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This article presents the first dynamically adaptive wavelet method for the shallow-
water equations (SWEs) on a staggered hexagonal C-grid. Pressure is located at the
centres of the primal grid (hexagons) and velocity is located at the edges of the
dual grid (triangles). Distinct bi-orthogonal second-generation wavelet transforms
are developed for the pressure and the velocity. These wavelet transforms are based
on second-order accurate interpolation and restriction operators. Together with
compatible restriction operators for the mass flux and Bernoulli function, they
ensure that mass is conserved and that there is no numerical generation of vorticity
when solving the SWEs. Grid refinement relies on appropriate thresholding of
the wavelet coefficients, allowing error control in both the quasi-geostrophic and
inertia–gravity wave regimes. The SWEs are discretized on the dynamically adapted
multiscale grid using a mass and potential-enstrophy-conserving finite-difference
scheme. The conservation and error control properties of the method are verified
by applying it to a propagating inertia–gravity wave packet and to rotating shallow-
water turbulence. Significant savings in the number of degrees of freedom are
achieved even in the case of rotating shallow-water turbulence. The numerical
dissipation introduced by the grid adaptation is quantified. The method has been
designed so it can be extended easily to the icosahedral subdivision of the sphere.
This work provides important building blocks for the development of fully adaptive
general circulation models.
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1. Introduction

1.1. Adaptive methods for climate and weather models

Atmospheric and oceanic flows span a wide range of scales
and at the same time are organized into wave packets,
eddies, jets and currents. Therefore it seems likely that
numerical modelling of the atmosphere and oceans would
be more efficient and accurate if the model resolution was
not uniform but refined locally where small-scale features

need to be resolved. To some extent, this idea has gained
in popularity in recent years with the increasing use of
stretched grids (Krinner et al., 1997) and nested models
to achieve higher resolution locally for regional numerical
weather forecasting or regional climate modelling. However
the grid refinement remains static (i.e. the grid does
not evolve in time) in operational practice. While this
can be justified when there is a priori knowledge of the
location of the small-scale features, such as ocean boundary
currents, this is a strong limitation since many small-scale
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features (e.g. fronts, hurricanes or oceanic eddies) occur
at unpredictable locations. To efficiently resolve such
phenomena, dynamic grid adaptivity is necessary, and
indeed the idea of dynamic grid adaptivity for numerical
modelling of the atmosphere and ocean was explored as early
as the 1980s (Skamarock et al., 1989). Despite continuous
progress on dynamically adaptive methods for numerical
modelling of the atmosphere and ocean (Ruge et al., 1995;
Bacon et al., 2000; Läuter et al., 2007; St-Cyr et al., 2008;
Jablonowski et al., 2009; Weller et al., 2009; Nikiforakis,
2009; Chen et al., 2010), it is fair to say that dynamical
adaptivity has not yet made its way into operational models,
with the notable exception of the Operational Multiscale
Environment model with Grid Adaptivity (OMEGA; Bacon
et al., 2000). This state of affairs is caused by a number
of issues specific to the modelling of the atmosphere
and ocean. Prominent amongst these are the numerical
properties of adaptive methods, the grid refinement criteria,
the complexity versus efficiency trade-off, and the interplay
with subgrid-scale physics. We address these issues at least
partially in the present work, with the exception of subgrid-
scale physics.

As discussed in more detail in the next subsection,
numerical models of the atmosphere and ocean prefer
numerical methods with exact discrete conservation prop-
erties since they improve the stability and fidelity of these
under-resolved models. Devising non-adaptive numerical
methods with such properties is not straightforward, and
any adaptive method with inferior conservation properties
would be of questionable interest. How to exacly con-
serve total mass is well understood when grid refinement
is obtained by recursive subdivison of control volumes
(e.g. Berger and Oliger, 1984; St-Cyr et al., 2008) or by
remapping (e.g. Farrell et al., 2009), but we are not aware
of dynamically adaptive methods with a consistent treat-
ment of vorticity. Furthermore, no existing approach seems
applicable to the case of a hierarchy of non-nested con-
trol volumes, like spherical–hexagonal grids. In this case,
a fine-resolution hexagon overlaps with several coarse-
resolution hexagons, and a simple flux-counting approach
fails. More generally, the need for dynamical adaptivity
should not restrict the set of available numerical schemes.
Instead, an approach is needed that can render dynam-
ically adaptive any appropriate numerical method. The
wavelet-based approach we develop here can be tailored to
a wide range of pre-existing numerical methods, includ-
ing non-Cartesian staggered grids, with the restriction that
discrete differential operators should possess a compact
stencil.

Dynamical adaptivity needs refinement criteria to refine
and coarsen the computational mesh at each time step.
Coarsening is important since the failure to coarsen
regions where it would have been acceptable increases the
computational cost without increasing the fidelity of the
simulation. Refinement ensures uniform accuracy, or more
importantly allows resolution of phenomena that would
otherwise remain unresolved. Often heuristic, gradient-
based or vorticity-based refinement criteria are used (St-Cyr
et al., 2008). For numerical weather forecasting (NWP), it
is unacceptable to miss small-scale high-impact phenomena
due to inappropriate refinement criteria, but the additional
cost of the refinement should not prevent the forecast
from being calculated in a reasonable time. For climate
modelling any systematic bias introduced by the refinement

criteria would be problematic. Thus, the development of
robust, objective, and sharp refinement criteria remains an
open problem (e.g. Berger and Colella, 1989; Nikiforakis,
2009; Weller, 2009) and their suitability to the various
forms of atmosphere and ocean modelling needs to be
demonstrated. The refinement strategy we propose uses
in a novel way the error-control capabilities inherent to
wavelet decompositions. A refinement strategy based on
error control is not suitable in all situations, especially when
subgrid-scale physics come into play, and our strategy is not
universally applicable, especially when complex physics and
dynamics are coupled. Nevertheless our results suggest that
our approach is effective and robust in idealized situations,
where a priori knowledge of the dominant balances is
available.

Dynamically adaptive methods can appear complicated.
This complexity seems incompatible with the need of
community-based research codes to evolve continuously
and to be easily modified to explore new ideas. This sets the
bar high for the efficiency gains that must be demonstrated
in order for adaptive methods to gain acceptance and
means that efficient implementations on present and
future massively parallel architectures are needed. We
do not address here the computational challenge, which
is not specific to applications to the atmosphere and
oceans. However, experience in other fields, such as the
FLASH (Fryxell et al., 2000) code used by the astrophysics
community, suggests that it is possible to build efficient
and easily modifiable dynamically adaptive codes (Popinet,
2003). However, we do provide partial answers to the
question of whether a substantial gain in computational
efficiency can be achieved in practice. This is clearly the case
for the favourable situation of a small coherent structure
isolated in a laminar flow, but we show it is also true for the
more realistic situation where the computational domain is
densely populated by a large number of interacting coherent
structures which move and evolve unpredictably. Indeed, a
common source of scepticism towards dynamical adaptivity
is that it should not, for example, track only a few oceanic
mesoscale eddies, but a whole field of eddies, while still
delivering significant efficiency gains.

Finally, a formidable issue is the interaction between
a dynamically adaptive method and subgrid-scale physics.
Even with dynamically adaptive grids, numerical simulations
of the atmosphere and the ocean will remain spatially
unresolved for decades to come. Subgrid-scale physics
will therefore remain an essential part of the models,
adaptive or not. How the parametrization of subgrid-scale
phenomena varies with the local resolution, how it interacts
with the numerics, and how the refinement strategy should
incorporate subgrid-scale phenomena, are open problems.
This work does not address this issue. We note, however, that
the advent of variable-resolution static grids has stimulated
research on scale-aware parametrizations (Chen et al., 2011).

1.2. Adaptive numerical methods for geophysical flows

There are four main approaches to increase accuracy
and efficiency in numerical methods for solving partial
differential equations (PDEs): h-refinement, p-refinement,
r-refinement and mimetic methods. In h-refinement,
increased accuracy is achieved by fixing the order of the
method (e.g. a second-order finite-volume discretization)
and refining or coarsening the grid locally to achieve
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a constant error tolerance. This approach is best for
problems with non-smooth solutions, or when high-order
discretizations are not available. In p-refinement the grid
resolution is kept fixed and the order of the method
is modified locally (e.g. spectral element methods). This
approach is optimal for problems with smooth solutions
where higher-order discretizations are available. It is
possible to combine these approaches in hp-refinement,
such as hp-FEM (finite-element methods), where one
seeks a compromise between a high-order method on a
coarse grid where the solution is smooth and a low-order
method on a fine grid where the solution is not smooth.
Finally, r-refinement conserves the number of grid points
(or computational elements), but redistributes them to
minimize the error. r-refinement is commonly used in
finite-element methods, and vortex methods (Cottet and
Poncet, 2002) may be considered a type of r-refinement
method. Note that, for problems with a fixed distribution of
active scales, e.g. linear advection, h- and r-refinement are
essentially equivalent.

Mimetic approaches, in contrast, do not attempt to
decrease the error by changing the distribution of grid points
or the order of the discretization, rather they ensure that
the discrete version of the PDE retains important symmetry
and conservation properties of the continuous equations.
For example, if the continuous differential operator is skew-
symmetric, the discretization of this operator would also
be skew-symmetric. Similarly, the discrete equations could
ensure mass conservation, or have a discrete maximum
principle equivalent to that of the continuous equations.
Mimetic discretizations are especially useful when h- or p-
refinement is not sufficient to resolve all the active scales
of motion, i.e. the simulation must remain under-resolved
because of limited computational resources. Climate and
weather models are important examples of such under-
resolved simulations, since the active scales of motion in the
atmosphere and oceans range from O(104) km to fractions of
a millimetre, making fully-resolved simulations impossible,
even with optimal adaptive techniques. It is often claimed
that mimetic methods produce qualitatively more accurate
results than non-mimetic methods, especially for under-
resolved problems (Verstappen and Veldman, 1997a,b).
In other words, mimetic methods produce consistent
approximations, even when the convergence error is large.

The so-called TRiSK scheme introduced recently by
Ringler et al. (2010) is a mimetic finite-volume/finite-
difference method that discretizes the rotating shallow-
water equations (SWEs) on arbitrarily structured C-grids
on the sphere and ensures discrete conservation of mass
and either total energy or potential enstrophy (to within
time integration error). This discretization also ensures
that the potential enstrophy is compatible and consistent.
Compatibility means that there is no spurious numerical
generation of potential vorticity and consistency means that
a constant potential vorticity field q remains constant for
all time: Dtq = 0. The TRiSK scheme is a generalization of
the mimetic C-grid scheme first investigated by Sadourny
(1975). The mimetic properties of the TRiSK scheme
ensure that it performs well for under-resolved problems
like climate modelling and weather prediction. However,
convergence tests show that it is a low-order method, with
convergence rates between first- and second-order accuracy.
Thus, a dynamically adaptive h-refinement grid structure
is needed to fully exploit its mimetic properties while

ensuring sufficiently accurate results on inhomogeneous
and non-stationary problems, such as atmosphere and
ocean dynamics. (p-refinement is not possible since the
scheme has fixed order.) The goal of the present work is
to develop a dynamically adaptive multiscale wavelet h-
refinement grid structure for the TRiSK discretization that
retains its important mimetic properties.

Dynamically adaptive wavelet Galerkin and finite-
difference/finite-volume methods for PDEs have been
developed over the past 15 years (Dumont and Lebon,
1996; Vasilyev and Paolucci, 1996; Fröhlich and Schneider,
1996, 1997; Schneider et al., 1997; Vasilyev and Bowman,
2000; Roussel et al., 2003; Kevlahan and Vasilyev, 2005;
Roussel and Schneider, 2010) for a variety of nonlinear
PDEs, especially in fluid dynamics and combustion. In
particular, Cohen et al. (2003) developed an adaptive
wavelet multiresolution method for conservation laws on a
triangular grid that shares some features of the method
we develop here. In fact, we previously developed an
adaptive wavelet collocation method (AWCM) for solving
PDEs on the sphere using second-generation bi-orthogonal
wavelets (Mehra and Kevlahan, 2008). These adaptive
wavelet methods dynamically refine the computational grid
to achieve the desired error tolerance at each time step. In
particular, it can be shown that nonlinear wavelet filtering
(the basis of wavelet adaptivity) gives an optimal N-term
approximation to a sufficiently smooth function (Cohen
et al., 2002). However, to the best of our knowledge, all
these methods use collocated grids and tensor-products of
one-dimensional (i.e. separable) wavelets.

