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Asymptotic Control for a Class of Piecewise Deterministic
Markov Processes Associated to Temperate Viruses

Dan Goreac ∗†

Abstract

We aim at characterizing the asymptotic behavior of value functions in the control of piece-
wise deterministic Markov processes (PDMP) of switch type under nonexpansive assumptions.
For a particular class of processes inspired by temperate viruses, we show that uniform limits of
discounted problems as the discount decreases to zero and time-averaged problems as the time
horizon increases to infinity exist and coincide. The arguments allow the limit value to depend
on initial configuration of the system and do not require dissipative properties on the dynam-
ics. The approach strongly relies on viscosity techniques, linear programming arguments and
coupling via random measures associated to PDMP. As an intermediate step in our approach,
we present the approximation of discounted value functions when using piecewise constant (in
time) open-loop policies.
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1 Introduction

We focus on the study of some asymptotic properties in the control of a particular family of piecewise
deterministic Markov processes (abbreviated PDMP), non diffusive, jump processes introduced in
the seminal paper [24]. Namely, we are concerned with the existence of a limit of the value functions
minimizing the Cesàro-type averages of some cost functional as the time increases to infinity for
controlled switch processes. The main theoretical contribution of the paper is that the arguments
in our proofs are entirely independent on dissipativity properties of the PDMP and they apply
under mild nonexpansivity assumptions. Concerning the potential applications, our systems are
derived from the theory of stochastic gene networks (and, in particular, genetic applets modelling
temperate viruses). Readers wishing to get acquainted to biological or mathematical aspects in
these models are referred to [16], [37], [23], [22], [33]).

Switch processes can be described by a couple (γγ0,x0,u· , Xγ0,x0,u
· ), where the first component is

a pure jump process called mode and taking its values in some finite set M. The couple process
is governed by a jump rate and a transition measure, both depending on the current state of the
system. Between consecutive jumps, Xγ0,x0,u

· evolves according to some mode-dependent flow.
Finally, these characteristics (rate, measure, flow) depend on an external control parameter u.
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PIECE, number ANR-12-JS01-0006.

1



Precise assumptions and construction make the object of Section 2. In connection to these jump
systems, we consider the Abel-type (resp. Cesàro-type) average

vδ (γ0, x0) := inf
u
δE
[∫∞

0 e−δth (γγ0,x0,ut , Xγ0,x0,u
t , ut) dt

]
,

VT (γ0, x0) := inf
u

1
T E
[∫ T

0 h (γγ0,x0,ut , Xγ0,x0,u
t , ut) dt

]
,

and investigate the existence of limits as the discount parameter δ → 0, respectively the time
horizon T →∞.

In the context of sequences of real numbers, the first result connecting asymptotic behavior of
Abel and Cesàro means goes back to Hardy and Littlewood in [36]. Their result has known several
generalizations: to uncontrolled deterministic dynamics in [29, XIII.5], to controlled deterministic
systems in [2], [3], etc.

Ergodic behavior of systems and asymptotic of Cesàro-type averages have made the object of
several papers dealing with either deterministic or stochastic control systems. The partial differ-
ential system approach originating in [42] relies on coercitivity of the associated Hamiltonian (see
also [5] for explicit criteria). Although the method generalizes to deterministic (resp. Brownian)
control systems in [3] (resp. [4]), the main drawback resides in the fact that, due to the ergodic
setting, the limit is independent of the initial condition of the control system. Another approach
to the asymptotic behavior relies on estimations on trajectories available under controllability and
dissipativity assumptions. The reader is referred to [5], [10] for the deterministic setting or [8], [11],
[15], [46] for Brownian systems. Although the method is different, it presents the same drawback
as the PDE one: it fails to give general limit value functions that depend on the initial data.

In the context of piecewise deterministic Markov processes, the infinite-horizon optimal control
literature is quite extensive ([25], [48], [27], [1], [30], etc.). To our best knowledge, average control
problems have first been considered in an impulsive control framework in [17] and [31]. The first
papers dealing with long time average costs in the framework of continuous control policies are
[19] and [18] (see also [21]). The problem studied in the latter papers is somewhat different, since

it concerns inf
u

lim sup
T→∞

1
T E
[∫ T

0 h (γγ0,x0,ut , Xγ0,x0,u
t , ut) dt

]
, thus leading to an inf/sup formulation,

while, in our case, we deal with a sup/inf formulation. Moreover, the methods employed are
substantially different. Our work should be regarded as a complement to the studies developed in
the cited papers.

A nonexpansivity condition has been employed in [44] in connection to deterministic control
systems allowing to obtain the existence of a general (uniform) limit value function. This method
has been (partially) extended to Brownian control systems in [14]. In both these papers, convenient
estimates on the trajectories in finite horizon allow to prove the uniform continuity of Cesàro
averages VT and an intuition coming from repeated games theory (inspired by [45]) gives the
candidate for the limit value function. If the convergence to this limit value function is uniform,
the results of [43] for deterministic systems yield the equivalence between Abel and Cesàro long-time
averages. This latter assertion is still valid for controlled Brownian diffusions (see [14, Theorems
10 and 13]) and (to some extent) for piecewise deterministic Markov processes (see [32, Theorem
4.1]).

In the present paper, we generalize the results of [44] and [14] to the framework of switch
piecewise deterministic Markov processes. The methods are based on viscosity solutions arguments.
We deal with two specific problems. The key point is, as for Brownian systems, a uniform continuity
of average value functions with respect to the average parameter (δ or T ). However, the approach
in [14] benefits from dynamic programming principles, which, within the framework of PDMP, are
easier obtained for Abel means (discounted functions vδ). This is why, results like [14, Proposition
7 and Theorem 8] are not directly applicable and we cannot make use of the already mentioned
intuition on repeated games. To overcome this problem, we proceed as follows : if the system
admits an invariant compact set, we prove the uniform continuity of

(
vδ
)
δ>0

and use the results

2



in [32, Theorem 4.1] to show (in Theorem 4) that this family admits a unique adherent point with
respect to the topology of continuous functions and, hence, it converges uniformly. This implies
the existence of lim

T→∞
VT (γ0, x0) and the limit is uniform with respect to the initial data.

The second problem is proving the uniform continuity of
(
vδ
)
δ>0

under explicit noxexpansivity
conditions. In the Brownian setting, this follows from estimates on the trajectories and a natural
coupling with respect to the same Brownian motion in [14, Lemma 3]. For switch PDMP, we obtain
similar results (in a convenient setting) by using some reference random measure generated by the
process. Although the second marginal of this coupling might not come from a controlled PDMP,
it is shown to belong to a convenient class of measures by using linear programming techniques
(developed in [33], [34] and inspired by Krylov [41]).

Let us now explain how the paper is organized. We begin with fixing some notations employed
throughout the paper (in Subsection 2.1). We proceed by recalling the construction of controlled
PDMP of switch type and present the main assumptions on the characteristics in Subsection 2.2.
In Subsection 2.3, we introduce the concept of invariance with respect to PDMP dynamics, the
value functions (Cesàro and Abel averages) and the occupation measures associated to controlled
dynamics (taken from [34]). The main contributions of our paper are stated in Section 3. We begin
with introducing a very general, yet abstract nonexpansivity condition in Subsection 3.1, Condition
2. The first main result of the paper (Theorem 4) is given in Subsection 3.2. This result states
that whenever the nonexpansivity Condition 2 is satisfied, there exists a unique limit value function
lim
T→∞

VT = lim
δ→0

vδ independent of the average considered (Abel/ Cesàro). In subsection 3.3, we give

explicit nonexpansive conditions on the dynamics and the cost functional implying Condition 2.
The second main result of the paper (Subsection 3.4, Theorem 7) provides an explicit construction
of (pseudo-)couplings.

We proceed with a biological framework justifying our models in Section 4. We present the
foundations of Hasty’s model for Phage λ inspired by [37] in Subsection 4.1. In order to give a hint
to our readers less familiarized with mathematical models in systems biology, we briefly explain
how a PDMP can be associated to Hasty’s genetic applet in Subsection 4.2. Finally, the aim of
Subsection 4.3 is to give an extensive choice of characteristics satisfying all the assumptions of the
main Theorem 7.

Section 5 gives the proof of the first main result (Theorem 4). First, we prove that Condition
2 implies the equicontinuity of the family of Abel-average value functions

(
vδ
)
δ>0

. Next, we recall
the results in [32] on Abel-type theorems to conclude. The results of this section work in all the
generality of [48] (see also [33], [34]).

The proof of the second main result (Theorem 7) is given in Section 6. The proof is based on
constructing explicit couplings satisfying Condition 2 and it relies on four steps. The first step
is showing that the value functions vδ can be suitably approximated by using piecewise constant
open-loop policies. This is done in Subsection 6.2. The proof combines the approach in [41] with
the dynamic programming principles in [48]. We think that neither the result, nor the method are
surprising but, for reader’s sake, we have provided the key elements in the Appendix. The second
step is to interpret the system as a stochastic differential equation (SDE) with respect to some
random measure (Subsection 6.3). The third step (Subsection 6.4) is to embed the solutions of
these SDE in a space of measures satisfying a suitable linear constraint via the linear programming
approach. To conclude, the fourth step (given in Subsection 6.5) provides a constructive (pseudo-)
coupling using SDE estimates.

2 Preliminaries

2.1 Notations

Throughout the paper, we will use the following notations.
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Unless stated otherwise, the Euclidian spaces RN , for some N ≥ 1 are endowed with the usual
Euclidian inner product 〈x, y〉 =

(
yt
)
x, where yt stands for the transposed, row vector and with

the associated norm |x| =
√
〈x, x〉, for all x, y ∈ RN .

For every r > 0, the set B (0, r) denotes the closed r-radius ball of RN .
The setM will denote some finite set. Whenever needed, the setM is endowed with the discrete

topology.
Unless stated otherwise, U is a compact metric space referred to as the control space. We let

A0 (U) denote the space of U-valued Borel measurable functions defined on M×RN × R+. The
sequence u = (u1, u2, ...) , where uk ∈ A0 (U) , for all k ≥ 1 is said to be an admissible control.
The class of such sequences is denoted by Aad (U) (or simply Aad whenever no confusion is at risk
concerning U). We introduce, for every n ≥ 1, the spaces of piecewise constant policies

An0 (U) =

{
u ∈ A0 (U) : u (γ, x, t) = u0 (γ, x) 1{0} (t) +

∑
k≥0

uk (γ, x) 1( kn ,
k+1
n ] (t)

}
,

Anad (U) =
{

(um)m≥1 ∈ Aad (U) : um ∈ An0 (U) , m ≥ 1
}
.

As before, we may drop the dependency on U.
For every bounded function ϕ : M×RN × U −→ Rk, for some N, k ≥ 1 which is Lipschitz-

continuous with respect to the RN component, we let

ϕmax = sup
(γ,x,u)∈M×RN×U

|ϕγ (x, u)| , Lip (ϕ) = sup
(γ,x,y,u)∈M×R2N×U

x 6=y

,
|ϕγ (x, u)− ϕγ (y, u)|

|x− y| ,

|ϕ|1 = ϕmax + Lip (ϕ) .

This is the Lipschitz norm of ϕ.
Whenever K ⊂ RN is a closed set, we denote by C (M×K;R) the set of continuous real-valued

functions defined onM×K. The set BUC (M×K;R) stands for the family of real-valued bounded,
uniformly continuous functions defined on M×K.

The real-valued function ϕ : RN −→ R is said to be of class C1
b if it has continuous, bounded,

first-order derivatives. The gradient of such functions is denoted by ∂xϕ.
The real-valued function ϕ : M×RN −→ R is said to be of class C1

b if ϕ (γ, ·) is of class C1
b , for

all γ ∈M.
Given a generic metric space A, we let B (A) denote the Borel subsets of A. We also let

P (A) denote the family of probability measures on A. The distance W1 is the usual Wasserstein
distance on P (A) and W1,Hausdorff is the usual Pompeiu-Hausdorff distance between subsets of
P (A) constructed with respect to W1.

For a generic real vector space A, we let co denote the closed convex hull operator.

2.2 Construction of Controlled Piecewise Deterministic Processes of Switch
Type

Piecewise deterministic Markov processes have been introduced in [24] and extensively studied for
the last thirty years in connection to various phenomena in biology (see [16], [23], [49], [22], [33]),
reliability or storage modelling (in [12], [28]), finance (in [47]), communication networks ([35]), etc.
The optimal control of these processes makes the object of several papers (e.g. [25], [48], [20], etc.).
For reader’s sake we will briefly recall the construction of these processes, the assumptions, as well
as the type of controls we are going to employ throughout the paper.

