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Abstract

The addition of an essentially nonlinear membrane absorber to a linear vi-

broacoustic system with multiple resonances is studied experimentally, using

quasiperiodic excitation. An extended experimental dataset of the system re-

sponse is analyzed under steady state excitation at two frequencies. Thresh-

olds between low and high damping states within the system and associated

noise reduction are observed and quantified thanks to frequency conversion

and RMS efficiency indicators. Following previous numerical results, it is

shown that the membrane NES (Nonlinear Energy Sink) acts simultaneously

and efficiently on two acoustic resonances. In all cases, the introduction of

energy at a second excitation frequency appears favorable to lower the fre-

quency conversion threshold and to lower the noise within the system. In

particular a simultaneous control of two one-to-one resonances by the NES

is observed. Exploration of energy conversion in the two excitation ampli-

tudes plane advocates for a linear dependence of the frequency conversion
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thresholds on the two excitation amplitudes.

Keywords: Nonlinear absorber, Nonlinear energy sink, Targeted energy

transfer, Quasiperiodic excitation, Acoustic resonance, Noise reduction,

Frequency conversion

1. Introduction

Targeted Energy Transfer (TET) concept based on an additional essen-

tially nonlinear attachment (also named Nonlinear Energy Sink (NES)) to

an existing primary linear system has been extensively studied and it proved

to be very efficient for vibration and noise reduction. Various types of forc-

ing have been considered theoretically, numerically and experimentally from

impulsive to harmonic and also broadband frequency excitation [1]. The

unique nonlinear properties of a NES permit the existence of quasiperiodic

responses regimes under periodic excitation which can provide more efficient

energy suppression than a linear absorber in the neighborhood of the reso-

nance frequency (one-to-one resonance)[2, 3]. A single NES is also able to act

on several resonance frequencies of a primary system [4]. All these properties

are illustrated experimentally in the context of noise reduction in [5, 6].

An interesting question which has been considered more recently concerns

the ability of a single NES to provide efficient energy suppression simulta-

neously on several resonance frequencies of the primary system. The answer

is not obvious because there is no validity of the superposition principle due

to the intrinsic nonlinear nature of NES. In [7], scenarios of energy transfer

between a two degree-of-freedom system and a single NES were investigated

numerically under impulsive excitation. The forced case was considered in
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[8] considering external excitation with two additive sinusoidal components

at both resonance frequencies of the primary system. It is shown that a two

one-to-one resonances of the system is possible simultaneously resulting on

vibration reduction around the two resonance frequencies. More complex

resonance scenarios are also possible involving inter modulation frequencies.

We found consistent results in the acoustic domain, with a system where nu-

merical results are more easily found, and we showed evidences of TET and

evidences of strongly modulated regimes [9]. Quasiperiodic forcing have been

also considered in [10] but in case of one degree-of-freedom system coupled to

a single NES under external excitation with two additive sinusoidal compo-

nents at frequencies near the resonance frequency of the primary system. It

is demonstrated that strong modification of the response regimes can be ob-

tained showing that a single NES can mitigate efficiently the multi-frequency

excitation.

The main objective of this study is to obtain experimental confirmations

of the simultaneous efficiency of a single NES on a two degree-of-freedom

linear system under two-frequency excitation with frequencies near the reso-

nance frequencies of the linear system. We also focus on how the two degree-

of-freedom interact with each other and with the NES.

In view of the above objectives, we built a set up in the acoustic domain as

in [5] or [11] but now involving several degree-of-freedom. As in [5], a clamped

visco-elastic membrane is used as a NES. We checked the classical models and

properties on harmonic source experiments, before conducting and analyzing

experiments with two-frequency sources. We developed numerical tools for

the analysis of complex regimes and voluminous data.
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The paper is organized as follows. In section 2 we describe the experi-

mental setup, then we establish a classical model of our system, and we cheks

it with experimental results under harmonic excitation. Section 3 describes

the experimental procedure and introduces the original indicators used for

the analysis of the results. In Section 4, we analyze in details the responses

under two excitation frequencies and we bring some confirmations on theo-

retical predictions. And finally an overview of the frequency conversion in

the two excitation amplitudes plane is proposed.

2. Experimental set-up and model

2.1. Experimental set-up

The experimental set-up consists in a vibroacoustic system (also named

primary system) coupled to a nonlinear absorber (also named nonlinear en-

ergy sink or NES). As shown on Fig. 1, the linear primary system is made

of two different open pipes, coupled at each end to coupling boxes. One cou-

pling box contains a loudspeaker and a vent, and the nonlinear visco-elastic

membrane (the NES) is clamped on one face of the other coupling box.

Three main ideas were taken into account in the design of the set-up.

First, the membrane (NES) was designed following the recommendations

discussed in [5]. In particular, its material (latex), diameter and thickness

were chosen so that the nonlinear behavior can be caused by the pressure

amplitude generated inside the coupling box. And a sliding system (visible on

Fig. 1 (a)) controlled the pre-stress imposed at the membrane boundaries.

Second, on the source side, the parameters of the box and the vent were

chosen to ensure a weak coupling between the loudspeaker and the pipes,
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reducing the damping of the pipes by the loudspeaker. And third, on the

NES side, the coupling box with NES (Fig. 1 (b)) was chosen sufficiently large

to give a weak linear coupling stiffness between the pipes and the membrane.

(a)

Electric command

Coupling box (NES)

membrane NES

Electric command

Coupling box (NES)

membrane NES

Figure 1: (a) Picture and (b-c) schemas of the set-up.
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During a measurement, a target voltage signal e(t) from a generator (TTI

TGA1244) and a power amplifier (TIRA, BAA120), provided an input cur-

rent signal iLS(t) to the loudspeaker (current-feedback control). The following

responses of the system (see Fig. 1 (b)) were recorded simultaneously (multi-

channel analyzer/recorder OROS, OR38): the loudspeaker voltage response

eLS(t), the acoustic pressures p1(t) and p2(t) at mid length of the pipes 1

and 2 with two microphones (GRAS, 40BH), and the velocity vm(t) at the

center of the membrane with a laser vibrometer (Polytec, OFV303). The

generator target signal e(t) and command signal iLS(t) were also recorded.

Note that the current command iLS(t) from the amplifier slightly deviates

from the target signal e(t), in particular near the resonance frequencies of

the primary system. This has been taken into account in the analysis. In

order to characterize the linear primary system (see Section 2.3), some mea-

surements were also made with a configuration without NES, by replacing

the NES (membrane and the sliding system) by a rigid disk.