Another way of achieving adaptivity is to use a so-
called adaptive mesh refinement (AMR) method such as
GeoClaw (George and LeVeque, 2006). As in the TRiSK
method, GeoClaw also uses a conservative finite-volume
approach, but on a logically Cartesian grid mapped to the
sphere. The similarities and difference between the AMR
and wavelet methods for providing dynamically adaptive
grids are discussed in more detail in section 4.

Although these approaches work well for fully-resolved
simulations, or when efficient subgrid-scale models are
available (Goldstein et al., 2005), they cannot be used for
the numerical models of geophysical fluid dynamics which
use staggered grids for pressure and velocity and mimetic
discretizations. In particular, in the C-grid used in the
TRiSK model, pressure is discretized at the centres of a
primal hexagonal grid, while vorticity is discretized at the
centres of the dual triangular grid (velocity components are
located at the mid-point of the triangle edges). Developing
an adaptive wavelet method for such a C-grid discretization
presents new fundamental challenges compared with all
existing approaches on collocated Cartesian grids:

1. Separate wavelet transforms (and associated wavelets)
are required for the pressure and velocity variables.

2. The grids for pressure (hexagons) and velocity
(triangles) are non-Cartesian and the hexagons are
not nested when the grid is refined.

3. A non-separable vector-valued transform is required
for the velocity. Such vector-valued wavelet trans-
forms do not currently exist.

4. The dynamical refinement of the pressure and velocity
grids must produce consistent, controllable, errors for
the tendencies ∂tp and ∂tu. This is non-trivial since
each tendency involves both independent variables.
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2000 T. Dubos and N. K-R. Kevlahan

5. The adaptive scheme must retain the important
mimetic properties of the original TRiSK scheme:
conserve mass and use a compatible and consistent
discretization of the potential vorticity.

Although our ultimate goal is to develop an adaptive
wavelet method for the TRiSK scheme on the sphere,
in order to simplify the presentation the current article
derives and verifies the method for the planar C-grid.
The hexagonal–triangular planar C-grid is topologically
similar to the subdivision of the icosahedral grid on the
sphere considered by Ringler et al. (2010), apart from the 12
pentagonal points. The main differences are technical and
due to the non-uniformity of the dyadically subdivided grids
on the sphere, and the method presented here is currently
being extended to the sphere.

The dynamically adaptive wavelet method derived here
represents a new class of adaptive wavelet methods for
PDEs on non-Cartesian staggered grids. It also forms part
of a broader effort to investigate the potential of adaptive
numerical methods for climate and weather models to
increase accuracy (by ensuring spatially and temporally
uniform error control) and to make optimal use of the
available computational resources. In the present method,
the local resolution of the pressure and velocity grids is
controlled by a single tolerance parameter which coarsens
or refines the local grid by locally removing or adding scales
to the dyadic multiscale grid to maintain the desired L∞
error in the pressure and velocity tendencies at each time
step. Because this is a multiscale method using a hierarchy
of grids, the adapted grid is always structured and there are
no spurious errors associated with jumps in grid spacing. In
addition to providing dynamically adaptive grid refinement,
this approach also allows for static grid refinement and is
natural for multiscale modelling of physical processes.

In the following section we derive the relevant wavelet
transforms and introduce the adaptive wavelet method for
the TRiSK scheme. In section 3, the error control estimates
are verified and the method is used to solve the problem
of a propagating wave packet in the inertia–gravity wave
regime and rotating shallow-water turbulence in the quasi-
geostrophic regime.

2. Method

2.1. TRiSK discretization of the rotating shallow-water
equations

In preparation for deriving the dynamically adaptive wavelet
method, we briefly review the relevant properties of the
TRiSK scheme. For complete details, the reader is referred
to the original papers (Thuburn et al., 2009; Ringler et al.,
2010). The discrete equations are derived from the vector-
invariant form of the momentum equations:

∂p

∂t
= −div(pu), (1)

∂u

∂t
= −q (pu⊥) − gradB, (2)

where p is the fluid pressure (proportional to fluid thickness),
u is the fluid velocity, u⊥ = k × u, q = (k · curl u + f )/p
is the potential vorticity, B = p + gb + K is the Bernoulli
function and K = |u|2/2 is the kinetic energy. The three

Dv

W

U

V

Dp

Pi

Figure 1. Discrete system for the rotating shallow-water equations on the
C-grid with hexagonal primal mesh cells Pi and triangular dual mesh
cells Dv . Pressure pi is located at the hexagon centres xi (indicated by the
blue circles and the subscript i), vorticity ωv is located at triangle centres
xv (indicated by the red triangles and subscript v). Velocity components
ue are located at the intersection of the triangle and hexagon edges xe

(indicated by the black arrows and the subscript e) and are normal to
the hexagon edges and tangential to the triangle edges. U , V , and W are
the projections of the velocity vector in the three directions tangential to
the triangle edges. Mass is integrated over the hexagons and circulation
is integrated over the triangles. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

parameters in the system are gravity, g, the Coriolis
parameter, f = 2� sin φ (where � is the rotation of the
Earth and φ is the latitude), and bottom topography, b. For
simplicity we assume b = 0 and g = 1 in the remainder of
the article. Velocity divergence and vorticity (which together
form a complete description of the flow field) are derived
from the velocity equation (2).

The vector-invariant rotating SWEs (1), (2) are discretized
on the staggered C-grid. On this grid pressure and divergence
are located at the centres of the primal grid (the hexagon
centres, or triangle vertices) and vorticity (or circulation) is
located at the centres of the dual grid (the triangle centres, or
hexagon vertices). Gradients, fluxes and velocities are located
at the coincident mid-points of the triangle and hexagon
edges. The C-grid configuration is shown in Figure 1. The
resulting discretized system is

∂pi

∂t
= −[div Fe]i, (3)

∂ue

∂t
= F⊥

e q̂e − [grad Bi]e, (4)

where Fe = p̂eue is the thickness flux (i.e. the flux of pressure
normal to a hexagon edge) and F⊥

e is the thickness flux in
the direction perpendicular to Fe (i.e. the flux of pressure
normal to a triangle edge). Ringler et al. (2010) show that
with appropriate definitions for the four discrete scalars
(̂pe, q̂e, Ki, F⊥

e ) and the three discrete differential operators
([k · curl( )]v, [grad( )]e, [div( )]i) the associated potential
vorticity equation is consistent with an underlying thickness
evolution equation and is compatible with the discrete
momentum equation. As mentioned earlier, the TRiSK
scheme can conserve either the total energy or potential
enstrophy; we choose to implement the latter version in the
adaptive wavelet method.

The TRiSK scheme for the rotating SWEs thus consists
of prognostic finite-volume equations for pressure (1) and
finite-difference equations for velocity (2) which specify
the derived scalars p̂e, q̂e, Ki, F⊥

e . Although the discrete
equations do not include either physical or numerical
dissipation of total energy, the adaptive wavelet method
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introduces dissipation due to the coarsening associated
with neglecting weak gradients during grid adaptation. This
numerical dissipation is quantified for rotating shallow-
water turbulence simulations in section 3.

In the remainder of this section, we derive the dynamically
adaptive wavelet method for the TRiSK discretization of the
rotating SWEs (1) and (2). This method is based on a
bi-orthogonal second-generation wavelet multiresolution
analysis, and retains the conservation, consistency and
compatibility properties of the TRiSK discretization,
while providing dynamical error control by automatically
coarsening or refining the computational grid to maintain a
desired error tolerance ε in the tendencies ∂tp and ∂tu at each
time step. The next section reviews briefly the main features
of a second-generation bi-orthogonal wavelet transform.

2.2. Bi-orthogonal second-generation wavelet transform

A wavelet transform takes a signal on a fine grid
and decomposes it into a sequence of increasingly
smooth approximations (spanned by the scaling functions)
and the details which are lost between successive
smooth approximations (spanned by the wavelets). Bi-
orthogonal second-generation wavelets (Sweldens, 1996)
are particularly well-suited to numerical approximation of
PDEs since in this case the scaling functions and wavelets
correspond directly to unique grid points. Such wavelets can
be constructed in physical space using a simple procedure
called lifting. In this section we give the basic idea behind the
bi-orthogonal wavelet transforms used in this article. The
interested reader is referred to Mallat (1998) for full details
about wavelet multiresolution analysis and wavelet filtering.

The wavelet transform can be understood by considering
a single two-scale transform from a fine scale j + 1 to a coarse
scale j. Following Daubechies and Sweldens (1998), let us
consider a signal x = {xk}k∈Z , xk ∈ R. The first step in the
wavelet transform is the restriction (or coarse-graining) of the
signal, which in the simplest case splits the signal into even
components xe = {x2k} and odd components xo = {x2k+1}
and then deletes the odd components (i.e. sub-samples).
The deleted points are then predicted (or prolonged)
using the coarse values x2k, for example using polynomial
interpolation P. The difference between the predicted
and the actual deleted points are the wavelet coefficients
x̃ = {̃xm}, i.e. x̃ = xo − P (xe), where the wavelet locations
m are the locations of the odd values x2k+1. Computing
a prediction and recording the detail is the first lifting
step. At this stage we have a transform (xe, xo) → (xe, x̃).
The prediction step using linear interpolation is described
graphically in Figure 2. If the wavelet coefficient is small,
then the associated point at the finer scale can be interpolated
with high accuracy from the coarse points. In other words,
the wavelet coefficient measures the variation of the signal
(or, equivalently, the local interpolation error) at a particular
location and scale.

However, after this basic restriction and prolongation
lifting step, the frequency localization is poor due to aliasing
and the average is not conserved, i.e. xe �= x. To correct
these (or other) deficiencies, additional lifting steps can
be performed. These additional lifting (or update) steps
modify the values at the coarse grid points by adding linear
combinations of the wavelet coefficients, i.e. y = xe + U (̃x).
For example, to preserve the running average the missing
grey area in Figure 2 must be restored. This can be achieved

dk/4

dk/4

x2k x2k+3x2k−2

dk

x2k+4

yk+1

yk

x2k+1 x2k+2x2k−1

Figure 2. Lifted wavelet transform using linear interpolation. The thick
line is the original signal on the fine grid and the thin line is the smooth
signal on the coarse grid obtained by linear interpolation and lifting. The
first stage in the smoothing (or restriction) is simply to neglect the odd
points x2k+1. The wavelet coefficient x̃m is then the difference between the
actual signal value x2k+1 and the value predicted by linear interpolation
(indicated by the open red circle). In order to retain the moving average
of the signal, the coarse grid values x2k and x2k+2 are lifted by adding
x̃m/4 to obtain the coarse values yk and yk+1. (Figure adapted from
Daubechies and Sweldens, 1998). This figure is available in colour online
at wileyonlinelibrary.com/journal/qj

Algorithm 1. General two-scale lifted wavelet transform

from complete set of fine-scale values x
j+1
k ∪ x

j+1
m to coarse-

scale values x
j
k and wavelet coefficients x̃

j
m. Mj is the set

of wavelet points at scale j (i.e. those fine points that are
predicted from the coarse points), Km is the stencil used

for the prediction at point m ∈ Mj, and s̃
j
k,m and s

j
k,m are

respectively the filter coefficients for the prediction and
update steps.
Analysis:

x̃j
m = xj+1

m −
∑

k∈Kj
m

s̃
j
k,mx

j+1
k ,

x
j
k = x

j+1
k +

∑
m∈Mj

k

s
j
k,mx̃j

m.

