
HAL Id: hal-01089446
https://hal.science/hal-01089446v1

Submitted on 1 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of serial scaling of multi-threaded programs in
many-core era

Surya Narayanan, Bharath Narasimha Swamy, André Seznec

To cite this version:
Surya Narayanan, Bharath Narasimha Swamy, André Seznec. Impact of serial scaling of multi-
threaded programs in many-core era. WAMCA - 5th Workshop on Applications for Multi-Core
Architectures, Oct 2014, Paris, France. �10.1109/SBAC-PADW.2014.9�. �hal-01089446�

https://hal.science/hal-01089446v1
https://hal.archives-ouvertes.fr

Impact of serial scaling of multi-threaded programs in

many-core era

Surya Narayanan ∗, Bharath N. Swamy∗, André Seznec∗,
∗INRIA Rennes

Email: surya.narayanan@inria.fr

Abstract—Estimating the potential performance of parallel applications
on the yet-to-be-designed future many cores is very speculative. The
traditional laws used to predict performance of an application do not
reflect on the various scaling behaviour of a multi-threaded (MT)
application leading to optimistic estimation of performance in manycore
era. In this paper, we study the scaling behavior of MT applications as a
function of input workload size and the number of cores. For some MT
applications in the benchmark suites we analysed, our study shows that
the serial fraction in the program increases with input workload size and
can be a scalability-limiting factor. Similar to previous studies [5] , we
find that using a powerful core (heterogeneous architecture) to execute
this serial part of the program can mitigate the impact of serial scaling
and improve the overall performance of an application in many-core era.

I. INTRODUCTION

Design focus in the processor industry has shifted from single

core to multi-core [1]. Initially, multi-core processors were used

only for high performance computation, but today they have become

omnipresent in every computing device. Following this trend, the

industry and academia has already started focusing on the so called

many-core processors.

“Many-core” or “Kilo-core” has been a buzzword for a few years.

Single silicon die featuring 100’s of cores can be on-the-shelf in

few years to come. While 4 or 8-cores are essentially used for

running multiple process workloads, many cores featuring 100’s

of cores will necessitate parallel applications to deliver their best

performance. Many open-ended questions remain unanswered for the

upcoming many-core era. From the software perspective, it is unclear

which applications will benefit from many cores. From the hardware

perspective, the tradeoff between implementing many simple cores,

fewer medium aggressive cores or even only a moderate number of

aggressive cores is still to debate.

Many-cores will be used either to reduce the execution time of

a given application on a fixed working set (i.e to enable shorter

response time) or to enlarge the problem size treated in a fixed

response time (i.e., to provide better service). In order to extrapolate

the performance of current or future parallel applications on future

many cores, simple models like Amdahl’s law [2] or Gustafson’s law

[3] are often invoked; Amdahl’s law:- if one wants to achieve better

response; Gustafson’s law:- if one wants to provide better service.

These law’s have the merit to be very simple and to provide a rough

idea of the possible performance. But, they are very optimistic models

for many-core era.

In this paper, we study the application scalability of MT ap-

plications in many-core era with an empirical model, the Serial

Scaling Model (SSM). SSM empirically captures the application

behaviour in a given architecture as a function of Input set/problem

size and number of processors. Using SSM, we can quantify the

fraction of serial and parallel part present in an application. The main

contribution in this paper is to show that the impact of serial scaling

in MT application cannot be ignored in the many-core era.

The remainder of the paper is organized as follows: Section II

explains the motivation behind the serial scaling study and and also

reviews the previously proposed performance models. In Section III,

we propose the SSM. We describe the methodology used to collect the

experimental parameters in Section IV. In Section. V, we describe the

different benchmarks suites we studied and also report the execution

time model for individual application on a given architecture. We

then validate SSM in Section VI, Section VII explains the inference

obtained from the model. Section VIII summarizes and concludes the

paper.

II. RELATED WORK AND MOTIVATION

Two simple models Amdahl’s law [2] and Gustafson’s law [3]

are still widely used to extrapolate the theoretical performance of a

parallel application on a large machine. They correspond to two very

different views of the parallel execution of an application. We will

refer to these two views as the fixed workload perspective and the

scaled workload perspective respectively.