The geometrical parameters of the set-up are the following. The dimen-

sions of the membrane (NES) are: Rm = 0.03 m (radius), hm = 0.15×0.001 m

(thickness). Sm denotes the associated section area. The volume of the cou-

pling box to NES is: Vm(= 0.35 × 0.45 × 0.38) = 0.0756 m3. The diam-

eter of the loudspeaker is equal to 0.3 m giving an effective section area

equal to SLS(= π × 0.1292) = 0.0523m2. The dimensions of the vent are:

Sv(= 0.38× 0.01) = 0.0038 m2 (section area), hv = 0.02 m (thickness). Each

side of the loudspeaker see the same volume Vs1 = Vs2(= 0.35×0.45×0.38) =

0.0756 m3. The dimensions of pipes 1 and 2 are: L1 = 1.81 m, L2 = 1.71 m

(lengths), and d1 = 0.072 m, d2 = 0.094 m (diameter). S1 and S1 denote the
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associated section area.

2.2. Associated model

In this section we present a model of the experimental set-up, based on

the assumptions used in [5], [11] and [12] but that includes in addition, a

model for the loudspeaker and the vent. The schema and notations of the

model are shown on Fig. 1 (c).

Following [5], the nonlinear equation of motion of the membrane (NES)

is obtained considering the membrane as a thin elastic structure with ge-

ometric nonlinearities and using a 1-DOF Rayleigh-Ritz reduction with a

single parabolic shape function to describe the transversal displacement of

the membrane. Concerning the linear primary system, four coupled 1-DOF

linear equations represent the two pipes, the vent and the loudspeaker. The

equations characterizing the pipes are obtained using a 1-DOF Rayleigh-Ritz

reduction on the first acoustic mode (with mode shape (cos(πxi

Li

)) of the wave

equation.

The corresponding equations of motion are of the form

m1ü1(t) + 2τ1
√

k1m1u̇1(t) + k1u1(t) + S1∆pm(t) + S1∆ps1(t) = 0, (1)

m2ü2(t) + 2τ2
√

k2m2u̇2(t) + k2u2(t) + S2∆pm(t) + S2∆ps2(t) = 0, (2)

mmq̈m(t) + km

(

f 2
1

f 2
0

qm(t) + ηq̇m(t)

)

+ k3
(

q3m(t) + 2η|qm(t)|
2q̇m(t)

)

−
Sm

2
∆pm(t) = 0, (3)

mvüv(t) + cvu̇v(t) + Sv∆ps1(t)− Sv∆ps2(t) = 0, (4)

mLSüLS(t) + cLSu̇LS(t) + kLSuLS(t) + SLS∆ps1(t)− SLS∆ps2(t) = BliLS(t) , (5)
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where the coupling terms due to the stiffness of the coupling volumes are

∆ps1(t) = kbs1(S1u1(t) + Svuv(t) + SLSuLS(t)), (6)

∆ps2(t) = kbs2(S2u2(t)− Svuv(t)− SLSuLS(t)), (7)

∆pm(t) = kbm(S1u1(t) + S2u2(t)−
Sm

2
qm(t)). (8)

Concerning the NES, qm (Eq. (3)) denotes the displacement of the center

of the membrane, and q̇m(t) = vm(t) the associated velocity. The parameters

satisfy [5]

mm =
ρmSmhm

3
, km =

1.0154π5

36

Eh3
m

(1− ν2)R2
m

, (9)

f0 =
1

2π

√

1.0154π4Eh2
m

12(1− ν2)ρmR4
m

and k3 =
8πEhm

3(1− ν2)R2
m

, (10)

where ρm (respectively E, ν and η) denotes the density (respectively Young’s

modulus, Poisson ratio and viscous damping coefficient) of the membrane.

Here f0 denotes the first resonance frequency of the membrane without pre-

stress and f1 denotes the first resonance frequency of the membrane with pre-

stress in operating conditions. The resonance frequency f1 can be measured

experimentally so it can be considered as a parameter of the model.

Concerning the linear primary system, ui(t) for i = 1, 2 (Eqs. (1) and (2))

denote the displacement of the air at the end of the pipe i (see Fig. 1 (c)).

The acoustic pressure at the middle section of the pipe i is then approximated

by

pi(t) = −
ρac0π

Li

ui(t) , (11)

where ρ0 is the density of the air and c0 is the sound wave velocity. The

other parameters satisfy

mi =
ρ0SiLi

2
and ki =

ρ0c
2
0π

2Si

2Li

giving ωp2

i =
ki
mi

=
c20π

2

L2
i

, (12)
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where ωp
i denotes the natural resonance frequency of the acoustic medium

inside the open-open pipe i, and τi denotes the damping ratio of the pipe i.

Equation (4) characterizes the motion, uv(t), of the air inside the vent

assuming that the air inside the vent behaves like an ideally rigid solid with

mass mv = ρ0Svhv. Equation (5) characterizes the motion, uLS(t), of the di-

aphragm of the loudspeaker fed with an electrical current iLS(t), assuming the

diaphragm to be rigid (piston). mLS (respectively kLS and cLS) denotes the

mass (respectively stiffness coefficient and damping coefficient). Bl denotes

the force factor of the loudspeaker (see for example [13]).

Finally, the pressures inside the boxes are assumed spatially uniform and

follow the volume variations exerted by the displacements of the vent, the

membrane, the loudspeaker diaphragm, and the pipes, as given by Eqs. (6-8)

with

kbs1 =
ρ0c

2
0

S1

, kbs2 =
ρ0c

2
0

S2

and kbm =
ρ0c

2
0

Sm

. (13)

For the complete system, substitution of Eqs. (6-8) into Eqs. (1-5), gives

the following matrix form system

MÜ(t) +CU̇(t) +KU(t) + F(U(t)) +G(U(t), U̇(t)) = E(t) , (14)

where U(t) = (u1(t), u2(t), qm(t), ue(t), uLS(t))
T , the matrices M, C and K

(not given here) are symmetrical, F(U(t)) = (0, 0, k3q
3
m(t), 0, 0)

T ,G(U(t), U̇(t)) =

(0, 0, 2k3η|qm(t)|
2q̇m(t), 0, 0)

T and E(t) = (0, 0, 0, 0, Bl)T iLS(t).

2.3. Linear and nonlinear modes of the system

Let consider the linear primary system alone (system with a rigid plate

instead of the membrane NES). Figure 2 shows the Frequency Response

Functions (FRF) p1/iLS and p2/iLS measured using a band limited ([10, 200]
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Hz) white-noise generator signal e(t). Also plotted are the FRF obtained

with the linear model defined by the equations of motion (1), (2), (4) and

(5) coupled by equations (6-8), with qm(t) = 0, and solved algebraically in

the frequency domain.

Four resonance peaks appear in the frequency band [20, 120] Hz. Roughly

speaking, the first resonance (around 35 Hz) exhibits a high displacement of

the loudspeaker diaphragm whereas the last resonance (around 115 Hz) refers

mainly to the vent. The two intermediary resonances (around 88 Hz and 98

Hz) exhibit high pressure levels within pipes 1 and 2 (the acoustic medium).