Synthesis:

x
j+1
k = x

j
k −

∑
m∈Mj

k

s
j
k,mx̃j

m,

xj+1
m = x̃j

m +
∑

k∈Kj
m

s̃
j
k,mx

j
k.

for the linear prolongation operator by adding x̃m/4 to
the neighbouring values on the coarse grid. Note that the
complete transform from values on even and odd points to
smoothed values on a coarse grid and wavelet coefficients
on the neglected grid, (xe, xo) → (y, x̃), is fully invertible.
The general two-scale lifted wavelet transform is given in
Algorithm 1.

For a one-dimensional signal of length 2J , the two-scale
transform described above is repeated 2J−1 times to generate
the complete wavelet transform,

x→{
x0

k , x̃j
m

}
, k∈ K0, j=0, . . . , J−1, m∈ Mj. (5)

The full wavelet transform (5) has linear computational
complexity, O(N), for a signal of length N and is invertible.
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(a) (b)

(c) (d)

Figure 3. Arrangement of scaling function and wavelet coefficients on the
multiscale triangular–hexagonal C-grid. (a, b): pressure on the hexagonal
grid. (c, d): velocity on the triangular grid. (a, c): scaling function coefficients
at the fine scale j + 1. (b, d): scaling function and wavelet coefficients at the
coarse scale j. The coarse scaling function coefficients pj and uj, vj, wj are
smoothed versions of the pressure and velocity respectively. The wavelet
coefficients are the difference between the exact value on the fine grid
and the value interpolated from the coarse grid using the coarse scaling
function coefficients. On each coarse triangular edge, the two velocity

wavelet coefficients are equal and opposite, e.g. ũ
j
−1,−2 + ũ

j
1,−2 = 0. This

figure is available in colour online at wileyonlinelibrary.com/journal/qj

The two-scale wavelet transform given by Algorithm 1 is
very general: for such a transform to exist in any number
of dimensions, one simply needs a multiscale sequence
of grids, a restriction operator from grid j + 1 to grid j
and a prolongation operator from grid j to grid j + 1 (the
prediction). One can then define suitable lifting (or update)
steps to improve the properties of the wavelet transform
(e.g. increase the number of vanishing moments or conserve
the mean).

Figure 3 shows the positions of the scaling functions
and wavelets for pressure and velocity for one coarsening
step of the C-grid. We use this multiscale grid structure
to construct the adaptive wavelet scheme for the TRiSK
equations. Note that, although the grid points for the

pressure are nested (i.e. x
j
i ⊂ x

j+1
i ), the associated hexagonal

finite volumes containing the mass are not. Conversely, the
grid points for velocity are not nested, but the triangular
finite volumes containing the circulation are. The fact that
the grid points and finite volumes are not nested makes
developing the wavelet transforms for pressure and velocity
more challenging.

Finally note that, if a wavelet coefficient is smaller than
the desired tolerance ε, then the associated grid point may
be neglected since it can be interpolated from values at
the coarse grid points with error O(ε). Removing wavelets
with small magnitude is called nonlinear wavelet filtering.
Nonlinear wavelet filtering generates a multiscale hierarchy
of adapted grids and ensures that the pressure and velocity
can be constructed to the desired tolerance ε on the adapted
grid. This error control is at the heart of the method that we
develop in the following subsections.

Figure 4. Non-conservative computation of the tendencies ∂t p̃
j
m, ∂t ũ

j
n,

∂t p0
i , ∂t u0

e from p̃
j
m ,̃u

j
n, p0

i and u0
e . In the above method conservation of total

mass is not guaranteed. Blue arrows correspond to step 1, red arrows to
step 2 and green arrows to step 3. The interpolation, restriction and TRiSK
operators are labeled as I, R and T respectively. Dashed arrows indicate that
either restriction or TRiSK operators are used. In this minimal example
the finest level is at j = 2. Therefore the lowermost red T-arrow is solid
as no data is available from level j + 1 to apply the restriction operators.
Additional levels can be added by repeating the intermediate line j = 1. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

The next section describes the algorithm for calculating
the tendencies ∂tp and ∂tu on the adapted grids, and the
subsequent two sections derive the wavelet transforms for the
pressure and velocity satisfying the particular requirements
of the tendency algorithm. Finally, we analyze the conditions
for the stability of the grid adaptation algorithm and
determine the appropriate scalings for the pressure and
velocity filter thresholds to control the tendency error.

2.3. Algorithm for calculating the tendency

In the adaptive scheme, adaptivity is achieved by neglecting

those wavelet coefficents p̃
j
m and ũ

j
n that are below a

predefined threshold. Therefore, the quantities evolved in

time are the (active) wavelet coefficients p̃
j
m and ũ

j
n, together

with the scaling coefficients p0
i and u0

e at the coarsest scale. A
standard time-stepping scheme is used. The main task is then

to compute the tendencies ∂t̃p
j
m, ∂t ũ

j
n, ∂tp0

i , ∂tu0
e from p̃

j
m ,̃u

j
n,

p0
i and u0

e . This procedure involves the calculation of various

intermediate quantities such as the scaling coefficients p
j
i

and u
j
e and their tendencies ∂tp

j
i and ∂tu

j
e, as well as the mass

flux F
j
e and the Bernoulli function Bi as depicted in Figures 4

and 6. As discussed below, the adaptive computation of
tendencies depicted in Figure 4 does not guarantee that
total mass

∑
i p0

i is conserved. Therefore we introduce and
implement a slightly different method depicted in Figure 6,
which does guarantee conservation of total mass and a
consistent vorticity budget across scales.

Both adaptive calculations involve two categories of
discrete operators:

• One-scale operators involve a single resolution level

j. These operators compute the mass flux F
j
e, kinetic

energy K
j
i , Bernoulli function B

j
i, potential vorticity qe,

rotated mass flux F⊥
e from which the tendencies ∂tp

j
i

and ∂tu
j
e are computed. One-scale operators are given

by the underlying numerical method, in this case the
TRiSK scheme.

• Two-scale operators involve two resolution levels j and
j + 1. These operators perform the interpolation and
restriction steps of the wavelet transforms for pressure
and velocity. They are essentially independant from
the equations being solved. In the conservative

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 1997–2020 (2013)



Adaptive Wavelet Method for Shallow-Water Equations 2003

Figure 5. Commutation diagram of gradient, divergence and curl with the
appropriate restriction operators.

Figure 6. Conservative adaptive computation of the tendencies ∂t p̃
j
m, ∂t ũ

j
n,

∂t p0
i , ∂t u0

e from p̃
j
m ,̃u

j
n, p0

i and u0
e . In the above method conservation

of total mass is guaranteed. Blue arrows correspond to step 1 (synthesis,
algorithm 2.2), red arrows to step 2 and green arrows to step 3. The
interpolation, restriction and TRiSK operators are labeled as I, R and
T respectively. Dashed arrows indicate that either restriction or TRiSK
operators are used. In this minimal example the finest level is at j = 2.
Therefore the lowermost red T-arrow is solid as no data is available from
level j + 1 to apply the restriction operators. Additional levels can be added
by repeating the intermediate line j = 1. This figure is available in colour
online at wileyonlinelibrary.com/journal/qj

method, distinct restriction operators for the mass

flux F
j
e and Bernoulli function B

j
i are introduced.

2.3.1. Non-conservative adaptive algorithm

Let us first describe and discuss the non-conservative
computation of tendencies depicted in Figure 4. The
computation involves three steps:

1. An inverse wavelet transform is executed to compute

the scaling coefficients p
j
i and u

j
e from p̃

j
m, ũ

j
n, p0

i and
u0

e . The data flow is from the coarsest level to the finest
level at which non-zero wavelet coefficients exist.

2. The TRiSK operators are applied separately at each

grid level to compute the tendencies ∂tp
j
i and ∂tu

j
e.

3. A forward wavelet transform is executed to compute

the tendencies ∂t̃p
j
m, ∂t ũ

j
n, ∂tp0

i , ∂tu0
e from the

tendencies ∂tp
j
i and ∂tu

j
e. The data flow is from the

finest level to the coarsest level.

The total operation count is proportional to the number
of active wavelet coefficients provided all the above steps
are actually performed on a subset of the indices e and i
only. This is possible because the task is only to compute

∂t̃p
j
m, ∂t ũ

j
n wherever the coefficients p̃

j
m, ũ

j
n are active.

Notice that steps 2 and 3 can provide two conflicting values

for ∂tp
j
i and ∂tu

j
e. Indeed, ∂tp

j
i and ∂tu

j
e can be obtained either

from p
j
i and u

j
e by applying the one-scale operators (step 2), or

from ∂tp
j+1
i and ∂tu

j+1
e by applying the restriction operators

(step 3). The latter must be preferred when possible because
fine-grid computations are more accurate. The appropriate
subsets would therefore be determined as follows, following
the data flow of the calculation backwards:

1. Given the set of active wavelet coefficients, determine
separately at each level j those indices i and e that are

required to compute ∂t̃p
j
m, ∂t ũ

j
n from the tendencies

∂tp
j+1
i and ∂tu

j+1
e . This depends on the stencil of

two-scale operators.

2. Starting from the finest level, find which ∂tp
j
i and ∂tu

j
e

can be obtained by applying the restriction operators

to ∂tp
j+1
i and ∂tu

j+1
e . For those which cannot (because

not all the necessary ∂tp
j+1
i and ∂tu

j+1
e are available),

determine those indices i and e for which we need p
j
i

and u
j
e as an input to the one-scale (TRiSK) operators.

This depends on the stencil of the one-scale operators.

3. Given those indices i and e for which we need p
j
i and

u
j
e as an input to the one-scale (TRiSK) operators,

find the minimal set of indices i and e which allow the
inverse wavelet transform to be performed. Indeed,
we must guarantee that all indices needed at level j to
interpolate to level j + 1 where required are present.
This is done starting from the finest level.

In this process the adapted grids emerge as sets of indices
i and e and are a by-product of the set of active wavelet
coefficients and the stencils of the one-scale and two-scale
operators.

An important role of the two-scale operators is to
blend together the computations performed at various
resolution levels. This blending occurs when one chooses
between applying the finite-difference operators on the
current resolution level and applying a restriction operator
to tendencies already computed at the immediately finer
level. However this blending also breaks the exact discrete
conservation of total mass. In fact, the property

∑
i ∂tp0

i = 0
relies on ∂tp0

i being computed as the divergence of the mass
flux, and on the overall cancellation of the mass fluxes as
each flux is counted once positively and once negatively.
This cancellation does not occur in the presence of a mix
of ∂tp0

i computed as a flux divergence and ∂tp0
i computed

as the restriction from ∂tp1
i . To recover the exact discrete

conservation of total mass, we introduce a new, conservative
adaptive algorithm.

2.3.2. Conservative adaptive algorithm

The most obvious way to recover the property
∑

i ∂tp0
i = 0

is to insist that all ∂tp0
i be computed as the divergence of a

mass flux. This is what we do in the algorithm depicted in
Figure 6. In this modified algorithm, the restriction operator

is not applied to the pressure tendency ∂tp
j+1
i but to the

mass flux F
j+1
e instead. This modification is admissible if the

flux restriction operator, the discrete divergence operator,
and the pressure restriction operator are compatible in the
following sense: restricting the mass flux from level j + 1
to level j then computing the discrete divergence on level
j must produce the same result as computing the mass
flux divergence at level j + 1 then restricting this pressure
tendency to level j, i.e. the diagram presented in Figure 5
commutes. This property means that the mass budget can
be expressed in a consistent way at all resolution levels. We
address the problem of constructing the restriction operator
for the mass flux together with the description of the wavelet
transform for pressure.
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Algorithm 2. Conservative adaptive computation of
tendencies.

1. Execute an inverse wavelet transform to compute the

scaling coefficients p
j
i and u

j
e from p̃

j
m, ũ

j
n, p0

i and u0
e .

The data flow is from the coarsest level to the finest
level at which non-zero wavelet coefficients exist.

2. Compute the mass flux Fe, Bernoulli function Bi and
and potential vorticity flux F⊥

e q̂e in a loop starting at
the finest level:

(a) Compute B
j
e, F

j
e by restriction from level (j + 1)

where possible.

(b) Where restriction is not possible, compute F
j
e

and B
j
e using the TRiSK operators applied to p

j
i

and u
j
e.

(c) ComputeF
j⊥
e q̂

j
e by restriction from level (j + 1)

where possible.