Fixed workload perspective Amdahl’s law assumes that the input

set size (workload) of an application remains fixed for a particular

execution. The objective of the user is to reduce the computation

time through executing the program on a parallel hardware. This

perspective assumes that the fraction of serial part in a program

remains constant for any input set size.

Scaled workload perspective Gustafson’s law assumes implicitly

a very different scheme for parallel execution. The objective of the

user is to resolve the largest possible problem in a constant time. This

perspective assumes that the relative part of the parallel computation

grows with the problem or input set size but ignores the serial section.

Eq. 1 and Eq. 2 shows the speedup equation of Amdahl’s and

Gustafson’s respectively where f stands for the fraction of parallel

part in the program, and P is the number of cores of the machine

on which the application is executed.

speedupAmdahl =
1

(1− f) + f

P

(1)

speedupGustafson = (1− f) + f ∗ P (2)

In [4], Juurlink et al extend Gustafson’s law to symmetric, asym-

metric and dynamic multicores to predict multicore performance.

They claim that neither the parallel fraction remains constant as

assumed by the Amdahl’s law nor it grows linearly as assumed by

Gustafson’s Law and proposed a Generalized Scaled Speedup model

with parallel scaling factor Scale(P)=
√
P . Further, extending the

Amdahl’s passive model, Hill et al [5] proposed a performance-area

model called Amdahl’s law in the multicore era. Eyerman et al [6]

introduced a probabilistic model which shows that, even the Critical

Section(CS) in the parallel part contributes to the serial section of the

program. Yavits et al [7] also extended Amdahl’s law by considering

the effects of sequential-to-parallel synchronization and inter-core

communication.

Existing performance models are too generic as they neither

consider application behaviour nor the impact of the underlying

architecture. Moreover, there are no definite methodology to find

the parallel fraction f of an application. For some applications, the

execution time of the serial-section1 increases significantly with the

increase in input size, but also at times slightly with the increase

in number of processors. Fig. 1 shows four different serial scaling

behaviour on different applications when the input set size (I) is

increased.

1) Both serial and parallel execution time grows at different rate

with I. Eg. Bodytrack.

2) Both serial and parallel execution time grows linearly with I.

Eg. Deltri.

3) Serial section is ignorable and independent of I. Eg. Fluidani-

mate.

4) Serial section is not ignorable and independent of I. Eg.

Canneal.

0

20000

40000

60000

80000

100000

120000

140000

2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

Bodytrack Deltri Swap8on Canneal

E
x
e
cu
&
o
n
 &
m
e
 (
in
 m

il
li
o
n
 c
y
cl
e
s)

Input Set Size (I)

parallel

serial

Fig. 1: Different application scaling behaviour with variation in input

set size captured in Xeon-phi architecture.

The reason for different serial scaling behaviour among applica-

tions can be attributed to the parallelization technique. Multi-threaded

programs generally have 3 major phases. 1) the initialization phase

where input data are generated, 2) the Region Of Interest (ROI) where

the main computation is executed and 3) the finalization phase where

the results are processed and the program is terminated. Initialization,

finalization phase belong to the serial part and the ROI can belong

to both serial and parallel parts depending on the parallelization

technique used. In data parallel application, once the threads are

spawned they work until the assigned job is complete without any

intervention. Here, ROI is totally parallel. This behaviour is observed

in swaptions, canneal. On the other hand, the applications that uses

pipeline parallelism or a worker thread pool based implementation has

a ROI which contributes to the serial part. Here, the master thread

does some work to feed the worker threads in ROI and can be a

significant contribution to serial section and scales with Input set

size. This behaviour is observed in bodytrack, deltri.

Therefore, we build on the observation that not all applications

are scaling the same way with the number of processors and the input

set size.

Next section describes the empirical model we have built to study

application scalability in many-core era.

1We consider serial part of execution is comprised of the sections where
a single thread runs and parallel part consists of the sections where several
threads run concurrently.