Pipe 1 is more sensitive to the resonance around 88 Hz (note that from

Eq. (12), ωp
1 = 88.1 Hz) whereas pipe 2 is more sensitive to the resonance

around 98 Hz (ωp
2 = 96.09 Hz). But actually, all the four DOF of the primary

system are coupled. The coupling boxes, loudspeaker and vent are needed

within the model to reproduce accurately the observed FRFs shown on Figure

2. As expected, the design of the setup produces high acoustic pressure levels

in both pipes around 88 Hz and 98 Hz.

A linear modal analysis is also performed on the complete (lossless) linear

system with the linear part of the NES (rewritten as Eq. (14)), by using only

the matrices M and K. Results reported in Tab. 1 show that mode 3 and

4 exhibit high modal amplitudes u1 and u2 within the pipes (the acoustic

medium). Mode number 3 exhibits out-of-phase displacements within to the

two pipes (u1 and u2 have opposite sign) whereas mode number 4 exhibits

in-phase displacements. This behavior indicates that the membrane do not

interact symmetrically on the two acoustic modes number 3 and 4.

Let now consider the complete (nonlinear) system under sinusoidal excita-
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Figure 2: FRF (a) p1/iLS (b) p2/iLS , system without NES. Comparison experiment

(dotted lines) and model (continuous line).

tion e(t) = E cos(2πft). Figure 3 shows the RMS values of the steady-state

responses p1, p2 and vm. The excitation frequency f was chosen from 85

Hz to 104 Hz with step 0.1979 Hz, including the two resonance frequen-

cies of modes 3 and 4. Five excitation levels were used: E = 0.004375 V,

E = 0.07 V, E = 0.07875 V, E = 0.1312 V and E = 0.2275 V. Also

plotted are the responses obtained with the complete nonlinear model de-

fined by equations of motion (14by using the ordinary differential equations

solver NDSolve (with the choice Automatic for the option Method) available
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in c©Mathematica.
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Figure 3: RMS responses (a) p1 , (b) p2 and (c) vm, system with NES. Comparison

of experiment (dotted lines) and model (continuous lines) for several excitation levels:

E = 0.004375 V (yellow curves), E = 0.07 V (blue curves), E = 0.07875 V (red curves),

E = 0.1312 V (green curves) and E = 0.2275 V (magenta curves); also shown: Nonlinear

Normal Modes (black curves).

At low excitation level (E = 0.004375 V), the model responses are in

very good agreement with data (Fig. 3, yellow curves)). Increasing the level
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Mode number 1 2 3 4 5

fi (Hz) 29.57 34.45 87.83 98.32 113.52

u1 -0.0093 0.0064 1.0000 -0.5182 0.0738

u2 -0.0084 -0.0051 -0.2993 -0.8485 -0.1463

qm -1.0000 0.0211 -0.2130 0.6036 0.0379

uv -0.0063 -1.0000 -0.8965 -1.0000 1.0000

uLS 0.002 0.0570 -0.0837 -0.0851 0.0783

Table 1: Resonance frequencies and mode shapes of the undamped underlying linear model

with membrane NES.

(E = 0.07 V and E = 0.07875 V), the model is able to reproduce the nonlin-

ear behaviors (for example, the response level decreases when the excitation

level increases, steps appear on the membrane response). These behaviors are

first observed around the resonance frequency 98.3 Hz (Fig. 3, blue and red

curves). Still increasing the level (E = 0.1312 V and E = 0.2275 V), some

nonlinear behaviors are also visible around the resonance frequency 88. Hz

(Fig. 3, green and magenta curves). In the considered excitation range, the

model gives responses which are in good agreement with measurements for

the acoustic pressures p1 and p2. However, the model is not able to repro-

duce well the response level of the membrane in particular at high excitation

level. The upper bounds observed on vm at high excitation levels are under-

estimated by the model. This is probably due to the membrane model which

cannot reproduce the complex motion of the membrane.

Also reported in Fig. 3 are the Nonlinear Normal Modes (NNMs) asso-

ciated to the out-of-phase and in-phase acoustic modes. The free software
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ManLab [14] was used to compute the NNMs as families of periodic solutions

of the autonomous undamped associated mechanical system. It is based on

the harmonic balance method (HBM) [15] and the so-called asymptotic nu-

merical method [16]. In HBM, there is a choice of the order of approximation

based on the hypothesis that higher frequencies in the reponses do not change

significantly the solutions. We checked that the fifth order was enough: using

higher orders of approximation did not improve the results.

As described in [17], the NNMs can be used to estimate the forcing level

for the beginning of TET. This threshold is defined as the forcing level where

the resonance peak of the periodic response coincides with the maximum

point of the second nonlinear mode around the considered mode. For the

in-phase mode, the threshold is near ETET ≈ 0.07 (see Fig. 3(b), blue curve)

whereas the threshold is near ETET ≈ 0.2275 for the out-of-phase mode

(see Fig. 3(b), magenta curve). These values are significantly different and

confirm that the membrane acts preferentially on the in-phase NNM. This

point will be considered in the following discussions.

Results presented above share the following set of parameter values. For

the membrane (NES), the numerical values of the material parameter (latex)

are: ρm = 980 kg m−3, E = 1480000 Pa and ν = 0.49. Parameters f1 and η

(Eq. (3)) were chosen to f1 = 4.5 Hz and η = 0.0006. Note that the value f1

is close the f0 value (equal here to 3.75 Hz) which is in agreement with the

sliding system adjustment of the membrane pre-stress. For the primary linear

system, the numerical values for the damping parameters were chosen as:

τ1 = τ2 = 0.007, cv = 0.0031 Ns/m, cLS = 3.5186 Ns/m. We adjusted η, τ1, cv

and cLS empirically to get the best fit of the model to experimental data. Our
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previous works showed that these values are of the same order of magnitude

as the usual physical values. The geometrical parameter values used within

the models are exactly the physical values of the set-up (see Section 2.1),

except for the following: the lengths of the pipes (L1 = 1.81 + 0.1195 m,

L2 = 1.71+0.059 m) and the mass of the vent (mv = 1.5288×10−4×3.25 kg).

These corrections can be seen as a simplified way for the model (Eq. (14)) to

include other phenomena that exist in experimental set-up, that is, the added

lengths at geometrical discontinuities and added mass of the loudspeaker due

to its radiation impedance. The loudspeaker parameters values were taken

from the manufacturer specifications: mLS = 0.07 kg., kLS = 6908.7 N/m

and Bl = 10.7 N/A. The parameter values for air are: ρ0 = 1.2 kg m−3,

c0 = 340 m s−1.