(d) Where restriction is not possible, compute F
j⊥
e

from F
j
e and q̂

j
e from u

j
e and p

j
i using the TRiSK

operators.

3. At each level separately, apply the TRiSK operators to

B
j
e, F

j
e and F

j⊥
e q̂

j
e to compute ∂tp

j
i and ∂tu

j
e then obtain

the tendencies ∂t̃p
j
m, ∂t ũ

j
n.

A similar idea is applied to the gradient of the Bernoulli
function: instead of restricting [grad Bi]e, we restrict Bi

and compute its gradient at each scale. This guarantees
the absence of spurious generation of vorticity by the
adaptive method. As explained in subsection 2.5, the
compatible restriction operator for the Bernoulli function is

simply the subsampling operator B
j+1
i 	→ B

j
i = B

j+1
i . With

these modifications, the computation involves four steps
(Algorithm 2).

For Algorithm 2 to work, one must take care that each
operator finds the input data it needs to compute the
output data needed by the next operator. Therefore, before
the computation is performed, the subsets of indices on
which each operator is applied is determined following the
data flow backwards (Algorithm 3). Starting from the set
of active wavelet coefficients, other subsets are computed
in sequence by taking into account the stencil of each
operator encountered during the algorithm. An important
resulting subset is the subset of scaling coefficients needed
as input by the TRiSK operators. Notice that, because
the TRiSK operators also use values from first or second
neighbours as input, this ‘input’ subset is wider than
the ‘output’ subset of scaling coefficients, tendencies of
which are computed. Nevertheless all the necessary ‘input’
scaling coefficients can always be computed by the inverse
wavelet transform, even if this computation involves inactive
wavelet coefficients. Indeed, in that case the missing wavelet
coefficients are simply assumed to be zero, and the inverse
wavelet transform effectively performs an interpolation.
This way the multiscale nature of the grid is hidden from the
TRiSK operators, which continue to operate on their full,
unmodified stencil.

Algorithm 3. Subsets involved in the adaptive computation
of tendencies.

1. Given the set of active wavelet coefficients, determine
separately at each level j those indices i and e that are

required to compute ∂t̃p
j
m, ∂t ũ

j
n from the tendencies

∂tp
j
i and ∂tu

j
e. Then determine which F

j
e and B

j
i need

to be computed.
2. Starting from the finest level,

(a) Find which F
j⊥
e q̂

j
e can be obtained by applying

the velocity restriction operator. For those which

cannot, determine which p
j
i, u

j
e and F

j
e are needed

as an input to the TRiSK operators.

(b) Find which F
j
e and B

j
i can be obtained by

restriction from level (j + 1). For those which

cannot, determine which p
j
i and u

j
e are needed

as an input to the TRiSK operators.

3. Given those indices i and e for which we need p
j
i and u

j
e

as an input to the TRiSK operators, find the minimal
set of indices i and e which allow the inverse wavelet
transform to be performed.

(a) (b) (c)

Figure 7. Stencils of the (a) interpolation, (b) lifting and (c) restriction
operators for pressure. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

2.4. Wavelet transform of pressure

To define the wavelet transform of pressure, one needs to
define an interpolation and a lifting. Since pressure sits at
hexagon centres, at scale j + 1 one can distinguish between
hexagons whose centres coincide with the centre of a larger
hexagon from level j, and the remainder which we call ‘new’
hexagons. The interpolation formula interpolates from the
centres of larger hexagons to the centres of ’new’ hexagons.
We choose a second-order centred linear interpolation
formula. The resulting stencil for the computation of the
wavelet coefficients is presented in Figure 7(a).

The lifting step serves to define the restriction operator.
The restricted pressure is defined on the coarser grid level
j as a linear combination of the pressure at the finer level
j + 1 at the same point and the nearby wavelet coefficients.
We choose to use only wavelet coefficients from nearest
neighbours. Elementary linear algebra shows that with a
weight of 1/8, the restricted pressure field has the same
average as the fine pressure field. The corresponding stencil
is presented in Figure 7(b). Combining this stencil with a
stencil for the wavelet coefficient one obtains the stencil of
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(a) (b) (c)

Figure 8. Decomposition of (a) the pressure restriction operator R
j
p into a sum of (b) an area-weighted restriction operator R

j
0 and (c) a remainder δR

j
p.

The remainder is proportional to the seven-point Laplacian on the coarse grid. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

(a) (b) (c)

(d) (e) (f)

Figure 9. (a) Stencil of R
j
p ◦ divj+1 (div operator followed by the pressure restriction operator) and its decomposition into (b, c) two simpler operators

for which a compatible flux restriction operator can be found readily. (d) basic and (e) corrective flux restriction operators R
j
0f and Dj ◦ divj+1 combined

to give (f) the final mass flux restriction operator R
j
f , compatible with the mass restriction operator R

j
p and the div operators divj, divj+1 in the sense of

Figure 5. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

the restriction operator R
j
p : p

j+1
i 	→ p

j
i (Figure 7(c)). We

decompose the pressure restriction operator into two parts,

R
j
p = R

j
0 + δR

j
p ,

where R
j
0 is an area-weighted restriction operator (with

weights 1/4 and 1/8) and δR
j
p is a remainder (Figure 8).

The construction of the pressure wavelet transform is
then a straightforward application of the lifting scheme. We
now describe a novel aspect, which is the definition of a
mass flux restriction operator compatible with the pressure

restriction (Figure 5). The problem is to find an operator R
j
f

such that

divj{Rj
f (Fj+1

e )} = R
j
p {divj+1(Fj+1

e )}.

Figure 9(a, b, c) shows the decomposition of R
j
p ◦ divj+1

into two operators: R
j
0 ◦ divj+1 and δR

j
p ◦ divj+1. There is a

natural flux restriction R
j
0f compatible with R

j
0: assuming

that the flux divergence is constant within each fine hexagon,
one can compute a flux through the edges of coarse hexagons.
The stencil of this basic flux restriction operator R0f is
presented in Figure 9(d, e, f). Concerning the remainder

δR
j
p ◦ divj+1, it turns out that δR

j
p has non-zero weights only

at coarse points, and that those weights are proportional to
the seven-point finite-difference Laplacian (Figure 8). It is

therefore already in divergence form δR
j
p = divj ◦ Dj, where

Dj is proportional to a finite-difference gradient. Then

R
j
p ◦ divj+1 = divj ◦ R

j
0f + divj ◦ Dj ◦ divj+1.

This provides a solution for R
j
f

R
j
f = R

j
0 + Dj ◦ divj+1.

The stencils of the corrective flux restriction Dj ◦ divj+1 and
the final flux restriction R

j
f are presented in Figure 9(d, e, f).

Notice that the weights presented in Figure 9 omit the
metric factors (multiplication/division by lengths and areas).
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Stencil for interpolating fine u velocities on
a subdivision of a coarse edge

Complete stencil for all velocities

−U−4,2

V−2,0

v−2,−1

v−2,1

W−4,0

U0,2

W0,0

w−1,1

−V2,0

w1,−1
v0,−1

u−1,0

w−1,−1

u−1,−2 u1,−2U0,−2

V2,−4−W0,−4

Figure 10. Stencil for circulation-conserving second-order interpolation
of velocity (filled black arrows). Velocities on the bisection of coarse edges
(unfilled black arrows) are obtained by linear interpolation. The velocities
on inner fine triangle (grey arrows) are then obtained by assuming constant
circulation over the coarse triangle. The dotted lines indicate the mirror-
symmetric stencil. This stencil works for both valence 6 points (hexagon
points) and and valence 5 points (pentagon points) on subdivisions of the
icosahedral sphere.

As a result, the weights of the flux restriction operators
presented in Figure 9(d, e, f) must be multiplied by 2.

One can then check that R
j
0f is exact for all affine vector

fields. Furthermore, the corrective flux restriction Dj ◦ divj+1

vanishes on affine vector fields since such fields have a
constant divergence and Dj vanishes on constant fields. R

j
f

is exact on affine vector fields and is therefore second-order
accurate.

2.5. Wavelet transform of velocity

The wavelet transform of velocity on the adapted grid must
conserve circulation and, because the velocity is defined
in terms of its tangential components (U , V , W) on the
edges of the triangular grid, it is a vector-valued (non-
separable) transform. Further, we show in section 2.6 that
the interpolation operator (i.e. the prolongation operator)
used in the wavelet transform must be at most second-
order accurate to ensure stability of the dynamically adapted
grid for the second-order finite-volume operators used in
the TRiSK scheme. Finally, the interpolation stencil must be
consistent with both the valence 5 (pentagonal) and valence 6
(hexagonal) points on subdivisions of the icosahedral sphere.

In the following derivation, we consider two scales:
a coarse scale j and a fine scale j + 1, where the fine
grid is obtained as the bisection of the coarse triangle
edges. As explained above, the wavelet coefficients are
the differences between the actual velocity values on the
fine grid and the values predicted by interpolating from
neighbouring velocities on the coarse grid. The circulation-
conserving restriction is simply the average of the two
neighbouring fine velocities on a coarse edge (the interior
fine velocities are not involved in the restriction). Because
the discrete gradient is simply a finite difference between
two neighbouring vertices, the restriction operator for the
Bernoulli function compatible with the velocity restriction is

simply the subsampling operator B
j+1
i 	→ B

j
i = B

j+1
i . Indeed

B
j
l − B

j
n = (B

j
l − B

j
m) + (B

j
m − B

j
n), where l and n are coarse-

grid points and m is their midpoint. Figure 10 shows the
geometry of the velocity interpolation and restriction. The
wavelet transform is implemented hierarchically, starting
from the finest scale J, in the usual way and no additional
lifting steps are required.

Let us consider interpolating the two fine velocity values
u−1,−2 and u1,−2 shown in Figure 10. (By symmetry, the fine
v and w velocities on the other coarse edges are interpolated
in a similar way.) The two-dimensional linear interpolating
function for the velocity IU(x, y) = {IUx(x, y), IUy(x, y)} has
the form

IUx(x, y) = a1 + a2 x + a3 y ,

IUy(x, y) = b1 + b2 x + b3 y ,

where the interpolated velocities on triangle edges
IU , IV , IW are defined in terms of IUx and IUy by
suitable projections. Thus, six equations for the six unknown
coefficients (a1, a2, a3, b1, b2, b3) are needed to determine the
velocity interpolation operator.

To approximate the rotational part of the velocity field,
and to conserve circulation around the coarse triangle, the
first three equations ensure that the line integral of the
interpolated velocity along each of the coarse triangle edges
equals the line integral of the actual velocity:

U0,−2 = IU(0, −2) ,

V−2,0 = IV(−2, 0) ,

W0,0 = IW(0, 0) .

(Note that taking point values of the interpolated velocities
is exact for linear functions.) The final three equations
approximate the irrotational part of the velocity and involve
line integrals along the outer edges of the three neighbouring
coarse triangles,

U0,−2 − V2,0 = IU(0, 2) − IV(2, 0),

W−4,0 − U−4,2 = IW(−4, 0) − IU(−4, 2),

V2,−4 − W0,−4 = IV(2, −4) − IW(0, −4).

The alternating signs of the velocity on each pair of exterior
edges (shown by the arrows in Figure 10) capture the
irrotational component of the velocity field. These rotational
and irrotational conditions on the line integrals form a
linear system with a unique solution for the unknown
interpolation coefficients. To reduce the error of this second-
order approximation, the interpolation is made symmetrical
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by averaging the values for u−1,−2 and u1,−2 with those
obtained using the mirror-image stencil indicated by the
dotted lines in Figure 10. Interpolation formulae for the
remaining coarse edge velocities v−2,−1, v−2,1, w1,−1, w−1,1

are obtained by rotation of the stencil for the u coarse edge
velocities.

After all fine velocities on bisections of coarse edges
(unfilled black arrows on Figure 10) have been obtained
using the interpolation described above, the velocities on the
edges of the fine triangle in the interior of the coarse triangle
(grey arrows on Figure 10) are found by assuming that
vorticity is constant over the coarse triangle, for example:

u−1,0 = 1

2

(
U0,−2 + V−2,0 + W0,0

) − v−2,1 − w−1,1.