The switch PDMP is constructed on a space (Ω,F ,P) allowing to consider a sequence of inde-
pendent, [0, 1] uniformly distributed random variables (e.g. the Hilbert cube starting from [0, 1]
endowed with its Lebesgue measurable sets and the Lebesgue measure for coordinate, see [26, Sec-
tion 23]). We consider a compact metric space U referred to as the control space. The process is
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given by a couple (γ,X) , where γ is the discrete mode component and takes its values in some
finite set M and the state component X takes its values in some Euclidian state space RN (N ≥ 1).
The process is governed by a characteristic triple :

- a family of bounded, uniformly continuous vector fields fγ : RN × U −→ RN such that
|fγ (x, u)− fγ (y, u)| ≤ C |x− y| , for some C > 0 and all x, y ∈ RN , γ ∈M and all u ∈ U,

- a family of bounded, uniformly continuous jump rates λγ : RN × U −→ R+ such that
|λγ (x, u)− λγ (y, u)| ≤ C |x− y| , for some C > 0 and all x, y ∈ RN , γ ∈M and all u ∈ U,

- a transition measure Q : M×RN×U −→ P
(
M×RN

)
. We assume that this transition measure

has the particular form

Q (γ, x, u, dθdy) = δx+gγ(θ,x,u) (dy)Q0 (γ, u, dθ) ,

for all (γ, x, u) ∈ M × RN × U. The bounded, uniformly continuous jump functions gγ : M ×
RN × U −→ RN are such that |gγ (θ, x, u)− gγ (θ, y, u)| ≤ C |x− y| , for some C > 0 and all
x, y ∈ RN , all (θ, γ) ∈M2 and all u ∈ U. The transition measure for the mode component is given
by Q0 : M × U −→ P (M) . For every A ⊂ M, the function (γ, u) 7→ Q0 (γ, u,A) is assumed to be
measurable and, for every (γ, u) ∈M× U, Q0 (γ, u, {γ}) = 0.

These assumptions are needed in order to guarantee smoothness of value functions in this
context (see also [33] for further comments). Of course, more general transition measures Q can
be considered under the assumptions of [33], [34] and the results of Subsection 3.2 still hold true.
However, the approach in Section 6 only holds true for these particular dynamics and it is the
reason why we have chosen to work under these conditions. Whenever u ∈ A0 (U) and (t0, γ0, x0) ∈
R+ ×M×RN , we consider the ordinary differential equation{

dΦt0,x0,u;γ0
t = fγ0

(
Φt0,x0,u;γ0
t , u (γ0, x0, t− t0)

)
dt, t ≥ t0,

Φt0,x0,u;γ0
t0

= x0.

Given some sequence u := (u1, u2, ...) ⊂ A0 (U) , the first jump time T1 has a jump rate

λγ0

(
Φ0,x0,u1;γ0
t , u1 (γ0, x0, t)

)
, i.e. P (T1 ≥ t) = exp

(
−
∫ t

0 λγ0

(
Φ0,x0,u1;γ0
s , u1 (γ0, x0, s)

)
ds
)
. The

controlled PDMP is defined by setting (Γγ0,x0,ut , Xγ0,x0,u
t ) =

(
γ0,Φ

0,x0,u1;γ0
t

)
, if t ∈ [0, T1) . The

post-jump location (Υ1, Y1) has Q
(
γ0,Φ

0,x0,u1;γ0
τ , u1 (γ0, x0, τ) , ·

)
as conditional distribution given

T1 = τ. Starting from (Υ1, Y1) at time T1, we select the inter-jump time T2 − T1 such that

P (T2 − T1 ≥ t / T1,Υ1, Y1) = exp

(
−
∫ T1+t

T1

λΥ1

(
ΦT1,Y1,u2;Υ1
s , u2 (Υ1, Y1, s− T1)

)
ds

)
.

We set (Γγ0,x0,ut , Xγ0,x0,u
t ) =

(
Υ1,Φ

T1,Y1,u2;Υ1
t

)
, if t ∈ [T1, T2) . The post-jump location (Υ2, Y2)

satisfies

P ((Υ2, Y2) ∈ A / T2, T1,Υ1, Y1) = Q
(

Υ1,Φ
T1,Y1,u2;Υ1

T2
, u2 (Υ1, Y1, T2 − T1) , A

)
,

for all Borel set A ⊂M×RN . And so on. For simplicity purposes, we set (T0,Υ0, Y0) = (0, γ0, x0).

2.3 Definitions

Before stating the main assumptions and results of our paper we will need to recall some concepts :
invariance with respect to PDMP dynamics, the Abel and Cesàro value functions and the embedding
of trajectories into occupation measures.
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2.3.1 Invariance

In order to get convenient estimates on the trajectories, we assume, whenever necessary, that the
switch system admits some invariant compact set K. For the applications we have in mind, this
is not a drawback since, for biological systems, we deal either with discrete components or with
normalized concentrations (hence not exceeding given limits). We recall the notion of invariance.

Definition 1 The closed set K is said to be invariant with respect to the controlled PDMP with
characteristics (f, λ,Q) if, for every (γ, x) ∈ M×K and every u ∈ Aad, one has Xγ,x,u

t ∈ K, for
all t ≥ 0, P−a.s.

Explicit geometric conditions on the coeffi cients and the normal cone to K equivalent to the
property of invariance are given in [33, Theorem 2.8]. Roughly speaking, these properties are derived
from the sub/superjet formulation of the condition on dK being a viscosity supersolution of some
associated Hamilton-Jacobi integrodifferential system. This invariance condition is natural even
for purely deterministic nonexpansive systems (cf. [44]). It can be avoided either by localization
procedures or by imposing some relative compactness on reachable sets (or, equivalently, occupation
measures). We prefer to work under this condition in order to focus on specific details of our method,
rather than localization technicalities.

2.3.2 Value Functions

We investigate the asymptotic behavior of discounted value functions (also known as Abel-averages)

vδ (γ, x) := inf
u∈Aad

δE
[∫ ∞

0
e−δth (Γγ,x,ut , Xγ,x,u

t ) dt

]

= inf
u=(un)n≥1∈Aad

δE

∑
n≥1

∫ Tn

Tn−1

e−δth
(

Γγ,x,ut , Xγ,x,u
t , un

(
Γγ,x,uTn−1

, Xγ,x,u
Tn−1

, t− Tn−1

))
dt

 ,
γ ∈M, x ∈ RN , δ > 0, as the discount parameter δ → 0 and Cesàro-average values

Vt (γ, x) := inf
u∈Aad

1

t
E
[∫ t

0
h (Γγ,x,us , Xγ,x,u

s , us) ds

]

= inf
u=(un)n≥1∈Aad

1

t
E

∑
n≥1

∫ Tn∧t

Tn−1∧t
h
(

Γγ,x,us , Xγ,x,u
s , un

(
Γγ,x,uTn−1

, Xγ,x,u
Tn−1

, s− Tn−1

))
ds

 ,
γ ∈ M, x ∈ RN , t > 0, as the time horizon t → ∞. The cost function h : M × RN × U −→ R is
assumed to be bounded, uniformly continuous and Lipschitz continuous w.r.t. the state component,
uniformly in control and mode (i.e. |h (γ, x, u)− h (γ, y, u)| ≤ C |x− y| , for some C > 0 and all
γ ∈M, x, y ∈ RN and all u ∈ U).

2.3.3 The Infinitesimal Generator and Occupation Measures

We recall that, for regular functions ϕ (for example of class C1
b ), the generator of the control process

is given by

Luϕ (γ, x) = 〈fγ (x, u) , ∂xϕ (γ, x)〉+ λγ (x, u)

∫
M

(ϕ (θ, x+ gγ (θ, x, u))− ϕ (γ, x))Q0 (γ, u, dθ) ,

for all (γ, x) ∈M×RN and any u ∈ Aad (U). A complete description of the domain of this operator
can be found, for instance, in [26, Theorem 26.14].
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To any (γ, x) ∈M×RN and any u ∈ Aad (U), we associate the discounted occupation measure

(1) µδγ,x,u (A) = δE
[∫ ∞

0
e−δt1A (Γγ,x,ut , Xγ,x,u

t , ut) dt

]
,

for all Borel subsets A ⊂M×RN ×U. The set of all discounted occupation measures is denoted by
Θδ

0 (γ, x) . We also define

(2) Θδ (γ, x) =

{
µ ∈ P

(
M×RN × U

)
s.t. ∀φ : M −→C1

b

(
RN
)
,∫

M×RN×U (Luφ (θ, y) + δ (φ(γ, x)− φ (θ, y)))µ (dθ, dy, du) = 0

}
.

Links between Θδ
0 (γ, x) and Θδ (γ, x) will be given in Theorem 9. For further details, the reader is

referred to [34].

3 Assumptions and Main Results

In this section, we present the main assumptions and results of our paper.
We begin with giving an abstract nonexpansivity condition under which the Abel means

(
vδ
)
δ>0

and the Cesàro means (Vt)t>0 converge uniformly and to a common limit. It is a very general one
and, in a less general form, it reads "a coupling µ can be found between a fixed controlled trajectory
starting from x and another one starting from y such that the difference of costs evaluated on the
two trajectories be controlled by the distance |x− y|". This is essential in proving ergodic behavior.
In the uncontrolled dissipative case (see, for example [9]), the couplings are such that the distance
between the law of Xx

t and the one of X
y
t decreases exponentially (is upper-bounded by some term

e−ct |x− y|). In particular, this implies that lim
δ→0

vδ (x) is constant (independent of x). Unlike the

classical dissipative approach, our framework allows the limit to depend on the initial data. The
first main result of the paper states that, under the nonexpansivity Condition 2, the Abel means(
vδ
)
δ>0

and the Cesàro means (Vt)t>0 converge uniformly and to a common limit.
The main drawback of this Condition 2 is that it is abstract (theoretical). In a setting inspired

by gene networks, we give an explicit condition (Condition 5) on the characteristics of the PDMP
implying the abstract nonexpansivity condition. The second main result of the paper allows to link
the explicit Condition 5 and the abstract one given before. This is done by constructing suitable
(pseudo-)couplings and the proof requires several steps.

3.1 An Abstract Nonexpansivity Condition

Throughout the section, we assume the following nonexpansivity condition

Condition 2 For every δ > 0, every ε > 0, every (γ, x, y) ∈ M × R2N and every u ∈ Aad (U) ,

there exists µ ∈ P
((
M× RN × U

)2)
such that

i. µ
(
·,M× RN × U

)
= µδγ,x,u ∈ Θδ

0 (γ, x) ;

ii. µ
(
M× RN × U, ·

)
∈ Θδ (γ, y) ;

iii.
∫

(M×RN×U)2
|h (θ, z, w)− h (θ′, z′, w′)|µ (dθ, dz, dw, dθ′, dz′, dw′) ≤ Lip (h) |x− y|+ ε.

Remark 3 Whenever h only depends on the x component (but not on the mode γ, nor on the
control u), one can impose

W1

(
Θ̃δ

0 (γ, x) , Θ̃δ (γ, y)
)
≤ |x− y| ,

7



where Θ̃0 (resp. Θ̃) denote the marginals µ (M, ·,U) of measures µ ∈ Θ0 (resp. Θ). One can impose
the slightly stronger conditions

W1

(
Θ̃δ

0 (γ, x) , Θ̃δ
0 (γ, y)

)
≤ |x− y| or W1,Hausdorff

(
Θ̃δ (γ, x) , Θ̃δ (γ, y)

)
≤ |x− y|

and the notion of nonexpansivity is transparent in this setting.

3.2 First Main Result (Existence of Limit Values and Abel-Tauberian Results)

The first main result of the paper states that, under the nonexpansivity Condition 2, the Abel
means

(
vδ
)
δ>0

and the Cesàro means (Vt)t>0 converge uniformly and to a common limit.

Theorem 4 Let us assume that there exists a compact set K ⊂ RN invariant with respect to
the piecewise deterministic dynamics. Moreover, we assume Condition 2 to hold true for every
(γ, x, y) ∈ M×K2. Then,

(
vδ
)
δ>0

admits a unique limit v∗ ∈ C (M×K;R) and (Vt)t>0 converges
to v∗ uniformly.

The proof is postponed to Section 5. In order to prove Theorem 4, we proceed as follows. First,
we prove that Condition 2 implies the equicontinuity of the family of Abel-average value functions(
vδ
)
δ>0

. Next, we recall the results in [32] on Abel-type theorems to conclude.

