 83 83.75 72.17 68.94 69.10 67.88 67.93 71.43 71.57
(6,0) 110 111 101.77 96.73 96.75 95.54 95.56 100.77 100.87
(7,0) 141 141.5 135.45 132.66 132.67 132.73 132.73 134.40 134.60
(8,0) 172.75 176 173.01 165.61 165.64 165.68 165.70 171.6 171.8
(1,1) 259.5 271 378.4 269.20 275.07 268.27 274.31 280.89 284.65
(0,1) 225 386.03 227.93 229.05 243.30
(0,2) 354 393.11 342.46 346.03 367.73
(0,3) 444.25 423.17 426.43 432.80 450.91
(0,4) 555.5 495.65 544.61 550.52 580.07

a magnet glued to the shell and driven by a coil. The device is
fully described in Thomas et al. (2003), and the modal analysis has
already been reported in Thomas et al. (2007). It is worth noting
that the axisymmetric modes are measured by gluing the magnet
at center of the shell. The presence of this small added mass (mass
of the magnet is 6 g) lowers the axisymmetric eigenfrequencies a
little bit, but this effect is limited to at most 2 Hz (Thomas et al.,
2007).

Table 4 compares the experimental eigenfrequencies of the shell
against those given by the perfect shallow shell model, the present
models with truncations T 1 and T 2, and a finite-element model
computed with CAST3M from the experimental points used to
measure the geometry. The relationship between the measured
natural frequencies f p and the dimensionless theoretical angular
frequencies Ωp computed from the present model with the recon-
structed geometry is:

f p = h

2πa2

√
E

12ρ(1 − ν2)︸ ︷︷ ︸
f ∗

Ωp . (32)

Coefficient f ∗ = 1.805 Hz has been estimated by the slope of the
least-square straight line of Fig. 14, obtained with truncation T 2.
Eventually, by measuring the mass of the structure, the value of
the density of the material has been evaluated to ρ = 8230 kg m−3.
Using Eq. (32) with ν = 0.33, one obtains E = 97.1 GPa for the
Young’s modulus of the material. The finite-element analysis has
been computed by using these values for the material property.
The mesh has been built with DKT elements constructed such that



Fig. 14. Dimensionless theoretical angular frequencies Ωp of the imperfect plate
(truncation T 2) versus the corresponding experimental natural frequencies: asym-
metric modes, from (2,0) to (8,0) (o); axisymmetric modes, from (0,1) to
(0,4) (1). The slope fitting line is f ∗ = 1.805 Hz.

the nodes of the mesh lie exactly at the measurement points; the
computation has been realized with the software CAST3M. A sec-
ond finite-element analysis, not reported here, have also been con-
ducted with the software MSC-NASTRAN with the same procedure,
providing coincident results as the ones given by CAST3M.

The results summarized in Table 4 show the improvement
brought by the present model, as compared to the predictions
given by the perfect spherical shell model (Thomas et al., 2005b)
with Ropt = 1557 mm. Whereas the perfect shell model gives in-
correct values for axisymmetric modes, taking into account more
precisely the geometry allows to recover these eigenfrequencies.
On the other hand, the finite-element model overpredict axisym-
metric eigenfrequencies. One can also remark that the results pro-
vided by truncations T 1 and T 2 are very close, so that the gain in
the approximation of the geometry between these two models has
only a slight influence on the linear characteristics. Finally, some
discrepancies subsist between the different models and the mea-
surements. The splitting of the two companion configurations for
(2,0), that are separated by 3.75 Hz in the measurement, is not
reproducted by any model, all of them predicting close eigenfre-
quencies for the two configurations of (2,0). On the other hand,
the splitting for mode (1,1) is better predicted by the models,
though still underestimated. The spacing between the asymmetric
eigenfrequencies is also not correctly respected, all of them ap-
pearing lower in the theory than in the measurements. All these
results may be explained by the error in the approximation of the
geometry. However, considering the slight improvement obtained
between truncations T 1 and T 2, the most probable cause of the
discrepancy could be another imperfection that has not been taken
into account in the model, such as a material inhomogeneity or a
variation of the thickness. This will be further discussed in the next
subsection with the non-linear results.