Since the restriction operator is the average of
neighbouring fine velocities and the restriction of a
prolongation must be the identity (i.e. R ◦ I = Id), the
wavelet coefficients on coarse edges are redundant,

ũ−1,−2 = −ũ1,−2,

ṽ−2,−1 = −̃v−2,1,

w̃1,−1 = w̃−1,1.

Thus, there are nine linearly independent wavelet coefficients
associated with the coarse velocities U0,−2, V−2,0, W0,0:

ũ−1,−2, ṽ−2,−1, w̃1,−1, ũ−1,0, ũ1,0, ṽ0,−1, ṽ0,1,
w̃−1,−1, w̃1,1.

2.6. Error control and adaptivity

2.6.1. Adaptivity

In the preceding sections we derived a scalar wavelet
transform for the pressure pi and a vector wavelet
transform for the velocity components ue, ve, we. These
wavelet transforms are both based on linear polynomial
interpolation (and hence are second-order accurate), but
they use different stencils and implicitly define different
wavelets and scaling functions. A wavelet transform of a
function f is

f = f0
k φ0

k +
J−1∑
j=0

∑
m∈Mj

f̃ j
mψ j

m , (6)

where φ0
k are the scaling functions spanning the coarsest

scale j = 0 and ψ
j
m are the wavelet functions spanning the

difference between two successive scales (j + 1) and j. As

described in section 2.2, the wavelet coefficient f̃
j

m measures
the interpolation error at a particular location m and scale
j. Adaptive bi-orthogonal wavelet methods are based on the
fact that removing wavelet coefficients with a magnitude
lower than a particular threshold εf (and the associated
grid points) generates an adaptive grid, and the error of a
function f> reconstructed on the adaptive grid is controlled
by εf (Vasilyev and Bowman, 2000),

||f> − f ||∞ ≤ C1 εf , (7)

||f> − f ||∞ ≤ C2 N−m/D, (8)

where N is the number of grid points in the adapted grid, m
is the order of interpolation and D is the dimension. Here

m = 2 and D = 2 and so

||f> − f ||∞ ≤ C2 N−1. (9)

Combining inequalities (7) and (9) shows that the number
of active grid points N scales like 1/εf . Since one order of
accuracy is lost with each derivative, if the wavelet coefficients
for f are filtered with a threshold ε, the error control relation
for the kth derivative Dkf is given by

||Dkf> − Dkf ||∞ ≤ ckε
1−k/m
f . (10)

An adaptive wavelet collocation method for a time-
dependent PDE filters the solutions at each time step,
and then adds an adjacent zone of neighbouring points
in position and scale to allow for the change in the solution
over one time step (Vasilyev and Bowman, 2000; Kevlahan
and Vasilyev, 2005). One nearest neighbour in position is
sufficient for a CFL value of one, and one neighbour in scale
is sufficient for quadratic nonlinearities (which can at most
reduce the scale by a factor of two in one time step). An
important feature of the method is that its computational
complexity is linear in the number of active grid points N.

In the following two sections we show that, since the
TRiSK discretization is less than second-order accurate, the
wavelet transforms for pressure and velocity should be at
most second-order accurate, and we determine how to scale
the separate thresholds for pressure, εp, and velocity, εu, to
ensure a uniform relative error ε for both tendencies ∂tp and
∂tu.

2.6.2. Stability of the adaptive method

It is reasonable to assume that the grid adaptation strategy
for the numerical solution of a time-dependent PDE
depends on the order of accuracy of the discretization.
In AWCMs on collocated grids, this is not an issue since
differential operators are approximated using the same
polynomial interpolation as used in the wavelet transform.
However, in general different interpolations are used for the
discretization of the dependent and independent variables.
In this section, we analyze how the order of accuracy of the
discretization of a PDE constrains the order of the wavelet
transform used to adapt the grid.

Because this is essentially a problem of advective stability,
let us consider the linear advection equation

∂p

∂t
+ u · ∇p = 0. (11)

We assume that the velocity- and length-scales are
respectively U and L, the fluctuations of p are of order δp
and the local grid size is h. If the polynomial interpolation
used in the prolongation (i.e. prediction) operators of the
wavelet transform are order m, then (7) shows that the error
in p due to wavelet filtering with threshold εp = ε δp is

Err(p) ∼ ε δp ∼ hm p(m) ∼ δp

(
h

L

)m

. (12)

Now, if the pressure gradient is discretized using an nth-
order accurate method, the discretization error of ∇p can
be estimated as

Err(∇p) ∼ hn p(n+1) ∼ δp

h

(
h

L

)n+1

. (13)
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Combining (12) and (13) relates the error in the pressure
gradient due to wavelet filtering to that due to the discrete
approximation of the gradient operator,

ε∇p ∼ δp

h
ε(n+1)/m.

Now, if we assume explicit time-stepping and demand
that each time step introduces an error smaller than εp

(so the time integration error does not cause runaway grid
refinement), we find that

U �t
δp

h
ε(n+1)/m < ε δp,

or

U �t

h
< ε(m−n−1)/m. (14)

The left-hand side of (14) is the CFL stability criterion,
and thus in order for the limit on the time step imposed by
the grid adaptation to be no stricter than that imposed by the
time integration scheme, we require that m ≤ n + 1. On the
plane the TRiSK scheme is second-order accurate, however
on the sphere it is only between first- and second-order
accurate due to grid deformation (Ringler et al., 2010). Thus
we require that m ≤ 2. Choosing second-order interpolation
for prediction step in the wavelet transform therefore ensures
that grid adaptation is stable when combined with a time
integration scheme stable for a CFL criterion less than one.

2.6.3. Controlling the error in the tendencies ∂tp and ∂tu

Here we identify suitable thresholds for the pressure and
velocity coefficients ensuring a prescribed relative error
in the tendencies ∂tp and ∂tu. Because our method uses
different wavelet transforms for pressure and velocity (and
these quantities exist on dual grids), and because the
approximation of differential operators are not the same as
the interpolation operators used in the wavelet transforms,
error control of the tendency is non-trivial.

In the inviscid SWEs (1),(2), we assume that pressure
fluctuations are weak, p = c2 + δp, δp � c2 (where c is the
wave speed), and that the flow has characteristic velocity- and
length-scales U and L. We further assume that the Burgers
number Bu = (c/fL)2 = O(1). To simplify the analysis,
we consider both the inertia–gravity wave and geostrophic
regimes. Each regime leads to different relative scalings of
the pressure and velocity thresholds to provide a uniform
error bound on the errors in the tendencies ∂tp and ∂tu.

In the inertia–gravity wave regime, the relevant (fast)
time-scale is T ∼ L/c, and energy is equally divided between
kinetic and potential (e.g. gravity waves),

δp ∼ cU , ∂tp ∼ c2 U

L
, ∂tu ∼ U

c

L
.

The equations may then be linearized to give the linear
inertia–gravity wave equations

∂p

∂t
+ c2 ∇ · u = 0,

∂u

∂t
+ f u⊥ + ∇p = 0.

Our goal is to ensure that filtering the pressure and velocity
with thresholds εp and εu respectively produces the same
relative error ε in the tendencies ∂tp and ∂tu, i.e. we require
that

ε
c2U

L
∼ Err(∂tp) ∼ c2 Err(∇ · u) ∼ c2

h
εu, (15)

ε
cU

L
∼ Err(∂tu) ∼ f Err(u⊥) + Err(∇p)

∼ f εu + 1

h
εp. (16)

Equation (16) shows immediately that

εp ∼ ε
h

L
Uc.

Taking the strictest of the conditions imposed by (15) and
(16) shows that

εu ∼ ε
h

L
U Min

(
1,

Rd

h

)
∼ ε

h

L
U ,

where we used the fact that Rd/h > 1 since the Rossby radius
Rd = c/f must be resolved. Thus, in the inertia–gravity wave
regime, the relative scalings of the pressure and velocity
thresholds εp and εu to ensure a relative error ε in the
tendency are

εp

cU
∼ εu

U
∼ ε

h

L
. (17)

If m = 2, then (12) shows that h/L ∼ ε1/2, and finally

εp ∼ cU ε3/2, (18)

εu ∼ U ε3/2. (19)

Filtering the pressure and velocity (and hence adapting the
grid) using the above wavelet thresholds ensures that the
tendencies in pressure and velocity have a relative error no
larger than ε at each time step.

In the quasi-geostrophic regime, the Rossby number is
small, Ro = U/fL � 1, the flow is close to geostrophic
balance, f u⊥ �∇p, and the pressure fluctuations scale
like δp ∼ L f U . The flow then changes on the slow
time-scale T = L/U � L/c, and the magnitudes of the
tendencies are estimated as ∂tp ∼ U2f , ∂tu ∼ U2/L. As for
the inertia–gravity wave case, but using the slow time-scale
and without linearizing the pressure tendency, the errors in
the trends are

ε fU2 ∼ Err(∂tp) ∼ c2 Err(∇ · u) + U Err(∇p)

∼ c2

h
εu + U

h
εp, (20)

ε
U2

L
∼ Err(∂tu) ∼ f Err(u⊥) + Err(∇B)

∼ f εu + 1

h
εp. (21)

The scaling of εp and εu are determined by the strictest of
conditions (20) and (21). The pressure threshold is

εp ∼ εh fU Min (1, Ro) ∼ ε
h

L
U ,
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Figure 11. One-dimensional example showing adjacent wavelets in
position and scale that are added to the grid of active wavelets to account
for the change in the solution over one time step.

and the velocity threshold is

εu ∼ εU Min

(
hfU

c2
, Ro

)
,

∼ εRo U Min

(
Bu−1 h

L
, 1

)
,

∼ ε
Ro

Bu

h

L
U.

Thus, in the quasi-geostrophic regime the relative scalings
of the pressure and velocity thresholds εp and εu to ensure a
relative error ε in the tendency are

εp

c2
∼ εu

fL
∼ ε

h

L

U2

c2
.

Since Bu = O(1) and L ∼ c/f for geostrophic flows, the final
scalings for the pressure and velocity thresholds become

εp

fLU
∼ εu

U
∼ ε

h

L
Ro. (22)

As in the inertia–gravity regime h/L ∼ ε1/2, and so the
resolution-independent scalings in the quasi-geostrophic
regime are

εp ∼ f U L Ro ε3/2, (23)

εu ∼ U Ro ε3/2. (24)

If we compare the scaling (18), (19) in the inertia–gravity
wave regime to the scaling (23), (24) in the quasi-geostrophic
regime, we remark that the ratio εp/εu is the same, and that
the quasi-geostrophic scaling of εp, εu is more stringent by
a factor Ro � 1. Therefore when both the fast and slow
modes are important, the quasi-geostrophic scaling will
provide adequate error control.

We have therefore shown that wavelet filtering with the
appropriately scaled thresholds εp and εu provides uniform
control of the tendencies ∂tp and ∂tu at each time step. As
mentioned earlier, once the pressure and velocity fields have
been filtered, adjacent points must be added in position and
scale to allow for the translation or steepening of the solution
after one time step. The active and adjacent zone wavelets
are shown for a one-dimensional example in Figure 11.
One further modification to the adapted grid determined
must also be made. In some cases the pressure may be
much smoother than the velocity (or vice versa). This could
lead to a grid that is inconsistent with the finite-volume
discretization of the SWEs. In other words, there may not

be enough pressure (or velocity) points present locally to
properly approximate the fluxes and source terms in the
SWEs at the appropriate points. For example, we require
accurate pressure gradient estimates at velocity points to
evaluate the velocity tendency. To correct this possible
inconsistency of the pressure and velocity grids, a final
step is added to the grid adaptation strategy to ensure that
velocity points have a sufficient number of pressure point
neighbours (and vice versa).

In the following section we verify the error control
estimates for wavelet filtering of p, u, ∂tp, and ∂tu, derived
in this section and apply the complete adaptive wavelet
algorithm to solve the rotating SWEs for a wave packet (in the
inertia–gravity wave regime) and shallow-water turbulence
(in the geostrophic regime). The TRiSK equations on
the wavelet-adapted grid are integrated in time using the
explicit strongly stability-preserving five-stage fourth-order
Runge–Kutta method of Spiteri and Ruuth (2002)which is
stable for a CFL limit ≤ 1.5.