3.3 An Explicit Nonexpansive Framework

For the remaining of the section, we assume that the control is given by a couple (u, v) ∈ U := U×V
acting as follows : the jump rate (and the measure Q0 giving the new mode) only depend on the
mode component and is controlled by the parameter u. The component X is controlled both by u
and by v and it behaves as in the general case. One has a vector field f : M×RN ×U ×V −→ RN ,
a jump rate λ : M× RN × U × V → R+ given by

λγ (x, u, v) = λγ (u) ,

and the transition measure Q : M× RN × U × V → P
(
M× RN

)
having the particular form

Q ((γ, x) , u, v, dθdy) = δx+gγ(θ,x,u,v) (dy)Q0 (γ, u, dθ) ,

where Q0 governs the post-jump position of the mode component. In this case, the extended
generator of (γ,X) has the form
(3)

Lu,vϕ (γ, x) = 〈fγ (x, u, v) , ∂xϕ (γ, x)〉+λ (γ, u)

∫
M

(ϕ (θ, x+ gγ (θ, x, u, v))− ϕ (γ, x))Q0 (γ, u, dθ) .

We will show that the results on convergence of the discounted value functions hold true under
the following explicit condition on the dynamics.

Condition 5 For every γ ∈M, every u ∈ U and every x, y ∈ RN , the following holds true

sup
v∈V

inf
w∈V

max


〈fγ (x, u, v)− fγ (y, u, w) , x− y〉 ,

sup
θ∈M
|x+ gγ (θ, x, u, v)− y − gγ (θ, y, u, w)| − |x− y| ,

|h (γ, x, u, v)− h (γ, y, u, w)| − Lip (h) |x− y|

 ≤ 0.

Remark 6 1. Whenever h does not depend on the control, the latter condition naturally follows
from the Lipschitz-continuity of h.

2. If, moreover, the post-jump position is given by a (state and control free) translation x 7→
x+ gγ (θ) , this condition is the usual deterministic nonexpansive one (i.e.

sup
v∈V

inf
w∈V
〈fγ (x, u, v)− fγ (y, u, w) , x− y〉 ≤ 0 ).

This kind of jump (up to a slight modification guaranteeing that protein concentrations do not
become negative) fits the general theory described in [23].
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3.4 Second Main Result (Explicit Coupling)

The second main result of the paper allows to link the explicit Condition 5 and the abstract
Condition 2 in the framework described in Subsection 3.3.

Theorem 7 We assume Condition 5 to hold true. Moreover, we assume that there exists a compact
set K invariant with respect to the PDMP governed by (f, λ,Q). Then the conclusion of Theorem 4
holds true (i.e. the family

(
vδ
)
δ>0

admits a unique limit v∗ ∈ C (M×K;R) and (Vt)t>0 converges
to v∗ uniformly).

The proof of this result is postponed to Section 6. It is based on constructing explicit couplings
satisfying Condition 2 and it relies on four steps. The first step is showing that the value functions
vδ can be suitably approximated by using piecewise constant open-loop policies. The second step
is to interpret the system as a stochastic differential equation (SDE) with respect to some random
measure. The third step is to embed the solutions of these SDE in a space of measures satisfying
a suitable linear constraint via the linear programming approach. To conclude, the fourth step
provides a constructive (pseudo-) coupling using SDE estimates.

4 Example of Application

4.1 Some Considerations on a Biological Model

We consider the model introduced in [37] to describe the regulation of gene expression. The model
is derived from the promoter region of bacteriophage λ. The simplification proposed by the authors
of [37] consists in considering a mutant system in which only two operator sites (known as OR2
and OR3) are present. The gene cI expresses repressor (CI), which dimerizes and binds to the
DNA as a transcription factor in one of the two available sites. The site OR2 leads to enhanced
transcription, while OR3 represses transcription. Using the notations in [37], we let X1 stand for
the repressor, X2 for the dimer, D for the DNA promoter site, DX2 for the binding to the OR2
site, DX∗2 for the binding to the OR3 site and DX2X2 for the binding to both sites. We also denote
by P the RNA polymerase concentration and by n the number of proteins per mRNA transcript.
The dimerization, binding, transcription and degradation reactions are summarized by

2X1

K1(u,v)

� X2,

D +X2

K2(u)

� DX2,

D +X2

K3(u)

� DX∗2 ,

DX2 +X2

K4(u)

� DX2X2,

DX2 + P
Kt(u)→ DX2 + P + nX1,

X1
Kd(u,v)→ .

The capital letters Ki, 1 ≤ i ≤ 4 for the reversible reactions correspond to couples of direct/reverse
speed functions ki, k−i, while Kt and Kd only to direct speed functions kt and kd. Host DNA gyrase
puts negative supercoils in the circular chromosome, causing A-T-rich regions to unwind and drive
transcription. This is why, in the model written here, the binding speeds k2 (to the promoter
of the lysogenic cycle PRM ) , k3 (to OR3), respectively k4 and the reverse speeds as well as the
transcription speed kt are assumed to depend only on a control on the host E-coli (denoted by u).
This control also acts on the prophage and, hence, we find it, together with some additional control
v, in the dimerization speed k1 and the degradation speed kd.
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4.2 The Associated Mathematical Model

Let us briefly explain how a mathematical model can be associated to the previous system.
(A) Discrete/continuous components
We distinguish between components that are discrete (only affected by jumps) and components

that also have piecewise continuous dynamics. For the host (E-Coli), we can have the following
modes: either unoccupied DNA (D = 1, DX2 = DX∗2 = DX2X2 = 0), or binding to OR2
(D = DX∗2 = DX2X2 = 0, DX2 = 1), or to OR3 (D = DX∗2 = DX2X2 = 0, DX∗2 = 1) or to
both sites (D = DX∗2 = DX2 = 0, DX2X2 = 1). It is obvious that these components are discrete

and they belong to M =
{
γ ∈ {0, 1}4 :

∑4
i=1 γi = 1

}
. Every reaction involving at least one discrete

component will be of jump-type. We then have the four jump reactions

D +X2

K2(u)

� DX2, D +X2

K3(u)

� DX∗2 ,

DX2 +X2

K4(u)

� DX2X2, DX2 + P
Kt(u)→ DX2 + P + nX1,

The couple repressor/dimer (X1, X2) has a different scale and is averaged (has a deterministic
evolution) between jumps. Hence, we deal with a hybrid model on M× R2.

(B) Jump mechanism
Let us take an example. We assume that the current mode is unoccupied DNA (γ = (1, 0, 0, 0)).

The only jump reactions possible are

D +X2
k2(u)→ DX2 or D +X2

k3(u)→ DX∗2 .

The reaction D +X2
k2(u)→ DX2 means that free DNA will be occupied by one dimer at OR2

position. Therefore, we have a DNA and a dimer "consumed" and an OR2 binding "created". The
system jumps

from (1, 0, 0, 0, x1, x2) to (0, 1, 0, 0, x1, x2 − 1) .

Of course, for a consistent mathematical model, since concentrations cannot be negative, to (x1, x2)
we actually add (0,−min (1, x2)).

The parameter λ is chosen as the "propensity" function (i.e. the sum of all possible reaction
speeds)

λ(1,0,0,0) (u, v) = λ(1,0,0,0) (u) = k2 (u) + k3 (u) ,

The probability for the reaction D + X2
k2(u)→ DX2 to take place is proportional to its reaction

speed (i.e. k2(u)
k2(u)+k3(u)).

To summarize, one constructs
Q0 ((1, 0, 0, 0) , (u, v) , dθ)

= Q0 ((1, 0, 0, 0) , u, dθ) = k2(u)
λ(1,0,0,0)(u)δ(0,1,0,0) (dθ) + k3(u)

λ(1,0,0,0)(u)δ(0,0,1,0) (dθ) ,

Q ((1, 0, 0, 0) , (x1, x2) , u, dθdy) = δ(x1,x2)+gγ(θ,(x1,x2),u,v) (dy)Q0 ((1, 0, 0, 0) , u, dθ) , where
g(1,0,0,0) (θ, (x1, x2) , u, v) = (0,−min (1, x2)) 1θ∈{(0,1,0,0),(0,0,1,0)}.

Remark 8 A special part is played by the transcription reaction

DX2 + P
Kt(u)→ DX2 + P + nX1

which is a slow reaction. Details on a possible construction will be given in Subsection 4.3.

(C) Deterministic flow
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The deterministic behavior is governed by the (three) reactions

2X1

K1(u,v)

� X2 and X1
Kd(u,v)→ .

For example, the reaction 2X1
k1(u,v)→ X2 needs two molecules of reactant X1 and has k1 (u, v)

as speed and produces one X2. Then, following the approach in [37], its contribution to the vector
field is proportional to the product of reactants at the power molecules needed (i.e. x2

1) and the
speed k1 (u, v) . We get −2x2

1k1 (u, v) for the reactant and +1x2
1k1 (u, v) for the product. Adding

the three contributions, we get

fγ ((x1, x2) , u, v) =
(
−2k1 (u, v)x2

1 + 2k−1 (u, v)x2 − kd (u, v)x1, k1 (u, v)x2
1 − k−1 (u, v)x2

)
.

For further details on constructions related to systems of chemical reactions in gene networks, the
reader is referred to [23], [22], [33], etc.

4.3 A Toy Nondissipative Model

Let us exhibit a simple choice of coeffi cients in the study of phage λ. We consider U = V = [0, 1]
(worst conditions, best conditions for chemical reactions). For the reaction speed, we take

ki (u) = ki (u+ u0) , for i ∈ {±2,±3,±4, t} for the jump reactions determined by host,

k1 (u, v) =
1

α
uv, k2 (u, v) = uv, kd (u, v) = uv to reflect a certain competition,

for all u, v ∈ [0, 1] . Here, u0 > 0 corresponds to the slowest reaction speed, ki > 0 are real constants
and α is some maximal concentration level for repressor and dimer. We assume P to toggle between
0 and 1 and, as soon as P toggles to 1 a transcription burst takes place. To take into account the
slow aspect of the transcription reaction (see [37]), we actually take

M = {(1, 0, 0, 0, 0) , (0, 1, 0, 0, 0) , (0, 1, 0, 0, 1) , (0, 0, 1, 0, 0) , (0, 0, 0, 1, 0)} .

This means that binding to OR2 corresponds to two states (0, 1, 0, 0, 0) (allowing transcription), (0, 1, 0, 0, 1)
(when transcription has just taken place and is no longer allowed). We set

λγ (u, v) = λγ (u) =


(k2 + k3) (u+ u0) , if γ = (1, 0, 0, 0, 0) ,

(k−2 + k4 + kt) (u+ u0) , if γ = (0, 1, 0, 0, 0) ,
(k−2 + k4) (u+ u0) , if γ = (0, 1, 0, 0, 1) ,

k−3 (u+ u0) , if γ = (0, 0, 1, 0, 0) ,
k−4 (u+ u0) , if γ = (0, 0, 0, 1, 0) .

,

Q0 (γ, u) =

k2
k2+k3

δ(0,1,0,0,0) + k3
k2+k3

δ(0,0,1,0,0), if γ = (1, 0, 0, 0, 0) ,
k−2

k−2+k4+kt
δ(1,0,0,0,0) + k4

k−2+k4+kt
δ(0,0,0,1,0) + kt

k−2+k4+kt
δ(0,1,0,0,1), if γ = (0, 1, 0, 0, 0) ,

k−2
k−2+k4

δ(1,0,0,0,0) + k4
k−2+k4

δ(0,0,0,1,0), if γ = (0, 1, 0, 0, 1) ,

δ(1,0,0,0,0), if γ = (0, 0, 1, 0, 0) ,

δ(0,1,0,0,0), if γ = (0, 0, 0, 1, 0) .

gγ (θ, (x1, x2)) =



(0,−min (1, x2)) , if γ = (1, 0, 0, 0, 0) ,
(0,min (1, α− x2)) , if γ = (0, 1, 0, 0, γ5) , γ5 ∈ {0, 1} , θ = (1, 0, 0, 0, 0) ,

(0,−min (1, x2)) , if γ = (0, 1, 0, 0, γ5) , γ5 ∈ {0, 1} , θ = (0, 0, 0, 1, 0) ,
(min (n, α− x1) , 0) , if γ = (0, 1, 0, 0, 0) , θ = (0, 1, 0, 0, 1) ,
(0,min (1, α− x2)) , if γ = (0, 0, 1, 0, 0) , θ = (1, 0, 0, 0, 0) ,
(0,min (1, α− x2)) , if γ = (0, 0, 0, 1, 0) ,

fγ ((x1, x2) , u, v) =
(
f1
γ ((x1, x2) , u, v) , f2

γ ((x1, x2) , u, v)
)

=
(
−2uv

α x2
1 + 2uvx2 − uvx1,

uv
α x

2
1 − uvx2

)
.
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The reader is invited to note that M× [0, α]2 is invariant with respect to the previous dynamics.
One can either note that for x1, x2 ∈ [0, α]

f1
γ ((0, x2) , u, v) = 2x2uv ≥ 0, f2

γ ((x1, 0) , u, v) =
x2

1

α
uv ≥ 0,

f1
γ ((α, x2) , u, v) = (2x2 − 3α)uv ≤ 0, f2

γ ((x1, α) , u, v) =

(
x2

1

α
− α

)
uv ≤ 0,

or, alternatively, compute the normal cone to the frontier of [0, α]2 (see [33, Theorem 2.8]) to deduce
that [0, α]2 is invariant with respect to the deterministic dynamics. Moreover, the definition of gγ
guarantees that (X1, X2) does not leave [0, α]2 . Let us also note that, whenever x = (x1, x2) ∈
[0, α]2 , y = (y1, y2) ∈ [0, α]2 ,

〈fγ (x, u, v)− fγ (y, u, v) , x− y〉

= −uv
([

2

α
(x1 + y1) + 1

]
(x1 − y1)2 −

[
2 +

1

α
(x1 + y1)

]
(x1 − y1) (x2 − y2) + (x2 − y2)2

)
≤ 0.