In addition to the best approximation of the eigenfrequen-
cies, the mode shapes are also better recovered with the present
model. Fig. 15 shows the measured deflection shape for modes
(3,0), (0,1), (0,2) and (1,1). They are compared against the mode
shapes predicted by the perfect spherical shell model and by the
present model with truncation T 2. The results given by truncation
T 1 and by the FE analysis for the mode shapes are very similar
so that only one is shown. For the purely asymmetric mode (3,0),
measurement is coincident with the shallow shell model as well
as with the present model. The same matching has been found for
the other purely asymmetric modes (k,0), with k = 2 to 9. On the
other hand, for modes (0,1), (0,2) and (1,1), the present model
allows recovering finely the measured deflection shapes.

4.4. Non-linear comparison

4.4.1. The 1:1:2 internal resonance
The present model of the imperfect plate is now used to fit

experimental frequency-response curves in the non-linear range,
Fig. 15. Comparison of experimental deflection shapes (first column), mode shapes
predicted by the perfect spherical shell model (second column) and by the present
model (third column), for modes (3,0), (0,1), (0,2) and (1,1).

with the structure subjected to harmonic excitation. A peculiarity
of the present shell is that it displays a 1:1:2 internal resonance:
the eigenfrequency of mode (0,1) is approximately twice the value
of the two companion asymmetric eigenfrequencies of mode (6,0).
This 1:1:2 resonance has been thoroughly studied, on the theoret-
ical viewpoint in Thomas et al. (2005b), as well as on the experi-
mental viewpoint (Thomas et al., 2007), where a full measurement
campaign had been done for various cases. The experimental data
obtained in Thomas et al. (2007) will be used here to compare
with the predictions of the present model. Experimental proce-
dures and the main features of the 1:1:2 internal resonance are
first briefly recalled.

Truncating the equations of motion to the three modes in-
volved in the 1:1:2 resonance, and keeping the resonant non-linear
quadratic coefficients only, gives the simplest reduced-order model
that is able to reproduce the fine and complex phenomenology of
the resonance curves, see Thomas et al. (2007). The reduced order
model reads:

q̈1 + ω2
1q1 = ε[α1q1q3 − 2μ1q̇1],

q̈2 + ω2
2q2 = ε[α2q2q3 − 2μ2q̇2],

q̈3 + ω2
3q3 = ε

[
α3q2

1 + α4q2
2 − 2μ3q̇3 + Q cos(ωt)

]
, (33)

with

α1 = −g1
13 − g1

31 = α2 = −g2
23 − g2

32 and

α3 = −g3
11 = α4 = −g3

22. (34)

where the subscripts 1, 2 and 3 refers respectively to mode
(6,0, c), (6,0, s) and (0,1). The shell is excited at center so that
the forcing term appears only on the third equation. Q is the forc-
ing amplitude, and ω the driving frequency, which is in the vicinity
of ω3. A detailed analysis of Eqs. (33) is provided in Thomas et al.
(2005b) with a multiple scales analysis. Analytical expression for
all the solution branches are found. It shows, amongst other things,
that energy transfers are possible from mode (0,1) to (6,0, c) (i.e.
q1 �= 0 and q3 �= 0, q2 = 0, denoted by C1 coupling), or to (6,0, s)
(i.e. q2 �= 0 and q3 �= 0, q1 = 0, denoted by C2 coupling), but not
simultaneously. Instability regions are found to depend only on
{ω1,μ1,α1} for C1 coupling, and on {ω2,μ2,α2} for C2 coupling.
By fitting experimental instability regions and solutions branches