3. Verification of error control and examples

3.1. Inertia–gravity wave and quasi-geostrophic test cases

As mentioned in the previous section, the rotating
SWEs have two principal regimes: gravity waves (where
acceleration and pressure gradient are approximately
balanced) and quasi-geostrophic (where the Coriolis force
is balanced by the pressure gradient). We consider test cases
that focus on each of these regimes. The parameters for
the gravity wave and quasi-geostrophic cases are shown in
Table 1.

The initial condition for the inertia–gravity wave case is
a wave packet with wavenumber k and frequency ω. The
packet has a Gaussian envelope and contains approximately
four wavelengths. The wave packet initial condition is

u(x, y) = U cos(kx − ωt) e−r2/L2
,

v(x, y) = Uf

ω
sin(kx − ωt) e−r2/L2

,

P(x, y) = c2

(
1 + Uk

ω
cos(kx − ωt)

)
e−r2/L2

,

where f = 1, c = 1, k = 4π , ω = k � (
f 2 + k2c2

)1/2
, and

U = 0.1. These choices satisfy the requirement that kU/ω =
0.1 � 1 and ensure that perturbations from rest P = c2,
u = 0 are small. We consider both the linear and nonlinear
inertia–gravity wave cases, in order to separate the effect
of advection from the effect of generation of small scales,
which is only present in the nonlinear case. The physical
domain is a lozenge 16L on each side and the coarsest
scale has 322 grid points. In the linear case the number
of levels of resolution is controlled only by the tolerance
ε, while in the nonlinear case the maximum number of
levels is set to six, corresponding to a maximum resolution
20482, because the nonlinear case quickly develops a shock
in pressure which would require an infinite number of levels
to resolve. Figure 12 shows the gravity wave initial condition
and the associated adapted grid determined by a relative
tendency tolerance ε � 0.05 (corresponding to pressure
and velocity tolerances εP = εu = 1.1 × 10−3). The gravity
wave simulations include a Laplacian viscous term with a
small kinematic viscosity ν = 10−4 in the velocity equations.
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Table 1. Parameters for gravity wave and quasi-geostrophic decaying turbulence test cases.

Case c f U L T Ro Bu Rd Fr

Gravity wave 1 1 0.1 1 10 0.1 1 1 0.1
Quasi-geostrophic 10 10 1 1 1 0.1 1 1 0.1

(a) (b)

Figure 12. Initial conditions for the inertia–gravity wave case. The maximum allowable resolution is 20482 and the period cell has sides of length
16. (a) shows the velocity divergence and (b) the initial adapted grid (pressure and velocity wavelet points) used for the simulations. The tendency
threshold is set to ε = 0.05, corresponding to pressure and velocity thresholds εP = εu = 1.118×10−3. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

The computed solutions should remain well-localized for
all times and are a test of how well the adaptive wavelet
approach can track the advection of an isolated solution with
small-scale internal structure in the gravity wave regime.

The second test case is more challenging: decaying rotating
shallow-water turbulence in the quasi-geostrophic regime.
This case is challenging because the flow is statistically
homogeneous and isotropic at intermediate times (when it
is strongly turbulent) and the grid adaptation must track the
development of small scales via the enstrophy cascade, and
the subsequent coarsening as the nonlinearity is depleted
at long times. It is not obvious a priori that an adaptive
method is advantageous in this case. The initial condition is
an array of nine vortex pairs, each of which is generated by
the perturbed pressure field

P(x, y) = c2

(
1 + 2l

L
e−r2/L2

)

with c = 10. The velocity is then found from the pressure
by assuming geostrophic balance of the Coriolis force
and pressure gradient. Here L = 1 and l = 0.15 to ensure
that the rms velocity u = 1 and the initial eddy turnover
time L/u = 1. The corresponding Taylor (or friction) scale
λ = √

EK/� = 0.4, where EK = 0.5
∫ |u|2 dA is the kinetic

energy and �(t) = 0.5
∫

ω2 dA is the enstrophy. It is
important to note that essentially all energy and enstrophy
dissipation is due to the wavelet filtering (ν = 0), which
smooths sufficiently weak velocity and pressure gradients at
all scales (i.e. gradients are retained at the smallest scales if
they are sufficiently intense). As we will see below, this flow
develops intense turbulence with an effective Taylor-scale
Reynolds number Reλ = uλ/νeff (ε) ≈ 300. Figure 13 shows
the potential vorticity and active points for the turbulence
initial condition. The initial grid is not strongly compressed
because the initial condition is relatively homogeneous. The
physical domain is a lozenge 9L on each side and thus
contains 22.5 Taylor scales. The coarsest scale has 2×2 grid
points and up to ten levels of refinement are permitted for a

maximum of eleven dyadic scales, or a maximum resolution
of 20482. Note that only eight out of a maximum of eleven
levels are used to resolve the initial condition, although all
eleven are needed at later times.

3.2. Error control of pressure, velocity and tendency

Before considering the adaptive simulation of the rotating
SWEs, we first verify that our method does indeed adaptively
control the errors in the pressure and velocity for the
turbulence initial condition. For this we evaluate the initial
fields on a fine grid of resolution 81922, compute the
wavelet coefficients, discard those less than a threshold ε,
and compute the filtered values (scaling coefficients) on
the fine grid by inverse discrete wavelet transform. The
difference with the unfiltered initial condition, measured
in various norms, is plotted as a function of ε in
Figure 14(a, d). The error scales linearly with ε, confirming
that separate nonlinear wavelet filtering of the pressure and
velocity wavelet coefficients controls the error. Furthermore
the number N(ε) of active wavelet coefficients scales
as expected for second-order interpolation, N(ε) ∝ ε−1

(Figure 14(b, e)). Note that control of pressure and velocity
errors does not depend on the whether the test field is in the
gravity wave or geostrophic regime.

Having demonstrated the error control properties of the
scalar- and vector-valued wavelet transforms, we still need
to verify that we can control the errors in the tendencies
∂tp and ∂tu by filtering the pressure and velocity using the
scalings derived in section 2.6. The inertia–gravity wave
and geostrophic regimes have different scalings and so
we consider both the gravity wave and turbulence initial
conditions as test cases. Now a reference value of the
tendencies is computed on the fine grid using the TRiSK
operators and the fine-grid initial condition. The tendencies
of the active wavelet coefficients are computed using the
adaptive Algorithm 2, then inverse-wavelet transformed to
yield tendencies of the pressure and velocity on the fine
grid. Differences with the reference tendencies measured in
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(a) (b)

Figure 13. Initial conditions for turbulence case. The maximum resolution is 20482 and the periodic cell has sides of length 9 (22.5 Taylor scales
λ). (a) shows the potential vorticity and (b) the initial adapted grid (pressure and velocity points) used for the turbulence simulation. The tendency
threshold is set to ε = 0.15, which corresponds to pressure and velocity thresholds εp = εu = 5.8095×10−2. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj
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Figure 14. Control of error in (a, b, c) pressure and (d, e, f) velocity. ε is the threshold, and N(ε) is the number of active pressure or velocity wavelet
coefficients. ◦ denotes the L1 error norm, + the L2 error norm and ∗ the L∞ error norm. The straight lines give the theoretical scalings for second-order
accurate interpolation in two dimensions (i.e. error ∝ N−1, and N ∝ ε−1). Note that the most important property is that the error is proportional to
(and hence controllable by) the threshold ε. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

various norms are plotted in Figure 15 as a function of the
threshold ε determining the thresholds εp and εu. Figure 15
confirms that, if the pressure and velocity thresholds are
scaled as in (17), then the relative errors in both the pressure
and velocity tendencies are of the same order and are both
controlled by the single tendency threshold ε. (This test
uses a homogeneous version of the gravity wave initial
condition, rather than the wave packet version, to avoid
the weak potential enstrophy and non-periodic boundary
effects associated with the wave packet envelope.) Similarly,
in the quasi-geostrophic case Figure 16 confirms that, if the
pressure and velocity thresholds are scaled as in (22), then
the errors in both the pressure and velocity tendencies are
of the same order and both are controlled by the single
tendency threshold ε. Both Figures 15 and 16 show that the
error drops abruptly at a critical small value of ε. This value
corresponds to the point at which the maximum allowed
number of levels has been reached and thus ε no longer

determines the maximum scale (which should be larger).
Since the error is compared with the tendency on the non-
adapted (full) grid, further reduction in ε simply fills out
the grid and leads to an artificially low error. (A maximum
level is required since these convergence studies require
calculating the tendency on the equivalent non-adapted
grid, and available computational resources limit this grid
to 81922.)

Finally, we perform a convergence study of the linear
gravity wave case to show that the tendency tolerance ε does
indeed control the accumulated time integration error for
p and u. The simulation parameters are as in Table 1, the
computational domain is 8L on each side, the kinematic
viscosity is set to zero (so that any dissipation is due entirely
to the adaptivity) and the equations are integrated until
time T = 8 (i.e. one orbit of the periodic domain). The
errors of the adaptive simulations are calculated with respect
to an equivalent single-scale non-adaptive inviscid TRiSK
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Figure 15. Control of tendency error in the inertia–gravity wave regime.
The thresholds for pressure and velocity are respectively εP = c U ε3/2 and
εu = U ε3/2, to ensure that the error in the tendencies ∂t p and ∂t u are O(ε).
This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 16. Control of the tendency error in quasi-geostrophic regime. The
thresholds for pressure and velocity are respectively εP = Ro U f L ε3/2 and
εu = Ro U L ε3/2, to ensure that the relative error in the tendencies ∂t p and
∂t u is O(ε). The error decreases more rapidly for ε ≤ 10−3 because the
maximum allowable refinement level j = 12 has been reached. This figure
is available in colour online at wileyonlinelibrary.com/journal/qj

simulation at the maximum allowed resolution of 10242.
(We use a smaller resolution and domain size due to the
computational expense of the non-adaptive simulation.)
Figure 17 shows that the accumulated relative error scales
as ε3/2 in the L1, L2, and L∞ error norms, which means
that the tendency error is proportional to the pressure and
velocity thresholds εp and εu in this case. Most importantly,
the scalings for tolerances εp and εu derived in section 2.6.3
have ensured the same relative errors for pressure and
velocity. Note that the error scaling for the highly localized
wavepacket case considered here is better than the estimated
upper-bound scaling of ε found for the homogeneous gravity
wave case (Figure 15). As for all time-marching numerical
schemes, the accumulated error grows linearly in time.

3.3. Simulations of inertia–gravity waves

We now perform numerical simulations using the adaptive
evaluation of tendencies. The velocity divergence field and
the grid of active wavelets for the linear and nonlinear
inertia–gravity wave cases after one orbit of the periodic
domain are shown in Figures 18 and 19 respectively. In
both cases the adaptive grid has tracked the advection of the
wave packet, retaining a significant compression ratio. In
the linear case the wave packet does not steepen, although it
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Figure 17. Accumulated time integration errors at t = 8 for the linear
gravity wave case as a function of tolerance ε: L1 error (◦), L2 error (�),
L∞ error (�). Errors in p are indicated by open symbols and errors in u by
filled symbols. The straight line shows a ε3/2 scaling. This figure is available
in colour online at wileyonlinelibrary.com/journal/qj

spreads in the y direction. Both the spreading and the lack of
generation of small scales are reflected in the active grid. The
isolated grid points in the wake of the wavepacket in Figure 18
are the remains of the very weak wave train left behind the
wavepacket (which has been largely dissipated). In contrast,
as shown in Figure 19, nonlinearity steepens the waves
making up the wavepacket, which generates a sequence
of very strong gradients. The active grid has successfully
refined to track the local steepening and spreading of the
wavepacket.