This is a simple consequence of the fact that[
2 +

1

α
(x1 + y1)

]2

− 4

[
2

α
(x1 + y1) + 1

]
=

[
2− 1

α
(x1 + y1)

]2

− 4 ≤ 0.

We deduce that
sup
v∈V

inf
w∈V
〈fγ (x, u, v)− fγ (y, u, w) , x− y〉 ≤ 0.

Moreover, for all (x, y) ∈ [0, α]2 ,

sup
v∈V

inf
w∈V
〈fγ (x, 0, v)− fγ (y, 0, w) , x− y〉 = 0.

It follows that one is not able to find any positive constant c > 0 such that

sup
v∈V

inf
w∈V
〈fγ (x, 0, v)− fγ (y, 0, w) , x− y〉 ≤ −c |x− y|2 ,

for all (x, y) ∈ [0, α]2 and we deal with a non-dissipative system (unlike, for instance, [9]).
Finally, the function t 7→ t − min (1, t) , t 7→ t + min (k, α− t) are Lipschitz continuous with

Lipschitz constant 1 on [0, α] for all k > 0. It follows that sup
θ∈M
|x+ gγ (θ, x)− y − gγ (θ, y)| ≤ |x− y| .

5 Proof of the First Main Result (Theorem 4)

In order to prove Theorem 4, we proceed as follows. First, we recall the link between the set
of occupation measures Θδ

0 (γ, x) and the family Θδ (γ, x) (taken from [34]). Next, we prove that
Condition 2 implies the equicontinuity of the family of Abel-average value functions

(
vδ
)
δ>0

. Finally,
we recall the results in [32] on Abel-type theorems to conclude.

5.1 Step 1 : Equicontinuity of Abel-average Values

The following result corresponds to [34, Theorem 7 and Corollary 8] for this (less general) setting.
It gives the link between the set of occupation measures Θδ

0 (γ, x) and the family Θδ (γ, x).

Theorem 9 i) For every x ∈ RN and every δ > 0,

vδ (γ, x) = inf
µ∈Θδ(γ,x)

∫
M×RN×U

h (θ, y, u)µ (dθ, dy, du) .

ii) For every (γ, x) ∈M×RN and every δ > 0, Θδ (γ, x) = co
(
Θδ

0 (γ, x)
)
.
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We are now able to prove the following equicontinuity result.

Proposition 10 We assume Condition 2 to hold true. Then, for every δ > 0 and every (γ, x, y) ∈
M× R2N , one has ∣∣∣vδ (γ, x)− vδ (γ, y)

∣∣∣ ≤ Lip (h) |x− y| .

Proof. Let us fix δ > 0 and (γ, x, y) ∈M× R2N . We only need to prove that, for every ε > 0,

vδ (γ, y) ≤ vδ (γ, x) + Lip (h) |x− y|+ ε.

By definition of vδ, for a fixed ε > 0, there exists some u ∈ Aad (U) such that

vδ (γ, x) +
ε

2
≥ δE

[∫ ∞
0

e−δth (Γγ,x,ut , Xγ,x,u
t , ut) dt

]
=

∫
M×RN×U

h (θ, z, w)µδγ,x,u (dθ, dz, dw) .

If µ is the coupling measure given by Condition 2 and associated to ε
2 , we deduce, using Theorem

9.i that

vδ (γ, y) ≤
∫

(M×RN×U)2
h
(
θ′, z′, w′

)
µ
(
dθ, dz, dw, dθ′, dz′, dw′

)
≤
∫
M×RN×U

h (θ, z, w)µδγ,x,u (dθ, dz, dw) + Lip (h) |x− y|+ ε

2

≤ vδ (γ, x) + Lip (h) |x− y|+ ε.

The proof of our Proposition follows by recalling that ε > 0 is arbitrary.

5.2 Step 2 : Proof of Theorem 4

The previous results on existence of a continuity modulus uniform with respect to the discount
parameter δ > 0 allows us to prove the existence of a limit value function as δ → 0. Before going
to the proof of Theorem 4, we recall the following.

Lemma 11 (i) [32, Step 1 of Theorem 4.1] Let us assume that
(
vδ
)
δ>0

is a relatively compact
subset of C

(
M×RN ;R

)
. Then, for every v ∈ C

(
M×RN ;R

)
, every sequence (δm)m≥1 such that

limm→∞ δm = 0 and
(
vδm
)
m≥1

converges uniformly to v on M×RN and every ε > 0, there exists
T > 0 such that

Vt (γ, x) ≥ v (γ, x)− ε, for all (γ, x) ∈M×RN and all t ≥ T.

(ii) [32, Theorem 4.1] Let us assume that
(
vδ
)
δ>0

is a relatively compact subset of C
(
M×RN ;R

)
.

Then, for every v ∈ C
(
M×RN ;R

)
and every sequence (δm)m≥1 such that limm→∞ δm = 0 and(

vδm
)
m≥1

converges uniformly to v on M×RN , the following equality holds true

lim inf
t→∞

sup
γ∈M, x∈RN

|Vt (γ, x)− v (γ, x)| = 0.

(iii) [32, Remark 4.2] Let us assume that
(
vδ
)
δ>0

converges uniformly to some v∗ ∈ C
(
M×RN ;R

)
as δ → 0. Then the functions (Vt)t>0 converge uniformly on M×RN to v∗

lim
t→∞

sup
γ∈M, x∈RN

|Vt (γ, x)− v∗ (γ, x)| = 0.
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Remark 12 In the proof of [32, Theorem 4.1], one gives the condition (i) in Step 1. However,
in all generality, the converse is only partial. Indeed, Step 2 (see [32, Page 174, Eq. (10)] reads
: For every ε > 0, there exists m0 ≥ 1 such that

Vδ−1m (γ, x) ≤ v (γ, x) + ε,

for all m ≥ m0 and all (γ, x) ∈ M×RN . Thus, the index t of the subfamily (Vt)t converging to v
depends directly on the sequence (δm)m≥1 . Of course, whenever the limit v is independent on the
choice of δ, so is t and one gets (iii).

We are now able to complete the proof of Theorem 4.
Proof of Theorem 4. Let us denote by

(4) v∗ (γ, x) := lim sup
δ→0

vδ (γ, x) ,

for every (γ, x) ∈ M×K (the pointwise lim sup). We fix, for the time being, some (γ, x) ∈M×K.
Then, there exists some sequence (δm)m≥1 such that lim

m→∞
δm = 0 and lim

m→∞
vδm (γ, x) = v∗ (γ, x) .

Due to Condition 2, the sequence
(
vδm
)
m≥1

is equicontinuous (see Proposition 10) and, by definition,
it is also bounded. Then, using Arzelà-Ascoli Theorem, it follows that some subsequence (still
denoted

(
vδm
)
m≥1

) converges uniformly on M×K to some limit function v ∈ C (M×K;R) . In
particular, w (γ, x) = v∗ (γ, x) . Using Lemma 11 (i), one gets that

(5) lim inf
t→∞

Vt (γ, x) ≥ v∗ (γ, x) .

Obviously, this argument can be repeated for every (γ, x) ∈ M×K. Let us now consider w ∈
C (M×K;R) to be an adherence point of the relatively compact family

(
vδ
)
δ>0
. Then, using

Lemma 11 (ii), one establishes the existence of some increasing sequence (tn)n≥1 such that lim
n→∞

tn =

∞ and
lim
n→∞

sup
γ∈M,x∈RN

|Vtn (γ, x)− w (γ, x)| = 0.

In particular, it follows that

(6) w (γ, x) ≥ lim inf
t→∞

Vt (γ, x) ,

for all (γ, x) ∈M×K. Combining (4),(5) and (6), one deduces that the unique adherence point of(
vδ
)
δ>0

is v∗. The convergence of (Vt)t>0 follows by invoking Lemma 11 (iii). Our Theorem is now
complete.

6 Proof of the Second Main Result (Theorem 7)

The proof of Theorem 7 is constructive and relies on four steps. We begin with recalling the
Hamilton-Jacobi integrodifferential systems satisfied by the Abel-average functions and Krylov’s
shaking the coeffi cient method. The first step is showing that the value functions vδ can be suitably
approximated by using piecewise constant open-loop policies. The proof in this part strongly rely
on the tools presented before. The second step is to interpret the system as a stochastic differential
equation (SDE) with respect to some random measure. The third step is to embed the solutions of
these SDE in a space of measures satisfying a suitable linear constraint via the linear programming
approach. To conclude, the fourth step provides a constructive (pseudo-) coupling using SDE
estimates.
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6.1 Krylov’s Shaking the Coeffi cients

For every δ > 0, the value function vδ is known to be the unique bounded, uniformly continuous
viscosity solution of the Hamilton-Jacobi integro-differential system

(7) δvδ (γ, x) +H
(
γ, x, ∂xv

δ (γ, x) , vδ
)

= 0,

where the Hamiltonian is defined by setting

H (γ, x, p, ϕ)

:= sup
u∈U

[
−h (γ, x, u)− 〈fγ (x, u) , p〉 − λγ (x, u)

∫
M

(ϕ (θ, x+ gγ (θ, x, u))− ϕ (γ, x))Q0 (γ, u, dθ)

]
,

for all x, p ∈ RN and all bounded function ϕ : M × RN −→ R. For further details on the subject,
the reader is referred to [48].

Although uniformly continuous, the value functions vδ are, in general, not of class C1
b . However,

adapting the method introduced in [41] (see also [7]), vδ can be seen as the supremum over regular
subsolutions of the system (7). Alternatively, one can give a variational formulation of vδ with
respect to an explicit set of constraints. We recall the following basic elements taken from [34].

We begin by perturbing the coeffi cients and consider an extended characteristic triple
- fγ : RN × U×B (0, 1) −→ RN , fγ

(
x, u1, u2

)
= fγ

(
x+ u2, u1

)
, u1 ∈ U, u2 ∈ B (0, 1) , γ ∈M,

- λγ : RN × U×B (0, 1) −→ RN , λγ
(
x, u1, u2

)
= λγ

(
x+ u2, u1

)
, u1 ∈ U, u2 ∈ B (0, 1) , γ ∈M,

- Q : RN × U×B (0, 1) −→ P
(
RN
)
, Q

(
γ, x, u1, u2, A

)
= Q

(
γ, x+ u2, u1, A+

(
0, u2

))
, where

A+
(
0, u2

)
=
{(
a1, a2 + u2

)
: (a1, a2) ∈ A

}
, for all x ∈ RN , u1 ∈ U , u2 ∈ B (0, 1) and all Borel set

A ⊂M×RN .
One can easily construct the process

(
Γγ,x,u

1,u2 , Xγ,x,u1,u2
)
with u =

(
u1, u2

)
∈ Aad

(
U×B (0, 1)

)
.

The initial process associated to (f, λ,Q) can be obtained by imposing u2 = 0. Let us note that,
with this construction,

Q
(
γ, x, u1, u2, dθdy

)
= δx+gγ(θ,x+u2,u1) (dy)Q0

(
γ, u1, dθ

)
.