3. Test procedure and analysis tools under two excitation frequen-

cies

3.1. Two excitation frequency tests

The input current command signal iLS(t) into the loudspeaker is driven

from the generator by a voltage signal of the form

e(t) = A cos(2πfAt) +B cos(2πfBt+ φ) (15)

where fA (respectively fB) denotes the excitation frequency near the res-

onance frequency of the out-of-phase (respectively in-phase) acoustic mode

and A (respectively B) is the associated excitation amplitude. The phase φ

is introduced arbitrarily by the signal generator.

A measurement run consists in making a series of experiments, where

the value of the scanning frequency fA (respectively fB) is updated for each
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experiment, while the three other parameters fB, A and B (respectively fA,

A and B) remain unchanged. The hysteresis properties (or occurrence of

multi-solutions) are not considered in this experimental investigation. Each

experiment is done with constant values for A,B, fA and fB. The duration

of an experiment must be limited for practical reasons, but must be long

enough to capture the physics of the reponse. We have chosen a duration of

13 seconds for each experiment. There are 2 steps in an experiment. The

first step lasts 3 seconds with no source signal. It permits to get null initial

conditions, whatever happened before. The second step lasts 10 seconds

with the source on, but we record only the last 7 seconds, the first 3 seconds

permiting to vanish the transitory effects of excitation. For a source signal

composed of multi-frequency components (in our case at least, fA and fB)

the recording duration, has to be large with respect to the greater period

of the inter modulation terms. In this study, the recording duration of 7 s,

is more than 30 times longer than the longest beating period of the source

(7 > 30 Max(1/|fA − fB|)).

A measurement test consists in making a series of runs where the value

of the amplitude A (resp. B) is updated for each run. Nine tests were

performed, gathering a total of 19123 experiments constituing 299 runs. They

are presented in Table 2. The frequency step δf = 0.1979 Hz was used

to define runs in bands [fA
min, f

A
max] and [fB

min, f
B
max]. Steps in amplitude

bands [Amin, Amax] and [Bmin, Bmax] are equal to 0.00875 V in case of large

amplitude interval (Tests 1, 5, 6, 8) and equal to 0.004375 V for the other

cases.

Three types of tests are encountered. The first type of test (Tests 1 and
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A B fA fB

Test [Amin, Amax] [Bmin, Bmax] [fA
min, f

A
max] [fB

min, f
B
max]

(V) (V) (Hz) (Hz)

1 0 [0.004375, 0.35] - [94., 104.]

2 2.× B [0.004375, 0.09] 88. [94., 104.]

3 4.× B [0.004375, 0.045] 88. [94., 104.]

4 8.× B [0.004375, 0.02] 88. [94., 104.]

5 [0.004375, 0.35] 0.066 88. [94., 104.]

6 [0.004375, 0.35] 0 [85., 95.] -

7 [0.004375, 0.175] A/2. [85., 95.] 98.8

8 [0.004375, 0.35] A/8. [85., 95.] 98.8

9 0.175 [0.0, 0.09] [85., 95.] 98.8

Table 2: Excitation parameters for the tests.

6) corresponds to (single frequency) sinusoidal excitation and will be used

as reference and compared with the existing results [4, 5]. The second type

of test (Tests 2, 3, 4 and 7, 8) exhibits a second (fixed) excitation frequency

in addition to the scanning frequency, with constant amplitude ratio A/B in

e(t). For the third type of test (Tests 5 and 9), the second (fixed) excitation

frequency explore different parameter amplitudes in e(t), while the amplitude

of the scanning frequency is kept constant. The sampling frequency fs =

4096 Hz is well above the source frequencies and the higher harmonics used

in the model.
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3.2. Signal analysis under two excitation frequencies

3.2.1. Classical RMS analysis

The RMS values is used to characterize the steady state responses of the

system. For a recorded (at the sampling frequency fs) signal s(tn) of length

N (here N = 7fs = 28672), the RMS value of s is defined as

sRMS =

√

√

√

√

1

N

N
∑

n=0

(s(tn)− s̄)2 (16)

where s̄ denotes the arithmetic mean of s(tn).

3.2.2. Defining the energy frequency conversion ratios HCR and NHCR

For nonlinear systems under two excitation frequencies, fA and fB, the

frequency distribution of energy of the response signals (here the magnitude

of the Fourier spectrum) may be divided into three parts. The first part is

the energy at frequencies identical to the excitation frequencies fA and fB.

The second part is the energy localized at inter modulation frequencies of fA

and fB, defined as linear combinations of fA and fB (except fA and fB).

This energy is used to define a criterion called here the harmonic conversion

ratio (HCR). And the third part is the energy localized at whatever frequency

different from fA, fB and any of their possible inter modulation frequencies.

This energy is used to define a criteria called here the nonharmonic conversion

ratio (NHCR).

Let focus now on an estimation procedure for the two indicators HCR and

NHCR. Since the excitation frequencies fA and fB do not coincide with fre-

quencies of the Fourier analysis, the problem is to subtract from the Fourier

spectrum, the correct peak shape and magnitude at a set of known frequen-

cies. A quite accurate approach to this problem is discussed in [18]. We
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propose here a simplified procedure assuming well separated peaks in the

Fourier space, which is generally the case in our study for the most impor-

tant contributions. As explained below, peak shape and magnitude to be

subtracted at a given frequency is based on the Fourier spectrum of a win-

dowed cosine function at that frequency.

For a recorded (at the sampling frequency fs) signal s(tn) of length N

(here N = 28672), the discrete Fourier transform combined with Hamming

function windowing defines the following Fourier spectrum

FS(s, k) = S(k) =

N−1
∑

n=0

s(tn)

(

0.54− 0.46 cos

(

2πn

N − 1

))

ej2πk
n

N (17)

at the discrete analysis frequencies k∆fs, with ∆fs = fs
N

and j2 = −1. Let

K be the cutoff order of inter modulation frequencies. We denote HK the

ensemble of fA, fB, and the inter modulation frequencies up to order K,

defined as

HK = {|αfA + βfB| such that (α, β) ∈ Z
2, 0 < |α|+ |β| ≤ K}. (18)

HK is a discrete set of frequencies, M = card(HK) is the number of elements

of HK . The elements of HK are labeled along their computation order:

HK = {f 1, f 2, · · · , fM}, with f 1 = fA, and f 2 = fB. For a given f l ∈ Hk,

we define the nearest discrete Fourier analysis frequency by the integer

kl = R

(

f l

∆fs

)

(19)

where R(x) denotes the nearest integer function of real number x.