III. SERIAL SCALING MODEL

Our model’s main objective is to extrapolate the multicore execu-

tion behavior of a parallel program to the future many-cores to study

their scaling behavior. To keep the model simple, we consider the

following:

#1. The execution time is dependent only on input set size I and

the number of processors/cores P i,e t(I, P)
#2. An uniform parallel section and an uniform serial section, i.e,

we model the total execution time as the sum of serial and parallel

execution times as shown in Eq. 3. Both execution times tseq(I, P)
and tpar(I, P) are complex functions,

t(I, P) = tseq(I, P) + tpar(I, P) (3)

#3. For both the execution times, the scaling with the input set size

(I) and the scaling with the number of processors (P) are independent

i,e. tseq and tpar can be modeled as: tpar(I, P) = Fpar(I)∗Gpar(P)
and tseq(I, P) = Fseq(I)∗Gseq(P). General observation is that, the

execution time of an application with constant input set size reduces

with number of threads and the execution time increases gradually

when input set size is increased with fixed number of threads. Linear

equations do not satisfy the trend and hence, we are using a non-linear

power model such that F and G can be represented by a function of

the form h(x) = xα. Thus, the general form of execution time of

the parallel execution is:

t(I, P) = cseqI
as
P

bs + cparI
ap
P

bp
(4)

The SSM model only uses 6 parameters which are obtained

empirically to represent the execution time of a parallel application,

taking into account its input set and the number of processors. cseq ,

as and bs are used to model the serial execution time and cpar , ap and

bp are used to model the parallel execution time. cseq and cpar are

serial and parallel section constants which gives the initial magnitude

of the execution time. as and ap are the Input Serial Scaling (ISS)

parameter and the Input Parallel Scaling (IPS) parameter. bs and bp

are the Processor Serial Scaling (PSS) parameter and the Processor

Parallel Scaling (PPS) parameter.

In the remainder of the paper, we will refer to as, ap, bs and bp

as ISS, IPS, PSS and PPS respectively.

In particular, Amdahl’s law and Gustafson’s law can be viewed as

two particular cases of the SSM model.

a) A comparison with Amdahl’s Law: Amdahl’s law assumes

a constant input Ibase and an execution time of the serial part

independent from the processor number, i.e. PSS = 0. It also

assumes linear speedup with the number of processors on the parallel

part, i.e PPS = −1. Substituting the values in Eq. 4, we get Eq. 5

which shows that execution time is dependent only on P.

t(I, P) = cseqIbase +
cparIbase

P
(5)

b) A comparison with Gustafson’s Law: Gustafson’s law as-

sumes constant execution time for the serial part, i.e. independent of

the working set (ISS = 0) and the number of processors (PSS = 0).

Therefore, tser(I, P) = cseq . It also assumes that the input is

scaled such that 1) the parallel workload IGus executed with P

processors is equal to P times the “parallel” workload executed in

one processor, i.e., I
ap
Gus = P . 2) speedup on the parallel part is

linear, i.e. PPS = −1. Substituting the values in Eq. 4, we get

Eq. 6 which shows that time taken to execute remains constant.

t(I, P) = t(P ∗ Ibase, P) = cseq + cpar (6)

In the next section we explain the methodology we adopted to

empirically determine the 6 parameters of SSM.

IV. METHODOLOGY

The SSM that we have defined in Eq. 4, should be used to

extrapolate performance of (future) parallel applications on large

many cores. However, one needs to use realistic parameters. We used

the following 3 step methodology on the applications (described in

Sec. V) to obtain the 6 SNAS parameters.

Step 1 - Data collection: The application is monitored and Per-

formance Monitoring Unit (PMU) samples (number of instructions

executed , number of unhalted clock cycles) are collected using tiptop

[8] at a regular interval of 1ms. Tiptop is a command-line tool for

the Linux environment which is very similar to top shell command.

Tiptop works on unmodified benchmarks and does not require code

instrumentation. The events are counted on per thread basis.