6.2 Step 1: Piecewise Constant Open-loop Policies

The aim of this subsection is to show that the value functions vδ can be approximated by functions
in which the control processes are piecewise (in time) constant. For Brownian diffusions, this type
of result has been proven in [40]. In this section we adapt the method of [40] to our setting by
hinting to the modifications whenever necessary. Following [40], for all n ≥ 1, we introduce the
value function

vδ,n (γ, x) = inf
u∈Anad

δE
[∫ ∞

0
e−δth

(
Γγ,x,u,0t , Xγ,x,u,0

t , ut

)
dt

]
,

for all (γ, x) ∈M×RN .
The main result of the subsection is the following.

Theorem 13 Let us assume that there exists a compact, convex set K which is invariant with
respect to the controlled PDMP with characteristics (f, λ,Q). Then, for every δ > 0, the value
functions vδ,n converge uniformly to vδ as the discretization step n increases to infinity

lim
n→∞

sup
γ∈M, x∈K

∣∣∣vδ (γ, x)− vδ,n (γ, x)
∣∣∣ = 0.
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The proof relies on the same arguments as those developed in [40] combined with dynamic
programming principles. Let us briefly explain the approach. For every n ≥ 1, one begins by
proving a dynamic programming principle for vδ,n and involving T ∧ T1 as intermediate time, for
T ∈ n−1N. The arguments are essentially the same as those in [48] and we only specify when the
structure of Anad intervenes. Next, one takes a sequence of smooth functions

(
vδ,n(ε)

)
ε>0

converging

uniformly to vδ,n by adapting to the present framework Krylov’s shaking of coeffi cients method
introduced in [41] (see also [7] or [33] for the PDMP case). Then, one proceeds by writing the
Hamilton-Jacobi integrodifferential system satisfied by vδ,n(ε) . This equation is ε−close to the one
satisfied by vδ (with a uniform behavior w.r.t. n ≥ 1). Our assertion follows by integrating this
subsolution condition with respect to the law of the piecewise deterministic Markov process then
allowing ε → 0. For our reader’s convenience, we have indicated the main modifications and
arguments in the Appendix.

Remark 14 If the invariance condition holds true, then, by applying this result, one only needs
to check that the nonexpansive Condition 2 holds true for all u ∈ Anad (U) for all n large enough
(larger than some nε).

6.3 Step 2 : Associated Random Measures and Stochastic Differential Equa-
tions

Let us fix γ0 ∈M, x0 ∈ RN and (u, v) ∈ Aad (U × V ) . The following construction is quite standard
and makes the object of [26, Section 26] for more general PDMP (without control) and [26, Section
41] (when control is present). We let S0 = T0 = 0, Sn = Tn − Tn−1, for all n ≥ 1 and ξn =(
Sn, γ

γ0,x0,u,v
Tn

, Xγ0,x0,u,v
Tn

)
. We look at the process (γ,X) under Pγ0,x0,u,v (which depends on both

the initial state (γ0, x0) and the control couple (u, v), but, having fixed these elements and for
notation purposes, this dependency will be dropped). By abuse of notation, we let

us := u1 (γ0, x0, s) 10≤s≤T1 +
∑
n≥1

un+1

(
γγ0,x0,u,vTn

, Xγ0,x0,u,v
Tn

, s− Tn
)

1Tn<s≤Tn+1 ,

(and similar for v). We denote by F the filtration
(
F[0,t] := σ {(γγ0,x0,u,vr , Xγ0,x0,u,v

r ) : r ∈ [0, t]}
)
t≥0

.

The predictable σ-algebra will be denoted by P and the progressive σ-algebra by Prog. For the
general structure of predictable processes, the reader is referred to [26, Section 26], [39, Proposition
4.2.1] or [13, Appendix A2, Theorem T34]. In particular, due to the previous notations, it follows
that u and v are predictable.

As usual, we introduce the random measure p on Ω× (0,∞)×M× RN by setting

p (ω,A) =
∑
k≥1

1(
Tk(ω),

(
γ
γ0,x0,u,v
Tk

,X
γ0,x0,u,v
Tk

)
(ω)
)
∈A, for all ω ∈ Ω, A ∈ B (0,∞)× B

(
M× RN

)
.

The compensator of p is

p̂ (dsdydθ) = λ
(
γγ0,x0,u,vs− , us

)
δXγ0,x0,u,v

s− +g
γ
γ0,x0,u,v
s−

(θ,Xγ0,x0,u,v
s− ,us,vs) (dy)Q0

(
γγ0,x0,u,vs− , us, dθ

)
ds.

and the compensated martingale measure (see [26, Proposition 26.7]) is given by q := p− p̂.
By construction, for our model, on [Tn−1, Tn) , Xγ0,x0,u,v

t is a deterministic function of Xγ0,x0,u,v
Tn−1

,

γγ0,x0,u,vTn−1
, un

(
Xγ0,x0,u,v
Tn−1

, γγ0,x0,u,vTn−1
, · − Tn−1

)
and vn

(
Xγ0,x0,u,v
Tn−1

, γγ0,x0,u,vTn−1
, · − Tn−1

)
. In this partic-

ular framework,

Xγ0,x0,u,v
Tn

= Φ
0,X

γ0,x0,u,v
Tn−1

,un
(
γ
γ0,x0,u,v
Tn−1

,X
γ0,x0,u,v
Tn−1

,·
)
,vn
(
γ
γ0,x0,u,v
Tn−1

,X
γ0,x0,u,v
Tn−1

,·
)

;γ
γ0,x0,u,v
Tn−1

Tn−Tn−1

+ gγγ0,x0,u,vTn−1

(
γγ0,x0,u,vTn

, un

(
γγ0,x0,u,vTn−1

, Xγ0,x0,u,v
Tn−1

, Tn − Tn−1

)
, vn

(
γγ0,x0,u,vTn−1

, Xγ0,x0,u,v
Tn−1

, Tn − Tn−1

))
,
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hence being a a deterministic function of Sn, X
γ0,x0,u,v
Tn−1

, γγ0,x0,u,vTn−1
. It follows that the filtration F

is actually generated by the marked point process
(
Tk, γ

γ0,x0,u,v
Tk

)
k≥0
. As a consequence, vn+1 =

vn+1

(
Xγ0,x0,u,v
Tn

, γγ0,x0,u,vTn
, ·
)
is a deterministic function of T1, ..., Tn, γ

γ0,x0,u,v
T1

, ..., γγ0,x0,u,vTn
still de-

noted by vn+1

(
T1, ..., Tn, γ

γ0,x0,u,v
T1

, ..., γγ0,x0,u,vTn
, ·
)
. In the case when (u, v) ∈ Amad (U × V ) for some

m ≥ 1 are piecewise constant, vn+1 is of type∑
k≥0

vkn+1

(
T1, ..., Tn, γ

γ0,x0,u,v
T1

, ..., γγ0,x0,u,vTn

)
1( km ,

k+1
m ] (t) .

Similar assertion hold true for u.
We now define the random measure p on Ω× (0,∞)×M by setting

p (ω,A) = p
(
ω,A× RN

)
, for all ω ∈ Ω, A ∈ B (0,∞)× B (M) .

The properties of p imply that the compensator of p is

p̂ (dsdθ) = λ
(
γγ0,x0,u,vs− , us

)
Q0
(
γγ0,x0,u,vs− , us, dθ

)
ds

and
q (dsdθ) = p (dsdθ)− λ

(
γγ0,x0,u,vs− , us

)
Q0
(
γγ0,x0,u,vs− , us, dθ

)
ds

is its martingale measure. Following the general theory of integration with respect to random
measures (see, for example [38]), the second state component can be identified with the unique
solution of the stochastic differential equation (SDE){

dXγ0,x0,u,v
t = fγγ0,x0,u,vt

(Xγ0,x0,u,v
t , ut, vt) dt+

∫
M gγγ0,x0,u,vt−

(
θ,Xγ0,x0,u,v

t− , ut, vt
)
p (dtdθ) , t ≥ 0,

Xγ0,x0,u,v
t = x0, P− a.s.

6.4 Step 3 : Measure Embedding of Solutions

More general, whenever w is an F-predictable process, we can consider the equation{
dY y0,w

t = fγγ0,x0,u,vt
(Y y0,w
t , ut, wt) dt+

∫
M gγγ0,x0,u,vt−

(
θ, Y y0,w

t− , ut, wt
)
p (dtdθ) , t ≥ 0,

Y y0,w
0 = y0, P− a.s.

The assumptions on the coeffi cients f and g guarantee that, for every y0 ∈ RN and every predictable,
V−valued process w, this equation admits a unique solution Y y0,w. We fix δ > 0 and consider some
(arbitrary) regular test function φ ∈ C1

b

(
M×RN ;R

)
. Itô’s formula (see [38, Chapter II, Theorem

5.1]) applied to δe−δ·φ (γγ0,x0,u,v· , Y y0,w
· ) on [0, T ] yields

δe−δTE
[
φ
(
γγ0,x0,u,vT , Y y0,w

T

)]
= δφ (γ0, y0)

+ E
[∫ T

0
δe−δt

(
−δφ (γt, Yt) + 〈fγt (Yt, ut, wt) , ∂xφ (γt, Yt)〉

+λ (γt, ut)
∫
M (φ (θ, Yt + gγt (θ, Yt, ut, wt))− φ (γt, Yt))Q

0 (γt, ut, dθ)

)
dt

]
,

where we have denoted by (γt, Yt) = (γγ0,x0,u,vt , Y y0,w
t ) . By letting T → ∞, it follows that the

occupation measure µy0,w ∈ P
(
M×RN × U × V

)
given by

µy0,w (A) = E
[∫ ∞

0
δe−δt1A (γγ0,x0,u,vt , Y y0,w

t , ut, wt) dt

]
, for A ∈ B

(
M×RN × U × V

)
satisfies ∫

M×RN×U
(Lu,vφ (θ, y) + δ (φ(γ, x)− φ (θ, y)))µ (dθ, dy, du, dv) = 0.
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We recall that Lu,v is the generator given by (3).
There is no reason for the couple (γγ0,x0,u,v, Y y0,w) to be associated to a U ×V -valued piecewise

open-loop control couple. Nevertheless, the previous arguments show that the occupation measure
µy0,w belongs to Θδ (γ0, y0) (see (2)).

Remark 15 Let us note that if there exists a set K invariant with respect to the PDMP driven by
(f, λ,Q) , then, for all γ0 ∈ M, y0 ∈ K, the occupation measures µ ∈ Θδ

0 (γ0, y0) satisfy the support
condition µ (M×K×U × V ) = 1. Then, by Theorem 9, the same holds true for Θδ (γ0, y0) and,
hence, Y y0,w takes its values in K. Alternatively, one can use [33, Theorem 2.8 (ii)].

6.5 Step 4 : Coupling via the Random Measure

As in the previous arguments, one can define a measure µ ∈ P
((
M× RN × U × V

)2)
by setting

µ (A×B) = E
[∫ ∞

0
δe−δt1A (γγ0,x0,u,vt , Xγ0,x0,u,v

t , ut, vt) 1B (γγ0,x0,u,vt , Y y0,w
t , ut, wt) dt

]
,

whenever A ∈ B
((
M× RN × U × V

)2)
. It is clear that∫

(M×RN×U)2

∣∣h (θ, z, w)− h
(
θ′, z′, w′

)∣∣µ (dθ, dz, dw, dθ′, dz′, dw′)
= E

[∫ ∞
0

δe−δt |h (γγ0,x0,u,vt , Xγ0,x0,u,v
t , ut, vt)− h (γγ0,x0,u,vt , Y y0,w

t , ut, wt)| dt
]
,

µ
(
A×

(
M× RN × U × V

))
= µδγ0,x0,u,v ∈ Θδ

0 (γ0, x0,) and µ
((
M× RN × U × V

)
×B

)
= µy0,w ∈

Θδ (γ0, y0) , where µy0,w given in the previous arguments. Convenient estimates for this integral
term imply the condition (2) and, hence, the results on existence of a limit value function. In
fact (see Remark 14), in order to prove Theorem 7, it suffi ces to provide good estimates when the
process is constructed with piecewise constant (in time) policies (u, v) ∈ Anad (U × V ) . This is done
by the following.

Lemma 16 We assume Condition 5 to hold true. Moreover, we assume that there exists a compact
set K invariant with respect to the PDMP governed by (f, λ,Q). Then, there exists ω : R+ −→ R+

such that limε→0ω (ε) = 0 and, for every n ≥ 1 and every (u, v) ∈ Anad (U × V ) , there exists w
predictable with respect to the filtration Fγ0,x0,u,v such that

E
[∫ ∞

0
δe−δt |h (γγ0,x0,u,vt , Xγ0,x0,u,v

t , ut, vt)− h (γγ0,x0,u,vt , Y y0,w
t , ut, wt)| dt

]
≤ ω

(
n−1

)
.