The harmonic conversion ratio (HCR) of the energy of the signal s is

defined as

HCR(s) =

∑N−1
k=0 (DM(k)−D2(k))

2

∑N−1
k=0 |S(k)|2

(20)
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where, for each k, the sequence D1(k), D2(k), · · · , DM(k) is defined by the

recursive formula


















D0(k) = |S(k)|

Dl(k) = Max
(

0,
(

Dl−1(k)−
∣

∣

∣

Cl(k)
Cl(kl)

∣

∣

∣
Dl−1(kl)

))

.

for l = 1, · · ·M

(21)

In Eq. 21, Cl(k) denotes the Fourier spectrum of the time function cl(t) =

cos(2πf lt) as defined by Eq. (17)

Cl(k) = FS(cl, k). (22)

Note that for the particular case of (single frequency) sinusoidal excitation

(fA or fB equal to zero), the setHK (Eq. 18) corresponds to purely harmonic

frequencies (multiples) of the single excitation frequency.

To analyze the distribution of the frequency components which are not

inter modulation products of fA and fB, we introduce the nonharmonic

conversion ratio (NHCR) of the energy of the signal s as

NHCR(s) = 1−

∑N−1
k=0 DM(k)2

∑N−1
k=0 |S(k)|2

. (23)

Note that HCR(s) + NHCR(s) is not equal to one. The complement to one

corresponds to the fraction of energy at the excitation frequencies fA and

fB.

For a linear system, we have HCR(s) = NHCR(s) = 0 which charac-

terizes signals with energy only localized on the excitation frequencies fA

and fB. The combination HCR(s) large with NHCR(s) = 0 is associated to

signals with energy localized on the inter modulation frequencies of fA and

fB. It corresponds, for example, to a classical high frequency enrichment
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in nonlinear systems. The combination HCR(s) = 0 with NHCR(s) large is

associated to signals with energy localized on the excitation frequencies fA

and fB plus other frequencies non commensurable with fA and fB. This

combination can be used to detect a weakly modulated response appearing

in the vicinity of Hopf bifurcation. Finally the combination HCR(s) large

and NHCR(s) large can correspond to strongly modulated responses or more

generally to the transition to chaos

The ratios HCR and NHCR are only computed for the membrane velocity

vm, the most sensitive measured response to nonlinear effects.

3.2.3. Efficiency RMS ratio compared to the underlying linear system

For the evaluation of the efficiency of the membrane NES on the primary

system, we built another indicator based on the comparison of the actual

system response with the corresponding system response assuming linear be-

havior (also named underlying linear system). These linear responses which

could not be measured, are estimated on the basis of the response of the

nonlinear system at low excitation level.

For a given signal with two frequencies from the generator

e(t) = A cos(2πfAt) +B cos(2πfBt+ φ) (24)

with amplitude (A,B), we introduce the efficiency RMS ratio on the pipe i

for i = 1, 2 as
piRMS

pLiRMS

(25)

where piRMS
denotes the RMS value of the sound pressure pi measured un-

der (24) and pLiRMS
the RMS value of the sound pressure considering the
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underlying linear system. pLiRMS
is estimated by

(pLiRMS
)2 = ρApi(Amin, 0)

2
RMS + ρBpi(0, Bmin)

2
RMS (26)

where pi(Amin, 0)RMS (respectively pi(0, Bmin)RMS) denotes the RMS value

of the sound pressure measured at low level under sinusoidal signal e(t) =

Amin cos(2πf
At) (respectively e(t) = Bmin cos(2πf

Bt)) during Test 1 (resp.

Test 6), levels for which the responses of the system are assumed to be linear.

Amin and Bmin are defined in Tab. 2. The weighting coefficients ρA and ρB

are defined as a ratio between the Fourier components (as defined in Eq. 17)

of the current iLS measured under (24), and iLS(Amin, 0) and iLS(0, Bmin)

measured at low level under sinusoidal signals i.e

ρA =
ILS(kA)

ILS(Amin, 0)(kA)
and ρB =

ILS(kB)

ILS(0, Bmin)(kB)
. (27)

The weighting coefficients ρA and ρB are evaluated at the nearest Fourier

analysis frequencies from fA and fB respectively, namely at kA = R(fA) and

kB = R(fA). The additive rule (26) holds because pi(Amin, 0) and pi(0, Bmin)

are orthogonal since fA 6= fB. As long as the behavior of the system is linear,

the efficiency RMS ratios are equal to one. A ratio value smaller than one

indicates that the non linearity acts as an absorber of noise whereas a ratio

value greater than one indicates a degradation of the performance of the

system.

3.2.4. Fourier magnitude ratio at excitation frequencies

Finally, more classical is to consider the Fourier magnitude ratios between

the Fourier components of the sound pressure pi for i = 1, 2 and the current

iLS
Pi(kA)

ILS(kA)
and

Pi(kB)

ILS(kB)
(28)
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evaluated at the nearest Fourier analysis frequencies from fA and fB respec-

tively, namely at kA = R(fA) and kB = R(fA).

These ratios indicate the relative responses in the tubes as a function

of the excitation frequencies. When the excitation frequencies are close to

the resonance frequencies, they are related to the amplitude of the resonant

motion components.

4. Results and discussion

Among the complete data set described in Table 2, for sake of clarity,

only Tests 1 and 6 (single sinusoidal excitation) and Tests 2, 5 and 8 (two

excitation frequencies) are considered here for a detailed presentation and

discussion. For each test, 12 selected runs are showed for readability. For

each test, two types of figure are proposed to analyze the results.

The first type of figure (called Board 1) includes eight plots showing

(a) the RMS values of the command iLS, (b) the RMS value of the mem-

brane NES velocity vm, (c,d) the energy frequency conversion ratios HCR

and NHCR computed from vm, (e,f) the RMS values of the sound pressures

p1 and p2 and (g,h) the efficiency RMS ratio for p1 and p2. For a given

excitation level, each quantity is plotted as a continuous curve versus scan

frequencies.

The second type of figure (called Board 2) is used only for tests with

two excitation frequencies (Tests 2, 5 and 8). It includes four plots showing

(a,b) the Fourier magnitude ratios of the sound pressure p1, (c,d) the Fourier

magnitude ratios of the sound pressure p2. For a given excitation level (a

run), each quantity is plotted as a continuous curve versus scan frequencies.
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Finally, to easily localize the nonlinear domains resulting from the anal-

ysis of the energy frequency conversion ratios HCR(vm) and NHCR(vm) ,

the four following conventions have been adopted during the plots: (i) a cir-

cle marker is added at all the results of the run if for this run HCR(vm) ≥

0.02, (ii) a star marker is added at all the results of the run if for this

run NHCR(vm) ≥ 0.02, (iii) on each plot, the curve corresponding to the

lowest excitation level where at least in one experiment HCR(vm) exceeds

0.02, is indicated by thick line, the corresponding excitation level is denoted

(AHCR, BHCR) (and named HCR threshold) and (iv) on each plot, the curve

corresponding to the lowest excitation level where at least in one experi-

ment NHCR(vm) exceeds 0.02, is indicated by thick line, the corresponding

excitation level is denoted (ANHCR, BNHCR) (and named NHCR threshold).