Fig. 16. Frequency-response curve and instability regions of the shell, harmonically forced in the vicinity of mode (0,1). Sdof solution in solid black. Grey-shaded are instability
regions, for the perfect spherical shell model (light grey), and for the imperfect plate model (deep grey). Lowerscripts C1 and C2 refer to the coupling encountered, whereas
upperscripts denote respectively: PS for Perfect Shell model, IP for Imperfect Plate (present) model, EXP for experimental measurements, obtained by increasing sweep (◦)
and decreasing sweep (P) in Thomas et al. (2007).
to measurements, all the coefficients of the reduced model given
by Eqs. (33) have been estimated in Thomas et al. (2007). In par-
ticular, it was found that the quadratic coefficients {αi}i=1,4 were
30 times smaller than the values predicted by the perfect spherical
shell model.

4.4.2. Influence of quadratic coefficients
Table 5 summarizes the values obtained for the quadratic coef-

ficients {αi}i=1,4, computed with Eqs. (34), (22a), (19a), (19b) and
the measured geometry reconstructed with truncations T 1 and T 2.
One can remark the large improvement provided by the present
model as compared to the perfect spherical shell model. The two
coefficients α3 and α4 are now finely predicted. However, the er-
ror committed on coefficients α1 and α2, though reduced from a
factor 30 to a factor 5, is still present.

This error is further analyzed in Fig. 16, where the instability
regions are reported on the frequency-response curve, for the two
theoretical models, i.e. the perfect shell model and the present
imperfect plate model with truncation T 2. The single degree-of-
freedom solution (sdof branche for q1 = q2 = 0, q3 �= 0) is linear
since the reduced model (33) without cubic term is used. The
eigenfrequencies ω1, ω2 and ω3 have been fixed to their measured
values to obtain a good tuning of the 1:1:2 internal resonance.
Since the damping values have the same order of magnitudes for
the modes, the shape of the instability regions is completely con-
trolled by the values of α1 and α2. Fig. 16 shows the important
improvement brought by considering the present model: for this
level of forcing (0.138 N), the perfect shell model predicts C1 and
C2 coupling, whereas only C1 coupling is present, as recovered by
the present model. However the factor five error still present in
coefficients α1 and α2 prevent recovering the experimental results

Table 5
Experimental and theoretical values of the quadratic coupling coefficients {αi}i=1,4
defined by Eqs. (33), where non-dimensional equations are obtained by dividing
the transverse displacement by the thickness, so that ε = 12(1 −ν2) for the present

model, truncation T 1 and T 2 (from Eq. (12)), whereas ε = 12(1 − ν2) a2

Rh for the
perfect shell model and the experimental values (Thomas et al., 2005b, 2007).

Experience Spherical shell T 1 T 2

εα1 476 19057 2556 2297
εα2 455 19057 2552 2294
εα3 635 8766 666 608
εα4 667 8766 665 607
Fig. 17. Frequency-response curve of the shell, harmonically forced in the vicinity of
mode (0,1), amplitude of excitation 0.138 N. Measurements obtained by increasing
sweep ((o) for q1, (∗) for q3) and decreasing sweep ((P) for q1 and (E) for q3) are
compared to the solution branches (respectively IPq1C1 and IPq3C1) obtained by the
present (Imperfect Plate) model.

perfectly, so that the predicted instability regions, though better,
are still not exactly coincident with the measurement.

Solution branches for this level of forcing (0.138 N) are reported
in Fig. 17. The damping values have been adjusted to obtain a cor-
rect fit on the length of the branches. The error committed on
coefficient α1 gives here a more wide-mouthed coupled branch
for IPqC1

3 (the right upperscript refers to the coupling C1 encoun-
tered, the left upperscript IP to the model used, i.e. the imperfect
plate mode). However the coupled branch for IPqC1

1 is near mea-
surements.