Proof. Step 0.
Let us define a set-valued function

M×K2 × U × V 3 (γ, x, y, u, v) Ξ (γ, x, y, u, v)

:=


w ∈ V : ∀θ ∈M,

〈fγ (x, u, v)− fγ (y, u, w) , x− y〉 ≤ 0,
|x+ gγ (θ, x, u, v)− y − gγ (θ, y, u, w)| ≤ |x− y| ,
|h (γ, x, u, v)− h (γ, y, u, w)| ≤ Lip (h) |x− y| ,

 .

One easily checks that the function has compact values and is upper semicontinuous. Hence, there
exists some measurable selection

ŵ : M×K2 × U × V −→ V, ŵ (γ, x, y, u, v) ∈ Ξ (γ, x, y, u, v) ,
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for all (γ, x, y, u, v) ∈ M×K2 × U × V. For further details, the reader is referred to [6, Subsection
9.2].

We construct an F-predictable V -valued control process w as follows. We begin by fixing T > 0
(depending on n) and m ≥ 1 (depending on n). The choice of T and m will be made explicit later
on. Moreover, we assume that K ⊂B (0, k0), for some k0 > 0.

Step 1. We consider

w1,0
s := ŵ (γ0, x0, y0, u1 (0) , v1 (0)) = w1,0

0 , s ≥ 0,

where we have denoted, by abuse of notation,

u1 (s) = u1 (γ0, x0, s) , v1 (s) = v1 (γ0, x0, s) .

We recall that if s ≤ 1
n , one has u1 (s) = u1 (0, γ0, x0) and similar assertions hold true for v1. By

recalling that K is invariant with respect to the controlled piecewise deterministic dynamics, one
gets 〈

fγ0
(
Φ0,x0,u,v;γ0
s , us, vs

)
− fγ0

(
Φ0,y0,u,w1,0;γ0
s , us, w

1,0
s

)
,Φ0,x0,u,v;γ0

s − Φ0,y0,u,w1,0;γ0
s

〉
≤
〈
fγ0 (x0, us, vs)− fγ0

(
y0, us, w

1,0
s

)
, x0 − y0

〉
+ c

(∣∣x0 − Φ0,x0,u,v;γ0
s

∣∣+
∣∣∣y0 − Φ0,y0,u,w1,0;γ0

s

∣∣∣)
≤ c

(∣∣x0 − Φ0,x0,u,v;γ0
s

∣∣+
∣∣∣y − Φ0,y0,u,w1,0;γ0

s

∣∣∣) ≤ c

n
,(8)

for all 0 ≤ s ≤ 1
n . Similarly,

(9)

i. c
n ≥

∣∣∣h(γ0Φ0,x0,u,v;γ0
s , us, vs

)
− h

(
γ0Φ0,y0,u,w1,0;γ0

s , us, w
1,0
s

)∣∣∣
− Lip (h)

∣∣∣Φ0,x0,u,v;γ0
s − Φ0,y0,u,w1,0;γ0

s

∣∣∣ ,
ii. c

n ≥
∣∣∣Φ0,x0,u,v;γ0

s + gγ0

(
θ,Φ0,x0,u,v;γ0

s , us, vs

)
− Φ0,y0,u,w1,0;γ0

s − gγ0
(
θ,Φ0,y0,u,w1,0;γ0

s , us, w
1,0
s

)∣∣∣
−
∣∣∣Φ0,x0,u,v;γ0

s − Φ0,y0,u,w1,0;γ0
s

∣∣∣ ,
for all 0 ≤ s ≤ 1

n . The constant c > 1 is generic, independent of δ > 0, n, s, x, y, u and is allowed to
change from one line to another. We define the control process w1,1 by setting

w1,1
s = w1,0

s 1s≤ 1
n

+ ŵ

(
γ0,Φ

0,x0,u,v;γ0
1
n

,Φ0,y0,u,w1,0;γ0
1
n

, u1

(
1

n

)
, v1

(
1

n

))
1s> 1

n
.

Then the estimates in (8) hold true for s ∈
[
0, 2

n

]
if substituting w1,1 to w1,0. We set

w1,2
s = w1,1

s 1s≤ 2
n

+ ŵ

(
γ0,Φ

0,x0,u,v;γ0
2
n

,Φ0,y0,u,w1,1;γ0
2
n

, u1

(
2

n

)
, v1

(
2

n

))
1s> 2

n
,

and so on, to define w1,3, w1,4, ..., w1,n([T ]+1). We fix some w0 ∈ V and let w1 = w
1,n([T ]+1)
s 1s≤T +

w01s>T , where [·] denotes the floor function. As consequence, by recalling that, prior to T1, both

Xγ0,x0,u,v and Y y0,w are deterministic and can be identified with Φ0,x0,u,v;γ0 (resp. Φ0,y0,u,w1,0;γ0
s ),

we use (8) to get

(10)
∣∣∣Xγ0,x0,u,v

t − Y y0,w1

t

∣∣∣2 ≤ |x0 − y0|2 +
ct

n
,

for all t ≤ T on t < T1. It follows that

(11)
∣∣∣Xγ0,x0,u,v

t − Y y0,w1

t

∣∣∣ ≤ |x0 − y0|+
c

2
√
n

+
t√
n
,
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or all t ≤ T on t < T1. Moreover, on T1 ≤ T, using (9.ii) and (10) and recalling that K ⊂ B (0, k0)
is invariant (see also Remark 15) one has∣∣∣Xγ0,x0,u,v

T1
− Y y0,w1

T1

∣∣∣ =
∣∣∣Φ0,x0,u,v;γ0

T1− + gγ0

(
γγ0,x0,u,vT1

,Φ0,x0,u,v;γ0
T1

, uT1 , vT1

)
−Φ0,y0,u,w1,0;γ0

T1− − gγ0
(
γγ0,x0,u,vT1

,Φ0,y0,u,w1,0;γ0
T1

, uT1 , w
1,0
T1

)∣∣∣
≤
∣∣∣Φ0,x0,u,v;γ0

T1− − Φ0,y0,u,w1,0;γ0
T1−

∣∣∣+
c

n

≤ min

(√
|x0 − y0|2 +

cT1

n
, 2k0

)
+
c

n

≤ |x0 − y0|+
c+ T1√

n
,(12)

for all n ≥ 4. (The reader is invited to recall that uT1 is still u1 (T1, γ0, x0) and that u1 ∈ An0 is left
continuous). One gets, on T1 ≤ T,

∣∣∣Xγ0,x0,u,v
T1

− Y y0,w1

T1

∣∣∣2 ≤ (min

(√
|x0 − y0|2 +

cT1

n
, 2k0

)
+
c

n

)2

≤ |x0 − y0|2 +
cT1

n
+
c2

n2
+ 4k0

c

n

≤ |x0 − y0|2 +
c (T1 + 4k0 + 1)

n
,(13)

whenever n ≥ c. Finally, using (9.i) and (11), we get∣∣∣h (γ0,Φ
0,x0,u,v;γ0
s , us, vs

)
− h

(
γ0,Φ

0,y0,u,w1,0;γ0
s , us, w

1
s

)∣∣∣ ≤ Lip (h)
∣∣∣Φ0,x0,u,v;γ0

s − Φ0,y0,u,w1,0;γ0
s

∣∣∣+
c

n

≤ Lip (h) |x0 − y0|+
(Lip (h) + 1) c+ Lip (h) t√

n
.

for all s < T ∧ T1.

Step 2. We continue the construction on [T1, T2) . By abuse of notation, we let u2 (s) :=

u2

(
γγ0,x0,u,vT1

, Xγ0,x0,u,v
T1

, s
)
, for s ≥ 0 and similar for v2. We set

w2,1
s := w1

s10≤s≤T1 + ŵ
(
γγ0,x0,u,vT1

, Xγ0,x0,u,v
T1

, Y y0,w1

T1
, u2 (0) , v2 (0)

)
1s>T1 .

It is clear that this control process is predictable. We apply the same method as in Step 1 (ω-
wise) on the (stochastic) time interval

[
T1,
(
T1 + 1

n

)
∧ T2

]
, then on

[
T1,
(
T1 + 2

n

)
∧ T2

]
, etc. We

construct a sequence of control processes
(
w2,m

)
m≥0

and, by choosing m large enough, we establish

the existence of some w2 such that
(14)

∣∣∣Xγ0,x0,u,v
t − Y y0,w2

t

∣∣∣2 ≤ ∣∣∣Xγ0,x0,u,v
T1

− Y y0,w1

T1

∣∣∣2 + c(t−T1)
n ≤ |x0 − y0|2 + c(t+4k0+1)

n∣∣∣Xγ0,x0,u,v
T2

− Y y0,w2

T2

∣∣∣ ≤ ∣∣∣Xγ0,x0,u,v
T2− − Y y0,w1

T2−

∣∣∣+ c
n

≤ min

(√
|x0 − y0|2 + c(T2+4k0+1)

n , 2k0

)
+ c

n ≤ |x0 − y0|+ c+T2+4k0+1√
n

,∣∣∣Xγ0,x0,u,v
T2

− Y y0,w2

T2

∣∣∣2 ≤ |x0 − y0|2 + c(T2+4k0+1)
n + c2

n2
+ 4k0

c
n ≤ |x0 − y0|2 + c(T2+2(4k0+1))

n ,∣∣∣h (γγ0,x0,u,vt , Xγ0,x0,u,v
t , ut, vt)− h

(
γγ0,x0,u,vt , Y y0,w2

t , ut, w
2
t

)∣∣∣
≤ Lip (h)

∣∣∣Xγ0,x0,u,v
t − Y y0,w1

t

∣∣∣+ c
n ≤ Lip (h) |x0 − y0|+ (Lip(h)+1)c+Lip(h)(t+4k0+1)√

n
,
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for all T1 ≤ t < T2 ∧ T , P−a.s. if n ≥ max (4, c) . We continue our construction on [0, T3 ∧ T ] ,
[0, T4 ∧ T ] and so on to finally get a predictable process wm such that

(15)



∣∣∣Xγ0,x0,u,v
t − Y y0,wm

t

∣∣∣2 ≤ |x0 − y0|2 + c[t+(i−1)(4k0+1)]
n ,∣∣∣Xγ0,x0,u,v

Ti
− Y y0,wm

Ti

∣∣∣ ≤ min

(√
|x0 − y0|2 + c[Ti+(i−1)(4k0+1)]

n , 2k0

)
+ c

n

≤ |x0 − y0|+ c+Ti+(i−1)(4k0+1)√
n

,∣∣∣Xγ0,x0,u,v
Ti

− Y y0,wm

Ti

∣∣∣2 ≤ |x0 − y0|2 + c[Ti+i(4k0+1)]
n ,∣∣∣h (γγ0,x0,u,vt , Xγ0,x0,u,v

t , ut, vt)− h
(
γγ0,x0,u,vt , Y y0,wm

t , ut, w
m
t

)∣∣∣
≤ Lip (h) |x0 − y0|+ (Lip(h)+1)c+Lip(h)[t+(i−1)(4k0+1)]√

n
,

for all i ≤ m, Ti−1 ≤ t < Ti ∧ T, P−a.s.
Let us note that in the same way as [48, Inequality 3.27], one has

E
[
e−δTm

]
≤
(

1− δ
∫ ∞

0
e−t(δ+λmax)dt

)m
=

(
λmax

δ + λmax

)m
,

where λmax = sup
(γ,x,u,v)∈M×RN×U×V

|λγ (x, u, v)| . Then, using the estimates (15), one gets

E
[
δ

∫ ∞
0

e−δt
∣∣∣h (γγ0,x0,u,vt , Xγ0,x0,u,v

t , ut, vt)− h
(
γγ0,x0,u,vt , Y y0,wm

t , ut, w
m
t

)∣∣∣ dt]
≤ E

[
δ
∑m−1

i=0

∫ Ti+1∧T
Ti∧T e−δt

(
Lip (h) |x0 − y0|+ (Lip(h)+1)c+Lip(h)[t+i(4k0+1)]√

n

)
dt

+2hmax1Tm<T
∫ T
Tm

δe−δtdt+ 2hmaxe
−δT

]

≤ Lip (h) |x0 − y0|+
(Lip (h) + 1) c+mLip (h) (4k0 + 1)√

n
+
Lip (h)√

n

∫ ∞
0

δe−δttdt+ 2hmaxe
−δT

+ 2hmaxE
[(
e−δTm − e−δT

)
1Tm<T

]
≤ Lip (h) |x0 − y0|+

Lip (h) + 1√
n

(
c+m (4k0 + 1) +

1

δ

)
+ 2hmaxe

−δT + 2hmaxE
[
e−δTm

]
≤ Lip (h) |x0 − y0|+

Lip (h) + 1√
n

(
c+m (4k0 + 1) +

1

δ

)
+ 2hmaxe

−δT + 2hmax

(
λmax

δ + λmax

)m
.