Figure 20 displays the evolution with time of several
measures of the efficiency of the adaptive method: number
N(t) of active points, cpu cost per active point, compression
ratio and cpu cost per time step. The steepening of
the nonlinear inertia–gravity wave is reflected in the
development of the grid. The compression ratio decreases
as the wavefront broadens and steepens, however the
computational cost per grid point is roughly constant.
This shows that the computational cost is approximately
proportional to the number of active points (i.e. linear
computational complexity), as needed for an effective
dynamically adaptive method. In contrast, the number
of active grid points for linear inertia–gravity wave is
approximately constant (results not shown). This is expected
since the linear wave packet is simply advected and spread
out, which should conserve the total number of active
points.

3.4. Rotating shallow-water turbulence

This case tests the ability of the adaptive wavelet method
to provide high compression and accurate results in the
quasi-geostrophic regime. We are particularly concerned
with the effect of the choice of tendency tolerance ε

on the turbulence simulations. Although we consider the
case of freely decaying turbulence to avoid issues with
the precise nature of the forcing, the initial condition
is sufficiently energetic that the flow develops a strongly
turbulent quasi-stationary regime at t ≈ 25 that lasts for
about 20 eddy turnover times. Turbulence intensity later
decreases due to merging of like-sign vortices until at about
t = 100 only one positive and one negative vortex remain.
This scenario is qualitatively the same as the dynamics of
two-dimensional incompressible Navier–Stokes turbulence
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(a) (b)

Figure 18. (a) Velocity divergence and (b) active wavelets for the linear inertia–gravity wave at t = 16 (one orbit of periodic domain). Note that the grid
has tracked the advection and spreading of the wavefront. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

(a) (b)

Figure 19. As Figure 18, but for the nonlinear wave and zoomed to show the small-scale structure. The grid has tracked the advection and steepening of
the nonlinear wave. This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 20. Compression properties of nonlinear inertia–gravity wave
computation. The compression decreases as the wave packet steepens
and broadens, but the cpu time per active point is approximately constant.

(Boffetta and Ecke, 2012). Because the energy dissipation
rate determines the effective Reynolds number, in Figure 21
we compare two simulations with tolerances ε = 0.15 and
ε = 0.30 to investigate how changing the tolerance affects
the turbulence. Figure 22 shows how the grid progressively
coarsens as the potential vorticity decays.

Figure 23 compares the potential vorticity and active
wavelets points for the high and low tolerance simulations
just after the onset of turbulence. (Note that the turbulence
takes 20–25 eddy turnover times to develop because
the vortex array initial condition is geostrophic, and

thus meta-stable. This instability takes slightly longer
to develop in the ε = 0.15 case.) Both simulations are
qualitatively similar: as in two-dimensional incompressible
Navier–Stokes turbulence, the flow is dominated by large-
scale coherent vortices and small-scale vorticity filaments.
However, in the ε = 0.30 case the filaments are slightly less
intense since this flow is a bit more dissipative. The active
wavelet points shown in Figure 21 indicate that the filaments
in the ε = 0.15 are resolved to scales about twice as small as
in the ε = 0.30 case (j = 11 compared to j = 10). However,
it is important to recall that, unlike a large-eddy simulation
(LES), the adaptive wavelet simulation does resolve the
same proportion of total energy for all scales, i.e. all scales
are available if they are sufficiently energetic.

A major question of this section is whether the adaptive
wavelet method can still achieve significant compression
ratios for statistically homogeneous and isotropic flow with
a dense distribution of coherent structures. Figure 21 has
already revealed that even in the strongly turbulent regime
there are significant sub-regions of the flow that need be
resolved only coarsely. In fact, the effective resolution varies
from 20482 (j = 11) in the most intense vorticity filaments
to an effective resolution of only 322 (j = 5) or 642 (j = 6)
in the regions outside the coherent vortices and filaments.
The coherent vortices are resolved at effective resolutions
of 2562 (j = 8) or 5122 (j = 9). The properties of the grid
compression are summarized in Figure 23, which shows that
the compression ratio is about 50 times when the turbulence
is most active (between t = 25 and t = 40) and then rises
monotonically to about 280 times during the final period of
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(a) (b)

(c) (d)

Figure 21. (a, c) Potential vorticity and (b, d) adapted grids for decaying quasi-geostrophic turbulence just after the turbulence is fully developed: (a, b)
at t = 25.03 for tolerance ε = 0.15, and (c, d) at t = 21.80 for tolerance ε = 0.30. Two and three levels of refinement have been added, respectively,
compared to the initial condition. There are significant coarse regions between the coherent structures and filaments. This figure is available in colour
online at wileyonlinelibrary.com/journal/qj

decay. As in the inertia–gravity wave case, the computational
cost per active point is approximately constant (i.e. linear
computational complexity on the adapted grid).

An important characteristic of turbulence is that its
energy spectrum should follow a power law, typically about
E(k) ∝ k−3.3 for decaying two-dimensional incompressible
Navier–Stokes turbulence (Boffetta and Ecke, 2012). There
are no theoretical predictions for rotating shallow-water
turbulence, but one expects power-law scaling because of the
similar structure of the equations. In order to calculate the
Fourier energy spectra, the velocity is first interpolated onto
the full j = 11 (20482) grid before calculating the vorticity
and velocity divergence and transforming to Fourier space
using the appropriate lozenge-shaped periodic unit cell.
Note that, because the periodic unit cell is a lozenge, the
maximum available isotropic wavenumber is smaller than
for the usual square periodic unit cell.

Figure 24 compares the isotropic energy spectra for the
rotational and divergent parts of the flows at same times as
the fields shown in Figure 23. One of the principal advantages
of wavelet-based adaptive methods compared to LES is that
wavelet methods capture the full range of active length-
scales, even at high tolerances ε. This is clear from Figure 23,
where the vortical energy spectra of both simulations are very
similar over the full range of length-scales. Unsurprisingly,
the vortical energy spectra scale like k−4 over most length-
scales due to the predominance of vorticity filaments. The
main difference between the two simulations is in the
divergent energy spectrum: the ε = 0.30 simulation actually
has significantly more rotational energy, except at small
scales. This may be because the velocity divergence in the
higher-tolerance simulation is noisier at intermediate and
small scales. Both simulations show an equipartition of
energy between vortical and divergent modes at small scales,

possibly with a short range of k−3 scaling for both modes.
In brief, although the higher tolerance simulation is more
dissipative, it still captures the correct scaling of the energy
spectra over the full range of scales.

As mentioned above, energy and potential enstrophy
dissipation are due to the wavelet filtering process. Figure 25
shows the decay of (available) energy E(t) and (available)
potential enstrophy Z(t) :

E(t) = 1

2

∫
p(p + |u|2) dA − c4

2
A,

Z(t) = 1

2

∫
(f + ω)2

p
dA − f 2

2c2
A,

where ω = curl u, and A = 81×√
3/2 is the area of periodic

domain. Notice that we subtract the values corresponding
to the state of rest to emphasize the non-trivial variations.
There is an initial rapid decrease in energy for 0 ≤ t ≤ 20 as
the instability develops, followed by a period of slower decay
associated with the decaying two-dimensional turbulence.
In contrast, the potential enstrophy decreases most rapidly
just after the turbulence forms due to the formation
and dissipation of intense small-scale vorticity filaments.
The higher tolerance ε = 0.30 simulation destabilizes to
turbulence earlier (t = 18 compared to t = 25) and, as
expected, is more dissipative once the turbulence has
developed. As explained below, the decay rate of energy
and enstrophy is relatively insensitive to the tolerance level
ε, except during the most turbulent period.

Although it is clear that the ε = 0.15 simulation is less
dissipative and more turbulent than the ε = 0.30 simulation,
it is useful to quantify this difference in terms of an effective
Reynolds number. To define an effective Reynolds number,

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 1997–2020 (2013)



Adaptive Wavelet Method for Shallow-Water Equations 2015

(a) (b)

(c) (d)

Figure 22. (a, c) Potential vorticity and (b, d) adapted grids for decaying quasi-geostrophic turbulence computed with tolerance ε = 0.15 at (a, b) an
intermediate time (t =39.8) and (c, d) a late (t =74.8) time. This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 23. Adaptive properties of the turbulence simulation with tolerance
ε = 0.15. (a) shows the total number of active points which is greatest
when the turbulence is most intense (around t = 25). (b) shows that the
computational cost per grid point is roughly constant, independent of the
number of active points and the compression. (c) shows the compression
based on the maximum active scale at any given time (and hence jumps
when the maximum active scale changes), and (d) shows the compression
rate measured based on the maximum allowable resolution (i.e. 20482).

we need to estimate an effective viscosity νeff due to the
wavelet filtering. For quasi-geostrophic flows the equation
for the total kinetic energy is approximately

dE(t)

dt
= −2ν c2 �(t).

Since we know E(t) and �(t), we can calculate an effective
viscosity due to the wavelet filtering,

νeff (t) = −1

2 c2 �(t)

dE(t)

dt
, (25)

and hence an effective time-dependent Reynolds number

Reλ(t) = u(t) λ(t)

νeff (t)
. (26)

This dynamic Reynolds number measures the turbulence
intensity at any time and would be roughly constant for a
statistically stationary flow. Tests of (25) on non-adaptive
simulations suggest that the estimate of the effective viscosity
is accurate to within less than one percent for the resolutions
considered here.

Figure 26 shows the energy decay rate, Taylor scale,
effective viscosity and effective Reynolds numbers as a
function of time for the two turbulence simulations.
Because we use a bi-orthogonal basis and the exact (i.e.
non-adaptive) dissipation is zero, the effective viscosity
should scale with the tolerance ε roughly like νeff ∝
dE/dt = 0 + O(ε), and Reλ = O(ε−1). The results confirm
that the Reynolds number is roughly proportional to 1/ε

once the turbulence has developed, 25 ≤ t ≤ 100, with
Reλ(ε = 0.15) ≈ 387 ± 62 and Reλ(ε = 0.30) = 199 ± 58.
For comparison, the two-dimensional soap film turbulence
experiments of Kellay and Gordburg (2002) had a Taylor
Reynolds number of about 100.

The relation between energy decay rate and effective
viscosity and Reynolds number is not straightforward.
During the initial laminar period, before the instability has
developed, the effective viscosity and Reynolds numbers of
the two simulations are similar. However, once the instability
has developed, the expected scaling with ε is maintained
throughout both the turbulent, 25 ≤ t ≤ 50, and final decay,
t > 50, periods. Interestingly, Figure 26 shows that the decay
rate of total energy, dE/dt, is approximately proportional
to ε only during the most turbulent phase. During the
initial laminar and final decay periods, the energy decay
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Figure 24. Vortical and divergent parts of the energy spectrum for the
decaying shallow-water turbulence simulations with tolerances (a) ε = 0.15
at t = 25.03, and (b) ε = 0.30 at t = 21.80. Note that the vortical part of
the two spectra are very similar, while the divergent part of the ε = 0.15
spectrum has less energy at intermediate and small scales. This figure is
available in colour online at wileyonlinelibrary.com/journal/qj

rate is almost equal for both the ε = 0.15 and ε = 0.30
simulations, presumably because the flow is much smoother
outside the turbulent regime and thus less dissipative. The
energy decay rate is actually relatively insensitive to ε,
probably because the wavelet coefficients in the adjacent
zone are not reset to 0 at each time step. Nevertheless, because
the equations for the effective viscosity (25) and Reynolds
number (26) involve other time-dependent quantities �,
u, and λ, the effective viscosity and Reynolds numbers do
scale approximately as expected with ε once the unstable
dynamics have developed.

The effective Reynolds number defined here allows
one to accurately estimate the time-dependent Reynolds
number of any turbulence simulation involving non-
physical dissipation, such as AMR, hyper-dissipation and
numerically dissipative schemes (e.g. upwind schemes).
It could also be useful even when a standard Laplacian
dissipation term is used since it measures the actual
effective Reynolds number depending on the dynamics
of the flow at a particular time. As mentioned earlier,
one of the main advantages of the wavelet approach
is that, because it filters weak gradients and not small
scales, it models a higher Reynolds number for a given
number of grid points and captures the full range of
active length-scales. For fixed initial conditions, we found
that the Taylor Reynolds number scales roughly like
1/ε, but this scaling might change for higher Reynolds
numbers as the active small scales become increasingly
concentrated.