The convergence of two quadratic coefficients, α1 and α3, with
respect to Naxi

w is shown in Fig. 18, where Naxi
w is defined in the

same manner as in Fig. 12(b): the first 38 asymmetric modes of
the perfect plate are retained, and the number of axisymmetric
modes is increased from 1 (mode (0,1)) to 13 (mode (0,1) to
(0,13)). This figure shows a quick convergence of the coefficients
with respect to the axisymmetric expansion. A similar study shows
that the convergence versus the asymmetric terms of the expan-
sion was also of good quality, so that the truncation with respect



Fig. 18. Convergence of the numerical values of quadratic resonant terms εα1 (◦)
and εα3 (1) of Table 5, versus Naxi

w , the number of axisymmetric terms retained in
Eq. (13b).

to Nw is not involved for explaining the discrepancy observed on
quadratic coefficients α1 and α2.

4.4.3. Influence of cubic coefficients
Finally, the cubic coefficients are retained in the dynamical

equations to simulate more precisely the imperfect plate behaviour
as well as to evaluate their influence on the non-linear shell re-
sponse. As the quadratic terms will not change, the discrepancy
in the instability region is still present. The frequency-response
curve is shown in Fig. 19, for a lower value of the forcing am-
plitude (0.0277 N). The complete model including cubic terms is
described by Eqs. (21). The solution branches are computed nu-
merically using the software AUTO Doedel et al. (2002). They are
denoted on Fig. 19 with the left upperscript IC (for Imperfect plate
model with Cubic coefficients). The solution branches given by the
reduced equations (33) are denoted with the left upperscript IQ
(Imperfect with Quadratic coefficients only). The convergence of
the numerical solution has been carefully studied by raising the
number of terms Nw in the AUTO-simulations. The results pre-
sented have been obtained for Nw = 13, where the selected modes
are: (2,0) to (6,0), (0,1) to (0,3). The results with 13 modes
were quite coincident to those obtained with only the 3 modes
involved in the internal resonance, for vibration amplitude up to
h. A very fine model composed of 22 modes (not shown) has also
been tested in order to have full confidence in the converged val-
ues given by the 13-dofs model, no visible discrepancies have been
observed.

For this level of forcing amplitude, 0.0277 N, the model predicts
C1 coupling, whereas the experiments do not show any coupling.
This is related to the overprediction of α1. However, as compared
to the results given by the model truncated to quadratic terms,
the model with cubic non-linear terms shows important qualita-
tive improvements that were all found in the experiments. First, as
shown on Fig. 19, the model with cubic terms shows a slight soft-
ening behaviour. This softening type non-linearity is slightly visible
on the experimental points, that are on the left of the linear sdof
IQq3

sdof solution. The softening-type non-linearity has been more
clearly assessed experimentally by adding a small mass at center
of the shell, hence lowering the eigenfrequency ω3 of mode (0,1).
By doing so, mode (0,1) is moved away from 1:1:2 resonance and
its sdof behaviour has been measured, showing a clear softening-
type behaviour, see Thomas et al. (2007). Hence the full model
predicts the correct type of non-linearity, however as shown on
Fig. 19 the softening behaviour is overestimated.

The second important fact displayed by the complete model
with cubic non-linear terms is that the branch of coupled solu-
tions for q3 is not anymore coincident with the boundary of the
C1 instability region, as it was the case for the model truncated to
quadratic terms solved by the multiple scales method. This qual-
itative behaviour has been clearly observed in the experiments,
but for higher vibratory levels than the ones simulated here, see
Thomas et al. (2007).

Finally, cubic terms influence the shape of the solution branches
by increasing the curvature at their upper and lower frequency
limits. It can be observed on Fig. 19 by comparing IQq1

C1 and
ICq1

C1 around 220.6 Hz. Again, this qualitative behaviour has been
clearly observed in the experiments and was a cause of mismatch
between the experiments and the theoretical model of Thomas et
al. (2007).

Hence this complete model shows a good qualitative behaviour
as compared to experiments, but it appears that some of the cubic
coefficients may be overestimated also, so that the typical non-
linear effect are given for too small vibration amplitudes as com-
pared to the experiments.