For each test, the 12 excitation levels have been selected uniformly be-

tween the low and high excitation levels and including the best estimated

levels for (AHCR, BHCR) and (ANHCR, BNHCR) at the scale of the amplitude

step used during the test.

4.1. Tests 1 and 6: single frequency excitation

The behavior of the system under (single frequency) sinusoidal excitation,

scanned around the in-phase mode (Test 1 in Table 2), is presented on Fig. 4

(Board 1).

Concerning the loudspeaker command level, the power amplifier driving

the loudspeaker in current-feedback mode provides a nearly constant com-

mand iLS (see Fig. 4(a)), for the 12 runs (lines) presented. Concerning the

system response, as expected, a resonance peak around the in-phase mode

(mode 4, f4 = 98.32 Hz, in Table 1) is observed on the sound pressures
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responses within the pipes (Fig. 4(e,f)) for low excitation levels. At the ex-

citation level BHCR = 0.07875 , the run exhibits sudden abrupt changes in

the system response. These ”discontinuities” correspond to jumps of the

membrane velocity RMS values between low (≈ 1.2 m/s) and high (≈ 3.2

m/s) values (see Fig. 4(b)) associated to a significant reduction of noise in

both pipes (see Fig. 4(e,f)). The BHCR value is near the TET threshold

(ETET = 0.07) predicted by the model (see Section 2.3). These discontinu-

ities correspond to a state change of the nonlinear system as described in [4].

The membrane NES efficiency is at its best when B is greater or equal to

BHCR = 0.07875 but not too high: the responses within pipes represent only

30% of the underlying linear system responses at B = BHCR and this percent

slightly increases when B increases (Fig. 4(g,h)). In all these cases, the RMS

values of vm is greater than 3 m/s (see Fig. 4(b)).

Fig. 4(h) shows values above 1. for the efficiency RMS ratios for p2, mean-

ing that the non linearity increases the response within the pipes. It is due

to the left shift of the in-phase mode resonance at high excitation levels, a

common feature in such nonlinear systems. From an efficiency point of view,

values above 1. observed here are not critical since they occur at low response

amplitude far from the in-phase mode resonance.

In addition to expected results, the analysis of the energy frequency con-

version ratios proposed in Section 3.2 can give new insight into the nature

and intensity of nonlinear phenomena. On one side, Fig. 4(d) shows that

the harmonic conversion ratios HCR(vm) never exceed 6%. Only a small

amount of the energy is localized into high order harmonics of the excita-

tion frequency fB (remember that Hk (Eq. (18)) is here reduced to multiples
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of fB). It confirms that approximated solutions from models with limited

number of harmonics (as in Eq. (3) and for example in [4], [7] and [9]) are

adequate to describe the membrane NES motion. But on the other side, on

Fig. 4(c), NHCR(vm) can easily exceed 20%, even for low excitation level B.

Fourier transforms of vm (not shown) reveal that nonharmonic conversion

results in frequencies greater than (but not multiple of) fB, that are more

easily damped.

The energy frequency conversion ratios HCR(vm) and NHCR(vm) seem

adapted to detect jumps changes in the nonlinear system behavior. First

because, frequencies with high HCR(vm)(≥ 0.02) on Fig. 4(d) clearly coincide

with frequencies exhibiting high RMS values of vm on Fig. 4(b), where the

membrane motion exhibits a saturation behavior due to its stiffening non

linearity. And second because, high NHCR(vm)(> 0.02) combined with small

HCR(vm)(< 0.02) on Fig. 4(c) always appears at the immediate vicinity of

frequencies where vm is low (vm ≈ 1 m/s) but close to jumps from low to high

RMS values on Fig. 4(b). Fourier transforms of vm (not shown) reveal the

presence of satellite peaks (outside the harmonics of the excitation frequency)

around the main peak at the excitation frequency. This scenario is compatible

with the neighborhood of Hopf bifurcation as observed numerically for a

similar system in [19].

Finally, Test 1 also exhibits high NHCR(vm) values at other frequencies

and other excitation amplitudes (BNHCR = 0.0175) that are not apparently

related with low/high jumps of the membrane velocity RMS values, as shown

for BNHCR ≤ B ≤ BHCR, corresponding to low membrane velocity amplitude

(vm < 1.2 m/s). This is something not noticed before.
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Let complete the results under (single) sinusoidal excitation, by examin-

ing the out-of-phase mode (Test 6, Fig. 5). Concerning the system response,

as expected, the resonance peak around the out-of-phase mode (mode 3,

f3 = 87.83 Hz, in Table 1) is observed on the sound pressures responses

within the pipes (Fig. 5(e,f)) at low excitation amplitudes.

Observations presented above for Test 1 also hold for Test 6, except for

the three following observations: First, the low/high jumps of the membrane

velocity vm RMS values also appears at A = AHCR but the excitation am-

plitude AHCR = 0.2275 is higher than in Test 1 (see Fig. 5(b)). Note that

the AHCR value corresponds to the TET threshold (ETET = 0.2275) given

by the model (see Section 2.3). Since mode 3 exhibits out-of-phase motion

within the pipes, the coupling box holding the membrane NES is close to a

pressure node of the mode: its interaction with the membrane is weak, which

explains the higher values of AHCR and ETET compared to in-phase mode.

Second, in terms of membrane NES efficiency, the pressure reduction (on p1

and p2) due to the non linearity is limited to ≈ 45% of the underlying linear

system responses, a lower pressure reduction than in Test 1 (see Fig. 5(g,h)).

And third, contrary to Test 1, in Test 6, AHCR = ANHCR, high NHCR appear

on Fig. 5(b) only at the immediate vicinity of frequencies where vm is low

(vm ≈ 1 m/s) but close to the low/high jumps of the membrane velocity

RMS values.

4.2. Test 2: two excitation frequencies with constant amplitude ratio

The behavior of the system under two excitation frequencies was explored

in Tests 2, 3 and 4 (see Table 2), with a scanning frequency fB around the in-

phase mode (mode 4, f4 = 98.32 Hz, in Table 1), and a constant excitation
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amplitude ratio A/B. The second excitation frequency (fA = 88. Hz) is

fixed close to the resonance frequency of the out-of-phase mode (mode 3,

f3 = 87.83 Hz, in Table 1). Test 2 is presented on Fig. 6 (Board 1) and

Fig. 7 (Board 2). In this test the amplitude ratio A/B = 2. Tests 3 and 4

lead to similar observations and are not shown.