The proof of our Lemma is now complete by picking T = m = n
1
4 .

7 Appendix

We provide, in this appendix, the key elements of proof leading to Theorem 13. As we have already
hinted before, the proof relies on the same arguments as those developed in [40] combined with
dynamic programming principles developed in [48].

If one assumes that K ⊂B (0, k0) is convex and invariant w.r.t. the PDMP governed by (f, λ,Q),
then one modifies the dynamics such that for ρ ∈ {f, λ}, ρ̃γ (x, u) = 0, if x /∈ B (0, k0 + 1) ,
ρ̃γ (x, u) = ργ (x, u) , if x ∈ K and setting, for example, g̃γ (θ, x, u) = ΠK (x)− x+ gγ (θ,ΠK (x) , u) ,
for all x ∈ RN . Here, ΠK stands for the projector onto K. In this way, all jumps x 7→ x +
g̃ (θ, x, u) = ΠK (x) + g (θ,ΠK (x) , u) take the trajectory in K (by invariance of this set) and, if the
trajectory reaches B (0, k0 + 1) , it stays constant. For the extended dynamics (constructed from
this modification as in Subsection 6.1), one gets

fγ
(
x, u1, u2

)
= f̃γ

(
x+ u2, u1

)
= 0, for all x ∈ RN such that |x| ≥ k0 + 2,

x+ gγ
(
θ, x, u1, u2

)
=
[
x+ u2 + g̃γ

(
θ, x+ u2, u1

)]
− u2 ∈ K−u2 ⊂ B (0, k0 + 1) , for all x ∈ RN ,
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for all u1 ∈ U and all
∣∣u2
∣∣ ≤ 1.

It follows that the set K+ := B (0, k0 + 2) is invariant w.r.t the extended dynamics. In fact all
sets B (0, k0 + n), n ≥ 2 are invariant. Let us emphasize that this construction is the only point in
which the convexity of K plays a part and it can be avoided by further assumptions.

Let us fix, for the time being, δ > 0 and n ≥ 1.

7.1 Dynamic Programming Principle(s) for (Time) Piecewise Constant Policies

The first ingredient is to provide dynamic programming principles and uniform continuity for the
value functions given with respect to piecewise constant policies with respect to the initial and
auxiliary systems (cf. Subsection 6.1). In addition to An0 = An0 (U) and Anad := Anad (U) , one
introduces Bn0 = An0

(
U×B (0, 1)

)
and Bnad = Anad

(
U×B (0, 1)

)
and

vδ,nε (γ, x) = inf
(u1,u2)∈Bnad

δE
[∫ ∞

0
e−δth

(
Γγ,x,u

1,εu2

t , Xγ,x,u1,εu2

t + εu2
t , u

1
t

)
dt

]
,

for all initial data γ ∈M, x ∈ B (0, k0 + 3) .
One begins with proving the dynamic programming principles.

vδ,n (γ, x) = inf
u∈An0

E
[∫ T1∧T

0 δe−δth
(

Γγ,x,u,0t , Xγ,x,u,0
t , ut

)
dt+ e−δ(T1∧T )vδ,n

(
Γγx,u,0T1∧T , X

γx,u,0
T1∧T

)]
and

vδ,nε (γ, x) = inf
u∈Bn0

E

 ∫ T1∧T0 δe−δth
(

Γγ,x,u
1,εu2

t , Xγ,x,u1,εu2

t + εu2
t , u

1
t

)
dt

+e−δ(T1∧T )vδ,nε
(

Γγ,x,u
1,εu2

T1∧T , Xγ,x,u1,εu2

T1∧T

)  .
The arguments are similar to those employed in [48]. We will only emphasize what changes when
using controls from Anad (or Bnad) instead of the (more) classical Aad.

Following [48], we introduce

wM,n (γ, x) := inf
u∈An0

JM,n (γ, x, u) ,

where

JM,n (γ, x, u) := E
[
δ

∫ T1

0
e−δth

(
Γγ,x,u,0t , Xγ,x,u,0

t , ut

)
dt+ e−δT1wM−1,n

(
Γγ,x,u,0T1

, Xγ,x,u,0
T1

)]
,

whenever M ≥ 1. The initial value w0,n is given with respect to the deterministic control problem
(with no jump) and it is standard to check that it is Hölder continuous (the Hölder exponent
may be chosen δ

Lip(f) , where Lip (f) is the Lipschitz constant for fγ for all γ ∈ M and the Hölder
constant only depends on the Lipschitz constants and supremum norm of f and h). In particular,
the continuity modulus of w0,n (resp. w0,n

ε defined w.r.t. Bn0 ) is independent of n (resp. n and ε).
Step 1. If wM−1,n ∈ BUC

(
M×RN ;R

)
, then the dynamic programming principle holds true for

wM,n and all (γ, x) ∈M× RN , T ∈ n−1N :

wM,n(γ, x) = inf
u∈An0

E

 δ
∫ T1∧T

0 e−δth
(

Γγ,x,u,0t , Xγ,x,u,0
t , ut

)
dt+ e−δTwM,n

(
γ,Φ0,x,u;γ

T

)
1T1>T

+e−δT1wM−1,n
(

Γγ,x,u,0T1
, Xγ,x,u,0

T1

)
1τ1≤T

 .
The proof is identical with the proof of [48, Lemma 3.1]. The reader needs only note that the
control policy given by [48, Eq. (3.5)] of the form

u (θ, y, t) := u (θ, y, t) 1[0,T ] (t) + u∗
(
θ,Φ0,y,u;θ

T , t− T
)

1t>T

belongs to An0 if u and u∗ belong to An0 .
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Step 2. Since B (0, k0 + 3) is invariant with respect to the extended PDMP, one has wM,n ∈
BUC

(
M×B (0, k0 + 3)

)
and, for every α > 0, there exists a α−optimal control policy u∗ ∈ An0

such that
JM,n (γ, x, u∗) ≤ wM,n (γ, x) + α,

for all x ∈ B (0, k0 + 3) .

Again, the proof is identical with the proof of the analogous Lemma 3.3 in [48] and based on
recurrence. The reader needs only note that, for r > 0, there exists a finite family {xk : k = 1,m}
such that

B (0, k0 + 3) ⊂
m
∪
k=1

B (xk, r) .

Then, the control policy u defined after (3.18) in [48] belongs to An0 if uk belong to An0 , for all
k = 1,m. We also wish to point out that the estimates leading to the continuity modulus of wM,n

only depend on the Lipschitz constants and the supremum of h, f, g and λ but are independent
of the control policies. In particular, this allows one to work with a common continuity modulus
ωδ,M for all n ≥ 1 and ε > 0.

One concludes using the same arguments (no particular changes needed) as those in [48, Theo-
rem 3.4]. Due to [48, Inequality 3.27], one gets

sup
(γ,x)∈M×B(0,k0+3)

∣∣∣vδ,n (γ, x)− wM,n (γ, x)
∣∣∣ ≤ cαM ,

where c > 0 and 0 < α < 1 are independent of n (c can be chosen as in [48] equal to 2fmax and
α as in [48, Page 1120, last line] to be 1 − δ

∫∞
0 e−(δ+λmax)tdt = λmax

δ+λmax
< 1). The same is true for

vδ,nε − wM,n
ε for ε > 0. In particular,∣∣∣vδ,nε (γ, x)− vδ,nε (γ, y)

∣∣∣ ≤ ωδ,M (|x− y|) + 2c

(
λmax

δ + λmax

)M
,

i.e. the continuity modulus of vδ,nε can also be chosen independent of n ≥ 1 and ε ≥ 0 (we identify
vδ,n0 with vδ,n). This common continuity modulus will be denoted by ωδ, i.e.

(16) ωδ (r) = sup
n≥1,ε>0

sup
γ∈M
|x−y|≤r

∣∣∣vδ,nε (γ, x)− vδ,nε (γ, x)
∣∣∣ , r > 0, ωδ (0) := lim

r→0
r>0

ωδ (r) = 0.

The reader will note that ωδ (r) ≥ cr, for some c > 0, where the equality corresponds to the
Lipschitz case.

7.2 Estimates and Proof of Theorem 13

We begin with the following convergence result.

Proposition 17 For every δ > 0 there exists a decreasing function ηδ : R+ −→ R+ that satisfies
limε→0 η

δ (ε) = 0 and such that

(17) sup
x∈K+

∣∣∣vδ,nε (γ, x)− vδ,n (γ, x)
∣∣∣ ≤ ηδ (ε) ,

for all n ≥ 1 and all ε ≥ 0.

Proof. The proof is similar to the one of [33, Theorem 3.6]. However, we present the arguments
for reader’s sake. Let us fix γ ∈M, x ∈ K+ and ε > 0. The definition of the value functions implies
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that vδ,nε (γ, x) ≤ vδ,n (γ, x). Standard estimates yield the existence of some positive constant C > 0
which is independent of γ, x, of n ≥ 1 and ε > 0 such that

(18)
∣∣∣Φ0,x,u1,εu2;γ

t − Φ0,x,u1,0;γ
t

∣∣∣ ≤ Cε,
for all t ∈ [0, 1] , and all

(
u1, u2

)
∈ Bn0 . We recall that Φ0,x,u1,u2;γ

· is the unique solution of the
deterministic equation

{
dΦ0,x,u1,u2;γ

t = fγ

(
Φ0,x,u1,εu2;γ
t , u1

t , u
2
t

)
dt = fγ

(
Φ0,x,u1,u2;γ
t + u2

t , u
1
t

)
dt,

Φ0,x,u1,u2;γ
0 = x.

The constant C in (18) is generic and may change from one line to another. We emphasize that
throughout the proof, C may be chosen independent of x ∈ RN , n ≥ 1, ε > 0 and of

(
u1, u2

)
∈ Bn0

(it only depends on Lipschitz constants and bounds of f , λ, g and h). The dynamic programming
principle written for vδ,n yields
(19)

vδ,n(γ, x) ≤ E
[∫ T1∧1

0
δe−δth

(
Γγ,x,u

1,0
t , Xγ,x,u1,0

t , u1
t

)
dt+ e−δ(T1∧1)vδ,n

(
Γγ,x,u

1,0
T1∧1 , Xγ,x,u1,0

T1∧1

)]
,

for all u1 ∈ An0 . We consider an arbitrary admissible control couple
(
u1, u2

)
∈ Bn0 . For simplicity,

we introduce the following notations:

uit = ui (x, t) , i = 1, 2,

λ1 (t) = λγ

(
Φ0,x,u1,0;γ
t , u1

t

)
, Λ1 (t) = exp

(
−
∫ t

0
λ1 (s) ds

)
λ1,2 (t) = λγ

(
Φ0,x,u1,εu2;γ
t + εu2

t , u
1
t

)
, Λ1,2 (t) = exp

(
−
∫ t

0
λ1,2 (s) ds

)
,

for all t ≥ 0. We denote the right-hand member of the inequality (19) by I. Then, I is explicitly
given by

I =

∫ 1

0
λ1(t)Λ1 (t)

∫ t

0
δe−δsh

(
γ,Φ0,x,u1,0;γ

s , u1
s

)
dsdt

+

∫ 1

0
λ1(t)Λ1 (t) e−δt

∫
RN

vδ,n
(
θ,Φ0,x,u1,0;γ

t + gγ

(
θ,Φ0,x,u1,0;γ

t , u1
t

))
Q0
(
γ, u1

t , dθ
)
dt

+ Λ1 (1)

∫ 1

0
δe−δth

(
γ,Φ0,x,u1,0;γ

t , u1
t

)
dt+ Λ1 (1) e−δvδ,n

(
γ,Φ0,x,u1,0;γ

1

)
= I1 + I2 + I3 + I4.