4.5. Discussion

To conclude on this experimental comparisons, although the re-
sults are significantly improved as compared to the perfect shell
model, some discrepancies still subsist. The eigenfrequencies are
well estimated, but a perfect prediction has not been made possi-
ble. At the non-linear level, some quadratic coefficients are over-
predicted so that instability regions are not perfectly fitted to ex-
perimental ones. The cubic coefficients show an improvement in
the qualitative behaviour, however some of them are also to be
Fig. 19. Frequency-response curve of the shell, harmonically forced in the vicinity of mode (0,1), amplitude of excitation 0.0277 N. The results given by the imperfect plate
model with cubic term (left upperscript IC) are compared to those given by the same model with quadratic terms only (left upperscript IQ) and to the experimental points
(o: increasing frequency sweep, P: decreasing frequency sweep).



overpredicted, so that the non-linear behaviour appears for forcing
levels that are below the ones encountered in the experiment.

The first reason should be the approximation of the geometry.
It has been shown in Section 4.2 that despite an enrichment of the
measured geometry with interpolation points, a small error at the
projection step were still present, though severely reduced. Sec-
ondly, these investigations have shown that when converging to
the minimum error, the convergence rate of the linear and non-
linear results were slower and slower. Consequently, another im-
provement of the approximation of the geometry should have a
limited effect on the results presented here. Another option could
be that a too large imperfection amplitude had been added to
the model. However, by comparison with numerical results of Sec-
tions 2 and 3, one can see that the present shell is not specifically
out of range as compared to the imperfection amplitudes theoret-
ically tested. The aspect ratio χ (defined by Eq. (27)) of the actual
shell, with Ropt = 1.557 mm, is χ = 3.6 · 104, which is in the range
covered by Fig. 2. Secondly, the results given by the finite element
codes with shell elements have not been found better than the
ones obtained with our model, hence discarding this possibility. Fi-
nally, the most probable reason for the observed discrepancy is the
presence of a non-modelled imperfection in the actual shell, that
has important consequences, especially for the non-linear coeffi-
cients. A variation of the thickness of the shell could be involved,
or an inhomogeneity in material properties due to manufacturing
process.

5. Conclusion

Effect of geometric imperfections on linear and non-linear char-
acteristics of thin circular plates with free-edge have been studied.
Thanks to Galerkin expansion by using the eigenmodes of the per-
fect plates, equations of motion of the imperfect plates are written
in a concise form which allows an easy and effective computa-
tion. The main advantage of the present method is that linear
as well as non-linear coefficients are found directly from the cu-
bic non-linear coefficients of the perfect plate only. The method
developed in this paper oversteps the modeling limitations often
found in previously published works, such as the axisymmetric
restriction or the expansion to only one mode in the Galerkin pro-
cedure. Moreover, convergence questions have been systematically
addressed. It has been found that for axisymmetric imperfections,
a quick convergence is obtained so that a limited number of ex-
pansion functions are needed to compute linear and non-linear
characteristics. However, for asymmetric imperfections, the num-
ber of expansion functions rapidly increases, so that the method
may have some difficulties to accurately represent asymmetric im-
perfect plates with non-regular or localized imperfections. Finally,
numerical results show that the present method can be used to
model a shallow shell as a plate with a large imperfection ampli-
tudes, more than ten times the thickness.

Comparison with a real shell shows a good agreement on linear
characteristics. At the non-linear level, an important improvement
is obtained as compared to a perfect spherical shell model. How-
ever some discrepancies subsist. A careful study if this mismatch
shows that its effect is more pronounced on non-linear terms,
which is in the line of the theoretical results presented, where
convergence is shown to be more difficult for non-linear charac-
teristics than for linear ones. A global overprediction of non-linear
coefficients seems to be at hand, resulting in overprediction of the
instability region and the type of non-linearity, though given of
the correct, softening type. A detailed analysis of the discrepancy
has been made, showing that the error committed on the recon-
structed geometry could be a factor, but the most probable option
is that another imperfection such as a variation of the thickness or
an inhomogeneous material property is present in the tested shell.
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