4.2.1. Comparison with Test 1

In Test 2, the run exhibits sudden abrupt changes above the excitation

level (AHCR, BHCR) = (2×0.04375, 0.04375) corresponding to jumps between

low (≈ 1.2 m/s) and high (≈ 3.2 m/s) RMS values of the membrane velocity

(see Fig. 6(b)). This corresponds to the same state change as for the system

than in Test 1, but occurring at a lower excitation level (BHCR = 0.07865 for

Test 1) of the scanning frequency fB. Interesting also is that the RMS value

of the command current iLS(≈ 0.22) at the excitation level (AHCR, BHCR) for

Test 2 is lower than the RMS value of the command current iLS(≈ 0.3) at

the excitation level BHCR for Test 1. This is a clear influence of the addition

of the second excitation term at fA with A = 2B compared to Test 1.

Concerning the efficiency, the membrane NES is able to reduce simultane-

ously the sound pressure RMS in both pipes for excitation levels B ≥ BHCR

(resulting as the excitation level (2B,B)) for frequencies where vm ≥ 3 m/s

on Fig. 6(b). As shown in Fig. 6(g,h) for B ≥ 0.0525, the response within

pipe 1 (resp. pipe 2) represents only 65% (resp. 50%) of the underlying linear

system response. Compared to Test 1, its efficiency is smaller but operates

on a wider frequency range, and values superior to 1. (amplification) are not

observed.

Concerning the energy frequency conversion ratios, as for Test 1, HCR(vm)
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and NHCR(vm) seem adapted to detect changes in the nonlinear system

behavior. Frequencies with HCR(vm) > 0.02 on Fig. 6(d) coincides with

frequencies exhibiting high RMS values of vm on Fig. 6(b). And also, high

NHCR(vm) on Fig. 6(c) appear at the immediate vicinity of frequencies where

vm is low (vm ≈ 1 m/s), close to the low/high jumps of the membrane veloc-

ity RMS values on Fig. 6(b). This scenario has been observed numerically

for a similar system in [9]. But contrary to Test 1, HCR(vm) now can eas-

ily exceed 10%, and at some frequencies high values for HCR(vm) can be

observed simultaneously to high NHCR(vm). It indicates that solutions ap-

proximated by limiting the harmonics terms to the fundamental frequencies

for the membrane NES may hardly describe all the nonlinear effects of the

membrane with two excitation frequencies.

Finally we observe that (ANHCR, BNHCR) = (2×0.03065, 0.03065) showing

that Test 2 also exhibit high NHCR(vm) values at other frequencies and

other excitation levels that are not apparently related with low/high jumps

of the membrane velocity RMS values, as shown for BNHCR ≤ B ≤ BHCR.

These high NHCR values appear for low membrane velocity amplitude (vm <

1.2 m/s).

4.2.2. Membrane NES effects at the two resonance frequencies

Now a deeper understanding of how the in-phase mode and the out-of-

phase mode are influenced by the membrane NES is proposed. The in-phase

mode and the out-of-phase mode, which both contribute to pressure in pipes

1 and 2, are separated thanks to Fourier magnitude ratios at excitation fre-

quencies. The Fourier magnitude ratios P1(f
B)/ILS(f

B) and P2(f
B)/ILS(f

B)

shown Fig. 7(b,d) are related to the amplitude of the in-phase mode whereas
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the Fourier magnitude ratios P1(f
A)/ILS(f

A) and P2(f
A)/ILS(f

A) shown

Fig. 7(a,c) are related to the amplitude of the out-of-phase mode. The four

ratios decrease when the excitation level increases: the NES acts simulta-

neously and efficiently at both excitation frequencies, on both modes. But

the amplitude of the out-of-phase mode is not really sensitive to fB: the run

response do not vary much along fB (see Figs. 7(a,c)), whereas the ampli-

tude of the in-phase mode (see Figs. 7(b,d)) varies with fB similarly to the

response RMS of pipe 2 (see Fig. 6(f)).

A symmetrical situation is observed for Test 8 (see Fig. 8, Board 2), for

which the excitation frequency fA varies while fB is now constant (98.8 Hz).

As for Test 2, the four ratios decrease when the excitation level increases:

the NES acts simultaneously and efficiently at both excitation frequencies.

But contrary to Test 2, the in-phase mode 4 is now less dependent upon

fA (Figs. 8(a,c)), and the out-of-phase mode varies with fA. Even if with

HCR(vm) and NHCR(vm) values up to 70%, most of the signal energy can be

away from fA and fB, a single NES can reduce simultaneously the response

of 2 modes excited at their respective resonance frequencies. This scenario

is interpreted as a simultaneous control of two one-to-one resonances by a

single NES, which was first considered numerically in [8].

4.3. Test 5: two-frequency test with one amplitude constant

Test 5 was designed essentially to analyze the influence of a second addi-

tive periodic excitation at a different frequency. It was especially used to test

the efficiency for sound attenuation. Test 5 starts from periodic excitation

defined with A = 0, B=0.0656 and fB scanned in the range [94, 104] Hz as

in Test 1. B=0.0656 has been chosen so that the system is just below the

30



excitation level BHCR (BHCR = 0.07875 for Test 1). Next a second additive

periodic excitation is added at the frequency fA = 88. Hz (near the out-of-

phase mode) and several excitation levels were considered. The results of

Test 5 are summarized in Fig. 9 following Board 1 representation and Fig. 10

following Board 2 representation.

4.3.1. Noise reduction by an additive periodic excitation.

Noise reduction can be analyzed observing the efficiency RMS ratios

shown Fig. 9(g,h). Increasing A, the efficiency RMS ratios decreases at the

same time, in all frequency band and almost with the same magnitude. The

responses (p1 and p2) are as low as 50% of what should have been expected

if the system was linear.

A nice effect is observed on Fig. 9(f): an increase in A not only diminishes

the relative (with respect to a underlying linear system) response in pipe 2,

but it also diminishes the response RMS in pipe 2, with up to 40% improve-

ment in a narrow band around the resonance frequency of the in-phase mode.

In parallel the response RMS in pipe 1 (see Fig. 9(e)), always increases vary-

ing (versus fB) greatly at low excitation level (A low) and being constant at

high excitation level. At low excitation level (A low), we see the response at

fB, at high excitation level (A high) the response at fA becomes dominant.

The last point is to check if the noise reduction is due to simultaneous

control of the two modes by the NES. The response can be obtained from

Fig. 10. We observe that the four ratios P1(f
A)/ILS(f

A), P2(f
A)/ILS(f

A),

P1(f
B)/ILS(f

B) and P2(f
B)/ILS(f

B) decrease when the excitation level in-

creases showing that the NES acts simultaneously and efficiently on both

excitation frequencies.
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Finally, the presence of the term in fA in the source decreases the response

at fB, and the response RMS in the tube 2. We point out that this is a

reduction of absolute quantities. This could be useful in view of applications:

in such a system, contrary to intuition, the energy at an annoying frequency

can be dimmed by adding a perturbation at another frequency. In other

terms, noise reduction can be controlled by addition of noise.