Step 2 - Post processing: The thread wise activity of the applica-

tion is analyzed and the execution time spent in the serial and parallel

parts are calculated from the number of unhalted clock cycle event.

Step 3 - Modeling: The above 2 steps are performed for every

application on a given hardware by varying the number of threads(P),

the input set size(I) and execution time tseq(I, P) and tpar(I, P) are

obtained. Then, we perform a regression analysis with the least-square

method to determine the best suitable parameters for the available

experimental data.

We used two hardware systems in our experiments, an Intel Xeon

E5645 (out of Order) system and an Intel Xeon-Phi 5110P (In-Order)

system. These two systems can execute up to 24 and 240 threads

respectively. The input set sizes they are able to run are limited by

their memory system. Experiments were run on a set of benchmarks

we were able to adapt for these architectures.

In the next section, we present the benchmarks used in our

experiments.

V. BENCHMARKS

In this study, we focus on applications that will be executed

on future manycores. Therefore, we consider benchmarks which

are parallelized with shared memory model using Pthreads library.

The two conditions that were necessary for our experiments are: 1)

Program should be able to run from 2 to 24 (resp. 240) threads.

2) Input sets had to be generated with known scaling factors. We

investigated two different categories of benchmark suites as our case

study. They are 1. Regular parallel programs from the PARSEC

benchmark suite [9] and 2. Irregular parallel programs from the

LONESTAR benchmark suite [10].

We studied Bodytrack (body), Canneal (can) , Fluidanimate (fluid)

and Swaptions(swap) in PARSEC. Most of the PARSEC benchmarks

are data parallelized or pipeline data parallelized except for bodytrack

which implements a worker-thread pool and has a scalable serial

section.

In LONESTAR benchmark suite, we studied Delaunay triangula-

tion (deltri), preflowpush (preflow), Boruvka’s Algorithm (Bourvka),

barneshut (barnes), Surveypropogation (survey).

A. Input set scaling

PARSEC benchmark input sets have linear component scaling

parameter [11] which are used to scale the input set. Similarly, for

LONESTAR we can generate the mesh and graphs with linearly

increasing nodes. For some benchmarks like fluidanimate, canneal,

swaptions, boruvka and survey we have chosen same input set size

on both platforms. But, for other benchmarks we have considered bit

smaller base input set size for xeon-phi compared to xeon because

of memory limitations on the platform.

In next section, we validate our model on two diverse architecture

platforms:- xeon and xeon-phi.

VI. VALIDATION

To validate the model, we use holdout cross-validation method

[12] to find the prediction error as shown in Eq. 7 . We divide

our obtained data into trainingset and validationset as shown

in Figure.2. Training set is a data subset (I ≤ 16, P ≤ 16) which is

used to tune the model to obtain its parameter values with non-linear

regression and validation set is the data subset on which the models

prediction capability on the given architecture will be validated. As

our model is based on t(I, P), our data set contains execution time

(in million cycles) for the application with given I and P.

Fig. 2: Holdout cross validation showing Training set and Validation

set
On Xeon architecture, we validate our model with the validation

set {I=32,P ≤ 24}. The prediction error lies in the range +/- 13%.

We validate our model with the validation set {I=32,P ≤ 128} in

xeon-phi architecture and the prediction error lies in the range +/-30%

.
%error =

MeasuredV alue− PredictedV alue

MeasuredV alue
∗ 100 (7)

To show the goodness of fit statistically, we found the absoulte

correlation (R-Squared) between observed and predicted values as

shown in Eq. 8, where, yi is the observed value, ŷi is the predicted

value of the ith sample in the test set and ȳ is the mean of the

samples in test set. In both the architectures R2 was very high in the

range 0.9945 ≤ R2 ≤ 0.9999. This means that the predicted value

is almost equal to observed value and data points would fall on the

fitted regression line.

R
2(y, ŷ) = 1−

∑
i(yi − ŷi)

2

∑
i(yi − ȳ)2

(8)

VII. INFERENCE

In this section, we explain the inference of the observation using

our model and also show how the serial section impacts the speedups

of the application with varying I and P.