Using the inequality (18), one gets

I1 ≤
∫ 1

0
λ1,2(t)Λ1,2 (t)

∫ t

0
δe−δsh

(
γ,Φ0,x,u1,εu2;γ

s + εu2
s, u

1
s

)
dsdt+ Cε,(20)

I3 ≤ Λ1,2 (1)

∫ 1

0
δe−δth

(
γ,Φ0,x,u1,εu2;γ

t + εu2
t , u

1
t

)
dt+ Cε.(21)
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For the term I2, with the notation (16), one has

I2

≤
∫ 1

0
λ1,2(t)Λ1,2 (t) e−δt

∫
RN

vδ,n
(
θ,Φ0,x,u1,εu2;γ

t + gγ

(
θ,Φ0,x,u1,εu2;γ

t + εu2
t , u

1
t

))
Q0
(
γ, u1

t , dθ
)
dt

+ C
(
ε+ ωδ (Cε)

)
≤
∫ 1

0
λ1,2(t)Λ1,2 (t) e−δt

∫
RN

vδ,nε

(
θ,Φ0,x,u1,εu2;γ

t + gγ

(
θ,Φ0,x,u1,εu2;γ

t + εu2
t , u

1
t

))
Q0
(
γ, u1

t , dθ
)
dt

+

(∫ 1

0
λ1,2(t)Λ1,2 (t) e−δtdt

)
sup

θ∈M,z∈K+

∣∣∣vδ,n(z)− vδ,nε (z)
∣∣∣+ C

(
ε+ ωδ (Cε)

)
.

(22)

Finally,

I4 ≤ Λ1,2 (1) e−δvδ,n
(
γ,Φ0,x,u1,εu2;γ

1

)
+ C

(
ε+ ωδ (Cε)

)
≤ Λ1,2(1)e−δvδ,nε

(
γ,Φ0,x,u1,εu2;γ

1

)
+ Λ1,2(1)e−δ sup

θ∈M,z∈K+

∣∣∣vδ,n(θ, z)− vδ,nε (θ, z)
∣∣∣+ C

(
ωδ (Cε) + ε

)
.

(23)

We substitute (20)-(23) in (19). We take the infimum over the family of
(
u1, u2

)
∈ Bn0 and use the

dynamic programming principle to have

vδ,n (γ, x) ≤ vδ,nε (γ, x) + C
(
ε+ ωδ (Cε)

)
+

(∫ 1

0
λ1,2(t)Λ1,2 (t) e−δtdt+ Λ1,2(1)e−δ

)
sup

θ∈M,z∈K+

∣∣∣vδ,n(z)− vδ,nε (z)
∣∣∣ .

We notice that∫ 1

0
λ1,2(t)Λ1,2 (t) e−δtdt+ Λ1,2(1)e−δ = 1− δ

∫ 1

0
e
−
∫ t
0 λγ

(
Φ0,x,u

1,εu2;γ
s ,u1s,εu

2
s

)
ds
e−δtdt

≤ λmax

λmax + δ
+

δ

λmax + δ
e−(λmax+δ).

Thus,

vδ,n (γ, x)− vδ,nε (γ, x) ≤ C
(
ε+ ωδ (Cε)

)
+

(
λmax

λmax + δ
+

δ

λmax + δ
e−(λmax+δ)

)
sup

θ∈M,z∈RN

∣∣∣vδ,n(θ, z)− vδ,nε (θ, z)
∣∣∣ .

Here, λmax := sup
{
λγ (x, u) : γ ∈M, x ∈ RN , u ∈ U

}
< ∞. The conclusion follows by taking the

supremum over θ ∈M and x ∈ K+ and recalling that C is independent of x and ε > 0 (and n ≥ 1).

We consider (ρε) a sequence of standard mollifiers i.e. ρε (y) = 1
εN
ρ
(y
ε

)
, y ∈ RN , ε > 0, where

ρ ∈ C∞
(
RN
)
is a positive function such that

Supp(ρ) ⊂ B (0, 1) and
∫
RN

ρ(x)dx = 1.

We introduce the convoluted functions

vδ,n(ε) (γ, ·) := vδ,nε (γ, ·) ∗ ρε.

In analogy to [40, Lemma 3.5], one gets
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Proposition 18 The value functions vδ,n(ε) are such that

sup
x∈K

(∣∣∣vδ,n(ε) (γ, x)
∣∣∣+
∣∣∣∂xivδ,n(ε) (γ, x)

∣∣∣) ≤ Cδε−1
(
ε+ ωδ (ε)

)
,

sup
x,y∈K, y 6=x

∣∣∣∂xivδ,n(ε) (γ,x)−∂xiv
δ,n
(ε)

(γ,y)
∣∣∣

|x−y| ≤ Cδε−1ωδ (|x− y|)

sup
x∈K

∣∣∣vδ,n(ε) (γ, x)− vδ,n (γ, x)
∣∣∣ ≤ ωδ (ε) + ηδ (ε) ,

for all γ ∈M. Here, Cδ is a positive constant independent of ε > 0, n ≥ 1 and γ ∈M.

Proof. To prove the first inequality, one recalls the definition of vδ,n(ε) . Then, due to Proposition 17
and using the notation (16), one gets

∣∣∣∂xivδ,n(ε) (x)
∣∣∣ =

∣∣∣∣∣ε−1

∫
B(0,1)

vδ,nε (x− εy) ∂xiρ (y) dy

∣∣∣∣∣ =

∣∣∣∣∣∣∣ε−1

∫
y∈B(0,1)

(
vδ,nε (x− εy)− vδ,nε (x)

)
∂xiρ (y) dy

∣∣∣∣∣∣∣
≤ Cδε−1ωδ (ε) .

Similarly,∣∣∣∂xivδ,n(ε) (x)− ∂xiv
δ,n
(ε) (y)

∣∣∣ =

∣∣∣∣∣ε−1

∫
B(0,1)

(
vδ,nε (x− εz)− vδ,nε (y − εz)

)
∂xiρ (z) dy

∣∣∣∣∣ ≤ Cδε−1ωδ (|x− y|) .

Moreover, again with the notation (16) and the help of Proposition 17, one gets

sup
x∈RN

∣∣∣vδ,n(ε) (x)− vδ,n (x)
∣∣∣ =

∣∣∣∣∣∣∣
∫

y∈B(0,1)

(
vδ,nε (x− εy)− vδ,nε (x) + vδ,nε (x)− vδ,n (x)

)
ρ (y) dy

∣∣∣∣∣∣∣
≤ ωδ (ε) + ηδ (ε) .

The proof of our proposition is now complete.
We now come to the proof of the main convergence result.

Proof. (of Theorem 13). Let us fix
(
u1, u2

)
∈ U × B (0, 1) .The dynamic programming principle

written for vδ,nε yields

vδ,nε (γ, x) ≤ E

 ∫ T1∧n−10 δe−δth
(

Γγ,x,u
1,εu2

t , Xγ,x,u1,εu2

t + εu2
t , u

1
t

)
dt

+e−δ(T1∧n
−1)vδ,nε

(
Γγ,x,u

1,εu2

T1∧n−1 , Xγx,u1,εu2

T1∧n−1
)  ,

where
(
u1, u2

)
∈ Bn0 and x ∈ K. In particular, if

(
u1
t , u

2
t

)
= (u, y) ∈ U × B (0, 1) , for t ∈

[
0, n−1

)
,

one notices that on
[
0, T1 ∧ n−1

)
,

Xγ,x−εy,u1,εu2
t = Xγ,x,u1,0

t − εy and Γγ,x,u
1,εu2

t = Γγ,x,u
1,0

t .

As consequence, the (law of the) first jump time starting from (γ, x− εy) when the trajectory is
controlled by the couple

(
u1, εu2

)
given above only depends on u and x (but not on ε, nor on y).

To emphasize this dependence, we denote it by T x,u1 . Similarly,
(

Γγ,x,u
1,εu2

Tx,u1 ∧n−1 , X
γ,x,u1,εu2

Tx,u1 ∧n−1

)
has the

same law as
(

Γγ,x,u
1,0

Tx,u1 ∧n−1 , X
γ,x,u1,0
Tx,u1 ∧n−1 − εy

)
. On gets

vδ,nε (γ, x− εy) ≤ E

 ∫ Tx,u1 ∧n−1
0 δe−δth

(
Γγ,x,u

1,0
t , Xγ,x,u1,0

t , u1
t

)
dt

+e−δ(T
x,u
1 ∧n−1)vδ,nε

(
Γγ,x,u

1,0
Tx,u1 ∧n−1 , X

γ,x,u1,0
Tx,u1 ∧n−1 − εy

)  .
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It follows that

vδ,n(ε) (γ, x)

≤ E
[∫ Tx,u1 ∧n−1

0
δe−δth

(
Γγ,x,u

1,0
t , Xγ,x,u,0

t , u1
t

)
dt+ e−δ(T

x,u
1 ∧n−1)vδ,n(ε)

(
Γγ,x,u,0
Tx,u1 ∧n−1 , X

γ,x,u,0
Tx,u1 ∧n−1

)]
.

Applying Itô’s formula to vδ,n(ε)

(
Γγ,x,u,0t , Xγ,x,u,0

t

)
on
[
0, T x,u1 ∧ n−1

]
and recalling that u1

t = u prior

to n−1, it follows that

0 ≤ E

∫ Tx,u1 ∧n−1

0
e−δt

 δ
(
h
(

Γγ,x,u,0t , Xγ,x,u,0
t , u

)
− vδ,n(ε)

(
Γγ,x,u,0t , Xγx,u,0

t

))
+Luvδ,n(ε)

(
Γγ,x,u,0t , Xγ,x,u,0

t

)  dt
= E

∫ Tx,u1 ∧n−1

0
e−δt

 δ
(
h
(
γ,Φ0,x,u,0;γ

t , u
)
− vδ,n(ε)

(
γ,Φ0,x,u,0;γ

t

))
+Luvδ,n(ε)

(
γ,Φ0,x,u1,0;γ

t

)  dt
≤ E

[∫ Tx,u1 ∧n−1

0
e−δtdt

](
δ
(
h (γ, x, u)− vδ,n(ε) (γ, x)

)
+ Luvδ,n(ε) (γ, x)

)

+ E

∫ Tx,u1 ∧n−1

0
e−δt

 δ
(
|h|1 + Cδε−1

(
ε+ ωδ (ε)

))
|f |1 t+ |f |21 tCδε−1

(
ε+ ωδ (ε)

)
+ |f |1Cδε−1ωδ

(
|f |1
n

)
+ 2 |h|1 |λ|1 |f |1 t

+ |λ|1Cδε−1
(
ε+ ωδ (ε)

)
(1 + |g|1) |f |1 t

 dt


≤ E
[
T x,u1 ∧ n−1

] ([
δ
(
h (γ, x, u)− vδ,n(ε) (γ, x)

)
+ Luvδ,n(ε) (γ, x)

])
+ E

[
T x,u1 ∧ n−1

]
C̃δ
(

1 + ε−1ωδ (ε)

n
+ ε−1ωδ

(
|f |1
n

))
.

The generic constant C̃δ is independent of x ∈ K, γ ∈ M, u ∈ U, ε > 0 and n ≥ 1 and may change
from one line to another. As consequence,

δ
(
h (γ, x, u)− vδ,n(ε) (γ, x)

)
+ Luvδ,n(ε) (γ, x) ≥ −C̃δ

(
1 + ε−1ωδ (ε)

n
+ ε−1ωδ

(
|f |1
n

))
.

We fix (for the time being), the initial configuration (γ0, x0) ∈ M×K and an arbitrary control

u1 ∈ Aad. We apply the previous inequality for (γ, x) =
(

Γγ0,x0,u
1,0

t , Xγ0,x0,u1,0
t

)
, integrate the

inequality with respect to e−δtdt on [0, T ] for T > 0 and use Itô’s formula to get

E
[∫ T

0
δe−δth

(
Γγ0,x0,u

1,0
t , Xγ0,x0,u1,0

t , u1
t

)
dt

]
≥ vδ,n(ε) (γ0, x0)− e−δT vδ,n(ε)

(
Γγ0,x0,u

1,0
T , Xγ0,x0,u1,0

T

)
− C̃δ

(
1 + ε−1ωδ (ε)

n
+ ε−1ωδ

(
|f |1
n

))
.

One lets T →∞ and takes the infimum over u1 ∈ Aad to get

vδ (γ0, x0) ≥ vδ,n(ε) (γ0, x0)− C̃δ
(

1 + ε−1ωδ (ε)

n
+ ε−1ωδ

(
|f |1
n

))
.

Finally, using the third estimate in Proposition 18, one gets

vδ (γ0, x0) ≥ vδ,n (γ0, x0)− C̃δ
(

1 + ε−1ωδ (ε)

n
+ ε−1ωδ

(
|f |1
n

)
+ ωδ (ε) + ηδ (ε) .

)
.

The conclusion follows by taking ε =
(
ωδ
(
|f |1
n

))1−η
, for some 1 > η > 0 (e.g. η = 1

2). Our result

is now complete.
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