A similar scenario was first proposed and studied numerically in [10] con-

sidering a single NES attached to a 1-DOF system but with frequencies close

to each other.

4.3.2. Energy frequency conversion

Energy frequency conversions happen in Test 5 for all values of A. In

Fig. 9(c, d), as A increases, HCR(vm) and NHCR(vm) increase, up to 30%

for HCR(vm) and up to 75% for NHCR(vm).

At high excitation level, the size of the harmonic conversion zone in-

creases with the excitation level and the harmonic conversion zones coexist

(simultaneously) with the nonharmonic conversion zones.

The interesting point is that it seems that the system is not very sensitive

to detuning and that there is a continuity of behavior with respect to the

variables A. The transition from low to high membrane velocity RMS values

is here smooth without jumps (see Fig. 9(b)).

4.4. Frequency conversion in the two excitation amplitudes plane

We observed in the previous sections that an addition of a detuned ex-

citation component to an existing excitation signal tends to trigger the high

amplitude response regime. In this section an overview of the frequency
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conversion in the two excitation amplitudes plane is proposed.

The excitation levels used in Tests 1 to 9 are plotted in (A,B)-plane

in Fig. 11. A point corresponds to a run of the test at the corresponding

excitation level (A,B). A circle marker is used instead of a point if dur-

ing the run, at least one experiment (at one frequency of the scan) gives

HCR(vm) ≥ 0.02. Similarly, a star marker is used when NHCR(vm) ≥ 0.02.

A big marker indicates the HCR threshold (AHCR, BHCR) and the NHCR

threshold (ANHCR, BNHCR)) occurrence of the given marker for each test.

Note that when a circle marker and a star marker appear simultaneously

this do not imply that HCR(vm) ≥ 0.02 and NHCR(vm) ≥ 0.02 occur at the

same frequency (i.e. in the same experiment). Fig. 11(a) sums up tests with

fA = 88 Hz (fixed) and fB in the [94., 104.] Hz range (Tests 1 to 5) whereas

Fig. 11(b) sums up tests with fB = 98.8 Hz and fA in [85., 95.] Hz (Tests 6

to 9).

Except Test 1 (Fig. 11(a), vertical segment line), the bigger star and circle

markers are close or equal, showing that energy harmonic and non-harmonic

frequency conversions start at the same excitation level. Moreover except

Test 4 (Fig. 11(a), smaller slope segment line), circle and star markers ap-

pear simultaneously for excitation levels greater than (AHCR, BHCR). Higher

excitation level can be understood considering one or two excitation com-

ponents depending on the tests. It can also be understood as the higher

excitation RMS for a given test at which stars or circles appear.

It is reasonable from Fig.11(a) that bigger circles could be ascribed, in a

first attempt, to the segment line defined by the two points (0, B1
HCR) and

(A6
HCR, 0) where B1

HCR ≈ 0.07875 denotes the BHCR value associated to Test
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1 and A6
HCR ≈ 0.2275 denotes AHCR value associated to Test 6. The same

observations hold for Fig.11(b), may be with a slighter dispersion around

the segment line (0, B1
HCR) (A6

HCR, 0). This difference could come from the

imperfection of the localization of the actual resonance frequencies in the

tests. The meaning of resonance frequency must be clarified, because the

system state often varies along a run. By resonance frequency we mean here

the frequency at which the responses peak.

It is unclear whether the (AHCR, BHCR) relationship is linear as the seg-

ment suggests, which would be consistent with a regime change driven by the

amplitude of the excitation, or if the relationship is quadratic, which would

mean a regime change driven by an energetic indicator. In case of sinusoidal

excitation, theoretical results show that the regime change is driven by the

amplitude (see for example [2]). In case of multi-frequency excitation, lim-

ited theoretical results show that for a given amplitude, the regime change

is driven by the other amplitude [10]. The linear relationship has to be con-

firmed. If it is realistic, it would be interesting to study the effects of spikes in

the source and response signals in order to induce the high amplitude regime

with the least possible energy.

5. Conclusion

We presented an experimental study in the acoustic domain of a two

degree-of-freedom linear system coupled to a single NES under two-frequency

excitations. The set-up used consisted of two pipes with different lengths, a

visco-elastic membrane (NES) and its coupling box excited by an acoustic

source. Indicators based on response RMS and Fourier transform were built
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for three purposes: (i) analyzing the efficiency of the NES as a noise absorber,

(ii) detecting the nonlinear effects in terms of energy frequency conversion

from the excitation frequencies towards their inter modulation frequencies

(HCR) and towards frequencies different from the excitation frequencies and

any of their possible inter modulation frequencies (NHCR), and (iii) sepa-

rating the resonant motion components. These indicators can be applied for

periodic and quasiperiodic excitations.

The system behavior was first investigated under periodic excitation vali-

dating the set-up design, showing that the membrane acts as a NES for noise

reduction around the two resonance frequencies of the acoustic medium, and

validating the indicators. Next, excitations with two frequencies were in-

vestigated using the excitation frequencies and the excitation amplitudes as

control parameters. The main findings of this study are:

• The HCR threshold is well adapted to detect low/high jumps of the

membrane velocity RMS values characterizing the excitation level where

the NES is efficient.

• Simultaneous reduction of amplitudes for two-DOF by a single NES

is observed experimentally. This is a counter-intuitive feature that

extends the application range of NES. In particular a simultaneous

control of two one-to-one resonances by the NES is observed.

• An absolute reduction of the amplitude of vibration in a two-DOF lin-

ear system coupled to a single NES can be triggered by an addition

of a significantly off-tuned perturbation to an initial harmonic source.

This result, again counter-intuitive, delivers a new technique for pas-
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sive reduction of vibrations. In all cases, the introduction of energy

at a second excitation frequency appears favorable to lower frequency

conversion threshold and lower noise within the system.

Finally, an overview of the frequency conversion in the two excitation

amplitudes plane, yields to an observation not yet established in theory: the

frontier (in the excitation amplitudes plane) that characterizes the change of

states of the system (detection of low/high jumps) may be controlled by a

linear combination of the HCR thresholds. This opens new perspectives for

theoretical and numerical studies of nonlinear systems.
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Figure 9: Test 5, Board 1: B=0.0656 ; A= 0.00438, 0.00875, 0.0175, 0.0263, 0.0350,
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Figure 10: Test 5, Board 2: B=0.0656 ; A= 0.00438, 0.00875, 0.0175, 0.0263, 0.0350,
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