A. The f parameter

The SSM allows to overcome a major difficulty with previosuly

used performance models: the quantification of the parameter f which

is usually assumed. With our model, we can find f empirically using

Eq. 9. Fraction of parallel part (f) in a program varies with I according

to our model. In Eq. 9, we can see that f is basically a function of I

(Ibase is a constant base input set size).

f =
tpar(Ibase,1)

tser(Ibase,1) + tpar(Ibase,1)

=
cparI

ap
base

cseqI
as
base + cparI

ap
base

(9)

Variation in f for different application are captured in Table. II

by varying Input set size (I) from 1 to 10000 on both experimental

architectures. We can infer the following:

Xeon-Phi Xeon
Complete application ROI Complete application ROI
serial section Serial section Parallel section serial section Serial section Parallel section

can 14725.8I
0.001

P
0.003

0 32138.1I
0.95

P
−0.873

5223I
0.002

P
−0.003

0 14005.1I
0.962

P
−0.843

swap 0 0 33367.4I
1.035

P
−0.744

0 0 8362.0I
1.027

P
−0.984

fluid 1163.46I
0.002

P
0.076

0 6438.6I
1.024

P
−0.783

1013.901I
0.1

P
0.173

0 2372.0I
0.984

P
−0.738

body N.A N.A N.A 1227.83I
0.997

P
0.005

1184.76I
0.988

P
0.027

22743.9I
1.012

P
−0.989

deltri 2716.9I
0.994

P
−0.007

1669.8I
0.998

P
−0.012

72750.5I
1.03

P
−0.602

951.53I
1.028

P
0.027

99.96I
1.076

P
0.019

1130.2I
1.039

P
−0.614

preflow 1334.8I
0.965

P
−0.001

41.205I
0.919

P
−0.002

103915I
0.978

P
−0.979

134.69I
1.026

P
0.102

130.408I
1.115

P
0.088

4512.7I
1.057

P
−0.633

boruvka 492.7I
0.978

P
−0.023

364.2I
0.153

P
−0.179

27935.0I
1.061

P
−0.709

456.407I
0.902

P
0.066

0 11247I
1.066

P
−0.936

barnes 10.078I
1.004

P
−0.027

2.023I
1.288

P
−0.148

593.015I
2.119

P
−0.896

54.459I
1.015

P
−0.012

3.023I
1.33

P
−0.054

6187.1I
1.964

P
−0.971

survey 937.96I
1.094

P
−0.024

159.024I
1.079

P
−0.041

100371I
1.114

P
−0.752

454.205I
1.026

P
0.002

42.113I
1.006

P
0.073

16486.7I
1.092

P
−0.549

TABLE I: SSM parameters for Xeon-Phi and Xeon a

a(N.A means the program was not build-able for the architecture, 0 denotes negligible serial section.)

Xeon Xeon-phi

Benchmark 1 10 100 1000 10000 1 10 100 1000 10000

can 0.7284 0.961 0.9956 0.9995 0.9999 0.6858 0.9512 0.9943 0.9994 0.9999

swap 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

fluid 0.7006 0.9659 0.9971 0.9998 1.0 0.847 0.9832 0.9984 0.9998 1.0

body 0.9505 0.9531 0.9555 0.9579 0.9601 NA NA NA NA NA

deltri 0.5429 0.5494 0.5559 0.5623 0.5687 0.964 0.9668 0.9693 0.9717 0.9739

preflow 0.971 0.9729 0.9747 0.9764 0.9779 0.9873 0.9877 0.9881 0.9884 0.9888

boruvka 0.961 0.973 0.9814 0.9872 0.9912 0.9827 0.9856 0.9881 0.9901 0.9918

barneshut 0.9913 0.999 0.9999 1.0 1.0 0.9833 0.9987 0.9999 1.0 1.0

survey 0.9732 0.9769 0.9801 0.9829 0.9853 0.9907 0.9912 0.9916 0.9919 0.9923

TABLE II: Parallel fraction f for varying Input set size from I=1 to 10000 for xeon and xeon-phi complete applications.