3.5. Computational cost compared with a non-adaptive
method

In the previous section we verified that the computational
cost of the adaptive wavelet solver for the two-dimensional
rotating SWEs is proportional to the number of points in
the adaptive grid, i.e. the cpu time per active grid point is
approximately independent of the number of grid points
and number of refinement levels. Combining the error
control results from section 2.6 with the Reynolds number
estimates from section 3.4 suggests that the number of
active grid points (and hence computational cost) should

scale like N ∝ Re3/2
λ , consistent with the estimate from the

adaptive wavelet simulations of Alam et al. (2007). Boffetta
and Musacchio (2010)’s high-resolution pseudo-spectral
direct numerical simulations of forced two-dimensional
Navier–Stokes turbulence suggest that the ratio of the Taylor
scale to the viscous scales increases with Reynolds number
like λ/lν ∝ Re2

λ, and thus the number of grid points required
for a non-adaptive simulation should increase like N ∝ Re4

λ.
Although no similar results exist for rotating shallow-water
turbulence, the structure of the two flows are very similar and
thus it is reasonable to expect that adaptivity will drastically
reduce the computational cost in this case as well. As found
by Alam et al. (2007), the compression ratio should increase
significantly with increasing Reynolds number as the flow
becomes more intermittent.

In order to estimate the overhead of the adaptive wavelet
method, we have compared the actual computational times
of adaptive and non-adaptive non-multiscale (i.e. single-
scale, uniform-grid) simulations of the same problem
(vortex merging) using the TRiSK discretization of the
SWEs. Both methods were implemented in matlab and
run serially on the same machine. The actual difference
in cpu time depends on the number of refinement levels
and maximum resolution, but for a maximum resolution of
10242, the adaptive wavelet code is about 23 times slower per
active grid point for eight levels of refinement and nine times
slower for three levels of refinement. It turns out that most
of the increased overhead is due to the extensive use of sparse
matrices in the adaptive code to ensure that memory use
scales with the number of active grid points. Apparently the
overhead due to indirect addressing in three-dimensional
models using an unstructured horizontal grid experience can
be made small by an adequate implementation (MacDonald
et al., 2011; Skamarock et al., 2012). If indirect addressing
is indeed cheap in a realistic setting, the only remaining
overhead lies in the additional interpolation/restriction
operations required by the adaptive calculation. In order
to measure this overhead, we force the non-adaptive code
to use sparse matrices as well and compare it to the adaptive
code. In that case the adaptive code is only nine and three
times slower respectively per active grid point. Although the
cost per active grid point is higher, the high compression
ratios means that the adaptive code is nevertheless seven
times faster with eight levels of refinement and 18 times
faster with three levels of refinement than the non-sparse
non-adaptive code. When compared to the sparse non-
adaptive code, the adaptive code is 18 and 50 times faster
for eight and three levels of refinement respectively. Because
the sparse arithmetic and numerical calculations are slow in
matlab, we expect that the actual overhead in a Fortran 95
implementation would be about 2–3 times.
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Figure 25. (a) Total energy and (b) potential enstrophy for the turbulence simulation with tolerances ε = 0.15 (solid) and ε = 0.30 (dashed).
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Figure 26. Dynamical quantities compared for turbulence simulations with tolerances ε = 0.3 and ε = 0.15: (a) energy decay dE/dt, (b) Taylor scale
λ, (c) the effective viscosity νeff , and (d) the effective Taylor Reynolds number Reλ. The effective Reynolds number appears to be roughly inversely
proportional to the tolerance after the initial laminar period.

Besides reducing the cpu time for intermittent and
inhomogeneous flows, the adaptive wavelet method also
decreases memory use. Without such an adaptive method,
memory limitations are often the main constraint in limiting
the size of feasible problems. As stated in the introduction,
the adaptive wavelet method is best seen as a ‘capability’
method: it allows the computation of problems that would
not be feasible using non-adaptive method because of both
cpu and memory constraints. If the problem is small (or
the solution is homogeneous), it is better to use traditional
non-adaptive methods.

4. Conclusions and perspectives

This article has presented a novel adaptive wavelet
implementation of the TRiSK method (Ringler et al., 2010)
for the rotating SWEs on a multiscale structured staggered C-
grid. The TRiSK scheme was designed from the beginning to
accommodate unstructured, variable-resolution static grids
(Ringler et al., 2011). The approach followed here to make
the TRiSK scheme dynamically adaptive was not to deform
the grid to provide the high resolution where desired, but
to work with a fixed hierarchy of structured grids and
neglect degrees of freedom where and when they were
deemed superfluous. It would be interesting in the future to
compare a static variant of our dynamically adaptive method

to the TRiSK scheme on a variable-resolution grid, especially
with respect to well-known issues of statically refined grids
like the spurious reflection/refraction of marginally resolved
waves (Long and Thuburn, 2011).

The approach proposed here has two main purposes.
First, it serves as the first step towards developing a fully
adaptive discretely conservative dynamical core for weather
and climate models on the sphere. Secondly, it initiates
a new class of adaptive wavelet solvers for conservative
PDEs on non-Cartesian staggered grids and introduces a
non-separable vector-valued wavelet transform. We have
verified that the algorithm provides effective error control
for numerical simulations of the rotating SWEs on a flat two-
dimensional periodic domain in both the inertia–gravity
wave and quasi-geostrophic regimes. In addition, we have
shown that the method has linear computational complexity
in the number of active grid points, gives high grid
compression ratios and is accurate even for relatively large
tolerances. We made a special effort to understand the effect
of nonlinear wavelet filtering on energy dissipation and on
the turbulence dynamics, and proposed an effective Taylor
Reynolds number as a way of characterizing the turbulence.

As mentioned in the introduction, the wavelet method
developed here shares some features of the AMR schemes
popular in engineering and astrophysics. The main
difference is that in the AMR approach the numerical
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discretization of the PDE is modified locally to be
consistent with the nested grid structure providing the
adaptivity (Berger and Leveque, 1998). In contrast, the
wavelet approach isolates the multiscale grid structure and
dynamical adaptivity from the numerical discretization of
the PDE. The wavelet interpolation and restriction operators
provide the necessary input values to the underlying
numerical scheme, so that it does not ‘know’ that it
operates on an adapted grid. Conversely the AMR algorithm
does not use interpolation and restriction operators (with
appropriate commutation properties) to calculate the
tendencies and other discretized quantities. Because of
this, AMR methods must treat the boundaries between
refined patches explicitly in order to avoid spurious errors.
There are further differences: the AMR approach typically
uses relatively coarse granularity where each refined patch
contains thousands of cells, whereas the wavelet method
refines individual grid points to control the error locally
(although granularity can be decreased using the wavelet
blocks approach described below). The two methods also
use different error control strategies. AMR uses a variety of
methods to control grid refinement, including Richardson
extrapolation with a grid twice as fine in each direction as the
existing grid to flag those cells requiring refinement (Berger
and Colella, 1989). The coarse (i.e. actual) solution is first
projected onto the finer grid, and the fine-grid solution is
advanced in time the equivalent of one coarse time step. The
difference between coarse and fine solutions gives a direct
estimate of the local truncation error in time. In contrast, in
the present wavelet approach the local interpolation error is
used directly to determine whether the grid is sufficient to
resolve the local structure that has developed over one time
step, or whether it needs to be refined (or can be coarsened).
Since an adjacent grid in scale (i.e. at half the local scale)
is added to the grid determined by the local interpolation
error, this also gives an estimate of the local time integration
error. Unlike wavelet methods, AMR approaches do not
guarantee control of the L∞ error. Despite their differences,
it is unclear at present which method is more efficient and
accurate in practice.

Atmospheric and oceanic flows are strongly turbulent,
with eddies developing virtually everywhere and on a wide
range of scales. This fact is a legitimate source of scepticism
towards the effectiveness of an adaptive strategy, since it
suggests that the grid would need to be refined everywhere.
Therefore we included a test case featuring a statistically
homogeneous and isotropic turbulent flow with a dense
distribution of coherent structures. Our results show that
high compression and physical fidelity can be achieved even
in this seemingly unfavourable situation.

The current adaptive wavelet approach has been
developed specifically for the TRiSK discretization, but
it would be relatively straightforward to modify it for
other discretizations of the SWEs on staggered grids.
The multiscale structure and conservative restriction and
prolongation operators developed here should also be useful
for static grid refinement in meteorology (e.g. embedding
a regional model in a global model) and for analyzing
observational and model-generated data. Although the basic
features of the method are well-established and quite general,
the particular implementation presented here should be seen
as a proof-of-concept, rather than an operational code. In
order to extend what has been developed here to build a

fully adaptive climate or weather model on the sphere, much
computational and analytical work remains.

First, the method needs to be extended to the sphere,
parallelized, and made computationally efficient for large
problems. Since we have been careful to develop the method
so that it is consistent with the multiscale spherical C-grid
(i.e. dyadic subdivisions of the icosahedron projected onto
the sphere), this should be relatively straightforward. The
main challenges are the non-uniformity of the grid on the
sphere (especially near the twelve valence 5 points) and
the need to encode the local discrete spherical geometry
in the calculation of fluxes and source terms. In addition,
the convergence of TRiSK or similar operators on arbitrary
refinements of the icosahedral grid is degraded, or lost,
even in the non-adaptive case, unless some global grid
optimization is performed (Heikes and Randall, 1995;
Tomita, 2002; Xu, 2006).

The principal computational challenge is efficient par-
allelization (including dynamic load balancing), although
we can take advantage of existing approaches used in
other adaptive methods, such as AMR. The extension of
the adaptive wavelet to spherical C-grids is under way.
For problems with relatively few points at the smallest
scales, computational efficiency could be improved by using
multiscale time-stepping where coefficients at each scale j
are advanced using the time step �tj = 2−j�t0 appropri-
ate to that scale (Domingues et al., 2008; Hejazialhosseini
et al., 2010). Another technique for improving the com-
putational efficiency of an adaptive wavelet method is to
use wavelet blocks (Hejazialhosseini et al., 2010). The idea
behind wavelet blocks is to reduce the number of sequential
operations required to access a particular wavelet or scaling
coefficient by using a coarser data structure. Instead of using
a quad-tree data structure (as here) where each coefficient is
a leaf, granularity is increased by using leaves that are large
blocks of coefficients. This make the method less adaptive,
but reduces the cost of tree operations by an order of mag-
nitude or more. Varying the size of the blocks allows the
user to tune the method for the particular application and,
since the adapted grid is usually block-like, the impact on
adaptivity should be small.

Secondly, the current two-dimensional method must
be extended to three dimensions. For geophysical flows
on the sphere, the simplest strategy would be to use a
constant number of model levels, either terrain-following
(for the atmosphere) or terrain-intersecting (for the ocean),
and a horizontal adapted grid common to all levels. This
would facilitate whole-column calculations like convective
adjustment and radiative transfer, but would also mean
that there is no grid adaptivity in the vertical dimension.
In order to model ocean circulation, solid boundaries
would need to be introduced. Note that adaptive wavelet
methods are particularly well-adapted to vortical boundary-
layer flows (Kevlahan and Vasilyev, 2005) and so should
be advantageous for resolving features such as western
boundary currents.

Finally, although the adaptive wavelet approach allows
for uniform error control and should better resolve the
small-scale active features of the flow, weather and climate
models will necessarily remain strongly under-resolved, at
least for some phenomena such as cloud formation. Thus, a
major research effort is required to analyze and understand
the interplay between a dynamically adapting grid and sub-
grid parametrizations. The lack of such understanding is
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one of the principal reasons holding back the adoption
of dynamically adaptive weather and climate models.
The relatively simple case of subgrid-scale modelling for
incompressible Navier–Stokes turbulence in LES suggests
that existing subgrid parametrizations might perform well in
an adaptive wavelet method (Vasilyev et al., 2008; de Stefano
and Vasilyev, 2010). In fact, Nikiforakis (2009) proposed
that adaptive subgrid-scale parametrizations for climate and
weather modelling could be based on the approaches used for
LES. We hope that the results presented here are a significant
step forward in the effort to develop the next generation of
dynamically adaptive weather and climate models.
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