#1. Larger the input set size, larger the parallel fraction f in the

program. For example, the f in canneal, fluidanimate in both xeon

and xeon-phi improve with I . In these benchmarks, the serial part is

independent of I or constant as we can notice from Table I. In such

applications, the larger parallel scaling amortize the lesser scaling

serial section.

#2. The impact of the serial scaling can be noticed in deltri, preflow,

bodytrack. In these applications the serial part grows equal to the

parallel part when we increase the input set size. Therefore, the

parallel fraction remains almost the same though we increase input

set size.

#3. Parallel fraction (f) is not just application dependent but it also

depends on the architecture in which it is executed. For example,

we used same Ibase for survey in both the xeon and xeon-phi

architectures but still the f values are different as we increase the

input set size. Calculated f values shows that, the parallel fraction

of an application is not constant as assumed by Amdahl’s law but

varies with the Input set size.

B. Sub-linear scaling

SSM takes into account that the potential speed-up on the parallel

section is sub-linear i.e., PPS > −1 in most of the benchmarks. Few

benchmarks like swaptions, barneshut and bodytrack in xeon have a

good parallel scaling with −1 ≤ PPS ≤ −0.9 which means that

their speedup can be still in between 1024 to 512 for a processor with

1024 cores. Large number of benchmarks have sublinear scaling in

the range −0.9 ≤ PPS ≤ −0.6 , e.g. canneal, fluidanimate, survey,

deltri, sssp and bfs where the maximum achievable steedup will be

between 512 and 64 in a 1024 core machine. Added to the sub-linear

parallel scaling, SSM also captures the serial scaling effect with ISS

and IPS.

Figure 3 illustrates the potential speedups extrapolated for a few

benchmarks varying the processor number from 1 to 1,024 and

varying the problem size from 1 to 10,000. The illustrated examples

are representative of the behaviours that were encountered among

both the chosen architectures. We discuss some of the interesting

cases which gives better inference of the SSM parameters and the

sub-linear scaling behaviour of the applications.

#1. Some applications are highly scalable. In swaptions, the serial

section is so small that it can be ignored in both ROI and complete ap-

plication and the parallel section has almost linear scaling in xeon i,e

PPS = −0.984, which shows that such an application may achieve

nearly perfect scaling. On the other hand, the same application

scales sublinearly when executed in xeon-phi with PPS = −0.744.

This behavior can be attributed to the architecural impact on the

application.

#2. Some applications have almost constant serial part and rapidly

growing parallel part for every input set size. But, large input set

sizes are needed to amortize the constant serial part which can be

deduced directly from the parameters of the applications. In canneal

complete and fluidanimate complete , large cs
cp

, small ISS and PSS

makes the serial section independent of I and P but the parallel section

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 4 8 16 32 64 128 256 512 1024

 S
pe

ed
up

No of cores (P)

I=1
I=10

I=100
I=1000

I=10000

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128 256 512 1024

 S
pe

ed
up

No of cores (P)

I=1
I=10

I=100
I=1000

I=10000

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64 128 256 512 1024

 S
pe

ed
up

No of cores (P)

I=1
I=10

I=100
I=1000

I=10000

Swaption-Phi-complete Canneal-Phi-complete Fluidanimate-Phi-complete

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64 128 256 512 1024

 S
pe

ed
up

No of cores (P)

I=1
I=10

I=100
I=1000

I=10000

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64 128 256 512 1024

 S
pe

ed
up

No of cores (P)

I=1
I=10

I=100
I=1000

I=10000

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 4 8 16 32 64 128 256 512 1024

 S
pe

ed
up

No of cores (P)

I=1
I=10

I=100
I=1000

I=10000

Body-Xeon-complete Deltri-Xeon-complete Barneshut-Phi-complete

Fig. 3: Potential speedups extrapolated for selected benchmarks for varying processor number from P=1 to 1,024 and Input set size from

I=1 to 10,000.

scales quasi linearly with I and P. Hence, we can achieve significant

improvement in speedup using larger I.

#3. In certain applications, serial part scales on par or at a bit lower

scale compared to the parallel part i,e ISS ≈ IPS and PSS

is sublinear. We can notice such pattern in deltri, preflow, survey,

boruvka, bodytrack complete application. These kind of applications

seldom benefit from a manycore system. In these applications we can

notice the speedup getting saturated with P despite increasing I due

to the serial scaling impact.

#4. Even when the execution time of the serial section is increasing

with the input set, it does not always affect the scalability of the

application. For instance, in barneshut complete, the execution of the

serial section is also increasing with the input set size (ISS = 1.004
) but at a much lower rate than the execution time of the parallel

section (IPS = 2.1). In such case, if one increases the number of

processors to maintain the execution time constant then the fraction

of serial computation time will increase with number of processors

and the parallel efficiency will decrease.

C. Heterogeneous architecture

Using many small cores provide more thread level parallelism, but

the impact of the serial scaling limits the achievable performance as

the time taken to execute the serial section depends on the strength

of the core. Hill and Marty [5] show that heterogeneous multicores

can offer potential speedups that are much greater than homogeneous

multicore chips(and never worse). Heterogeneous cores that feature

few very powerful cores, allow the use of an aggressive big core

to speedup the serial section to amortize/reduce the impact of serial

scaling on the overall performance. By looking at the relative benefits

of the larger serial core (relative core strength) i,e
tser little

tser big
, it is

possible to infer if the application has a potential to benefit from the

use of a hybrid core. If the fraction is significantly greater than 1,

then the serial part of the application executes faster in bigger core

and we can expect some potential improvement using the hybrid.

In this paper, we consider a heterogeneous core consisting of one

big xeon like core and many small xeon-phi like cores. As Xeon Phi’s

area details are still unavailable, we do a pessimistic area-performance

analysis with the details of Out-of-Order Xeon (Big core) and In-

Order Knights Ferry (Little core) as stated in [13]. Die area per core

comparison is around 1:3 between xeon and Knights Ferry i,e 3 little

cores can be built in the area of 1 big core. We show 3 different

area-performance plots in Fig. 4 where x-axis is the area of Xeon,

Xeon-phi and Hybrid equivalent of xeon area and their respective

performance in y-axis. The plots are 1. Xeon (all big xeon cores), 2.

Xeon-Phi (all Knights Ferry small cores), 3. Hybrid (One big Xeon

core which executes serial section and rest Knights Ferry small cores).

We will focus only on those benchmarks for which the experiments

were carried out with the same input set size in both the platforms

as mentioned in Sec.V.

From Table. I, we can see swaption does not have any serial section

and hence will not benefit from hybrid architecture. On contrary big

xeon cores has good speedup due to their well scaling parallel section.

Fluidanimate has a very low core strength and will not have resonable

gains from hybrid core. Here, the little and hybrid cores perform

better as the application scales better in xeon-phi.

Boruvka has a slightly different behavior. The hybrid will not

benefit much here because of the very low core strength. But,

interesting observation here is xeon performs on par with xeon-phi

because the parallel part scales better in xeon than in xeon-phi.

In canneal, the serial section is fixed and Xeon core is 3X faster

than the Xeon-Phi. Therefore, by using a hybrid core we can get better

speedup. Moreover, a good parallel section scaling (PPS = −0.873)

with many little cores has better performance. Survey also gains better

performance using a hybrid core as the big core executes the serial

8 16 32 64 128 256
0

50

100

150

200

250

Area

S
p
e
e
d
u
p

Xeon

Xeon−Phi

Hybrid

8 16 32 64 128 256
0

20

40

60

80

100

120

140

160

180

Area

S
p
e
e
d
u
p

Xeon

Xeon−Phi

Hybrid

8 16 32 64 128 256
0

10

20

30

40

50

60

Area

S
p
e
e
d
u
p

Xeon

Xeon−Phi

Hybrid

Swaption Fluidanimate Boruvka

8 16 32 64 128 256
0

50

100

150

200

250

300

350

Area

S
p
e
e
d
u
p

Xeon

Xeon−Phi

Hybrid

8 16 32 64 128 256
0

20

40

60

80

100

120

Area

S
p
e
e
d
u
p

Xeon

Xeon−Phi

Hybrid

Canneal Survey

Fig. 4: Area-Performance graph showing Hybrid architecture has better speedup with serial scaling.

section 2X faster than the little core. But, the performance of Xeon

is poor due to the poor parallel section scaling.

VIII. CONCLUSION

Future many-core designs will demand programs with very high

degree of parallelism. The available parallelism might be restricted

due to the programing techniques used in the application i,e applica-

tion inherent behavior or due to the weak underlying hardware which

cannot exploit the inherent parallelism in the application.

Currently used traditional models for extrapolating parallel applica-

tion performance on multiprocessor- Amdahl’s and Gustafson’s laws

- are optimistic as they are very general models. In this work, we have

used our own validated model to find out the application scalability

of individual applications in a given hardware system. As a result, we

can compute the parallel fraction f in a program which is dependent

on Input set size I .

Our analysis shows that serial section are not negligible and

they may grow with the input set size. Additionally, performance

on parallel part does not generally scale perfectly linear with the

number of processors that in turn contributes to the limited speedup.

Also, from the architectural point of view we have shown how a

heterogeneous design with one big core and many small core will

help those applications for which the serial section grows with input

set size in the many-core era.

ACKNOWLEDGMENT

This work was supported by the European Research Council (ERC)

Advanced Grant DAL No 267175. The authors would like to thank

Erven Rohou from INRIA Rennes for his insightful help through

providing Tiptop for this study.

REFERENCES

[1] J. Parkhurst, J. Darringer, and B. Grundmann, “From single core to
multi-core: preparing for a new exponential,” in Proceedings of the

2006 IEEE/ACM international conference on Computer-aided design,
ser. ICCAD ’06. New York, NY, USA: ACM, 2006, pp. 67–72.

[2] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,

1967, spring joint computer conference, ser. AFIPS ’67 (Spring). New
York, NY, USA: ACM, 1967, pp. 483–485.

[3] J. L. Gustafson, “Reevaluating amdahl’s law,” Commun. ACM, vol. 31,
no. 5, pp. 532–533, May 1988.

[4] B. Juurlink and C. H. Meenderinck, “Amdahl’s law for predicting the
future of multicores considered harmful,” SIGARCH Comput. Archit.

News, vol. 40, no. 2, pp. 1–9, May 2012.
[5] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,”

Computer, vol. 41, no. 7, pp. 33–38, 2008.
[6] S. Eyerman and L. Eeckhout, “Modeling critical sections in amdahl’s law

and its implications for multicore design,” in Conference Proceedings

Annual International Symposium on Computer Architecture. Associa-
tion for Computing Machinery (ACM), 2010, pp. 362–370.

[7] L. Yavits, A. Morad, and R. Ginosar, “The effect of communication
and synchronization on amdahlāł s law in multicore systems,” Parallel

Computing, vol. 40, no. 1, pp. 1–16, 2014.
[8] E. Rohou, “Tiptop: Hardware Performance Counters for the Masses,”

INRIA, Rapport de recherche RR-7789, Nov. 2011.
[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:

Characterization and architectural implications,” in Proceedings of the

17th international conference on Parallel architectures and compilation

techniques. ACM, 2008, pp. 72–81.
[10] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lonestar: A

suite of parallel irregular programs,” in Performance Analysis of Systems

and Software, 2009. ISPASS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 65–76.

[11] C. Bienia and K. Li, “Fidelity and scaling of the parsec benchmark
inputs,” in Workload Characterization (IISWC), 2010 IEEE International

Symposium on, 2010, pp. 1–10.
[12] L. Liu and M. T. Özsu, Eds., Encyclopedia of Database Systems.

Springer US, 2009.
[13] T. Hruby, H. Bos, and A. S. Tanenbaum, “When slower is faster:

On heterogeneous multicores for reliable systems,” in Proceedings of

USENIX ATC, USENIX. San Jose, CA, USA: USENIX, June 2013.

