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that dissipative properties of the leaves are a priori known, a hierarchical analysis approach is to "propagate" them into a new one for the branches. Then the obtained propagated properties can again be propagated, and so on. The analysis boils down to find the propagated properties for the branch from the ones of the leaves. Due to the NP-hardness of robust analysis problem and from a practical point of view, such a propagation cannot be performed exactly since it is inefficient. Nevertheless, as in the case of upper bound on µ, it is possible to perform the propagation in an approximate fashion. Depending on "how good" the propagation approximation is, it will set the "conservatism vs. computation" complexity trade-off. The main purpose of this paper is to add the possibility of setting the propagation precision and thus needed trade-off.

The propagated properties can be viewed as embeddings of the corresponding branch. A first solution to this embedding problem was proposed in [START_REF] Dinh | Embedding of uncertainty propagation: Application to hierarchical performance analysis[END_REF]. Unfortunately, the embedding introduces some conservatism. It can be reduced by combining different classes of embeddings. The contribution of this paper is to propose new classes of embeddings, in addition to the one of [START_REF] Dinh | Embedding of uncertainty propagation: Application to hierarchical performance analysis[END_REF], in order to reduce the conservatism. The choice of classes and the number of combined embeddings allows to set the trade-off between conservatism and computation time, which was not possible in [START_REF] Dinh | Embedding of uncertainty propagation: Application to hierarchical performance analysis[END_REF].

Our solution is based on a separation of graph theorem. First proposed in [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF] as a general approach to feedback system analysis, specialized forms were proposed in e.g. [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF], [START_REF] Scorletti | A more praticle formulation for robustness analysis[END_REF] for (uncertain) LTI system analysis. Since the µ upper bound proposed in [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF] can be interpreted as a particular application of the separation of graph theorem, this theorem was applied to extend µ-analysis to time-delay [START_REF] Scorletti | A more praticle formulation for robustness analysis[END_REF] or to time-varying/nonlinear [START_REF] Megretski | System analysis via integral quadratic constraints[END_REF] systems, to reduce the conservatism of the µ upper bound [START_REF] Scorletti | Improved efficient analysis for systems with uncertain parameters[END_REF], to cite a few. In this paper, we reveal another interesting application of this powerful theorem.

Section II begins with definitions and fundamental properties which are used afterwards. It then precises the uncertain large-scale system under consideration in the proposed approach. Due to the size constraint, some proofs will not be presented in the paper but can be found in [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF]. Section III proposes several dissipative properties that can be used practically. A numerical example on a PLL network is performed in Section IV. Section V concludes the paper.

Notations. R denotes R ∪ {-∞, +∞}. M R and M I stands for the real and imaginary parts of M . For several matrices M i , i = 1, . . . , n, bdiag i (M i ) denotes the block diagonal matrix composed of M i . RH ∞ (respectively RL ∞ ) denotes the set of matrices of stable (resp. non causally stable) rational transfer functions. Moreover, we consistently denote uncertainties by ∆ and interconnections by M . The set ∆ is referred to as the uncertainty set. We denote by ∆ M the set {∆ M, ∆ ∈ ∆}, with standing for the Redheffer star product. This set is also referred to as an uncertain system. For the uncertain system ∆ M , we further denotes the interconnection's partitioning of appropriate dimension by

M =   A B C D   . Finally, we denote by L(M, Φ11, Φ12, Φ22, X, Y, Z) the matrix   M I   *         -Φ22 0 -Φ * 12 0 0 X 0 Y -Φ12 0 -Φ11 0 0 Y * 0 Z           M I   .

II. APPROACH FOR HIERARCHICAL ANALYSIS OF PERFORMANCES

A. Definitions and preliminaries

An uncertain system is modeled as an interconnection ∆ M with ∆ ∈ ∆. Introducing the internal signals and using the Fourier transform, we obtain:

p(jω) = ∆(jω)q(jω)   q(jω) z(jω)   =   A(jω) B(jω) C(jω) D(jω)     p(jω) w(jω)   . (1) 
Along with this definition, the following is assumed.

Assumption 2.1: ∆ is a bounded and connected subset of RH ∞ and M belongs to RH ∞ .

Definition 2.1: An uncertain system ∆ M is said to be stable if for any ∆ ∈ ∆, the system ∆ M is stable.

In this section, dissipative properties are used. 2) an uncertainty set ∆ (or an uncertain system ∆ M ) is said to be {X(jω), Y (jω), Z(jω)} dissipative if for any ∆ ∈ ∆, ∆ (or resp. the system ∆ M ) is {X(jω), Y (jω), Z(jω)} dissipative.

A fundamental property is now given. It states that new dissipativity properties can be generated from original ones defining a set of linearly parametrized dissipative properties. Let us denote it Φ(jω). For ease of notation, it is stated for certain systems, the extension to uncertain systems is straightforward.

Corollary 2.1: Let H i be {X ik (jω), Y ik (jω), Z ik (jω)} dissipative, i = 1, . . . , m and k = 1, . . . , n. Then for any

τ ik (ω) > 0, H = bdiag i (H i ) is {bdiag i ( k τ ik (ω)X ik (jω)), bdiag i ( k τ ik (ω)Y ik (jω)), bdiag i ( k τ ik (ω)Z ik (jω))}
dissipative.

B. Hierarchical system description and proposed approach

From [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF], a large-scale system is described by a tree as illustrated in Fig. 1 where a hierarchical structure arises naturally. Each branch of the tree is assigned an index. A branch, say i, is a two-way channel through which a signal w i (the input) ascends and another signal z i (the output) descends. The tree obtained by cutting branch i and retaining everything connected above is an uncertain system called T i with input w i and output z i . If a tree T i has other branches besides branch i then there is a single node denoted M i from which other branches ascend. If branch i is the only branch in the tree, then T i is called a leaf and is denoted by ∆ i . Each M i and ∆ i is an LTI system. Furthermore, each leaf ∆ i is uncertain but its dissipative properties are a priori known. Assumption 2.2: Each ∆ i is a bounded and connected subset of RH ∞ and each M i belongs to RH ∞ . Assumption 2.3: All ∆i are elementary uncertainty sets: there exist a priori known

X ik (jω), Y ik (jω), Z ik (jω) such that each ∆i is {X ik (jω), Y ik (jω), Z ik (jω)} dissipative.
The first assumption is the counterpart of Assumption 2.1 and examples of elementary uncertainty sets along with their dissipative properties can be found in [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF], [START_REF] Scorletti | Robustness analysis with time delays[END_REF], [START_REF] Scorletti | Improved efficient analysis for systems with uncertain parameters[END_REF].

The proposed approach for the performance analysis of a hierarchical system as described in the introduction is based on a recursive application of the following propagation 1 of dissipativity properties [START_REF] Scherer | LPV control and full block multipliers[END_REF], [START_REF] Scorletti | Robustness analysis with time delays[END_REF], [START_REF] Scorletti | Improved LMI conditions for gain-scheduling and related control problems[END_REF].

Theorem 2.1: Let ∆ be bounded and connected. Then the uncertain system ∆ M is stable and {X(jω), Y (jω), Z(jω)} dissipative if and only if:

1) there exists ∆ 0 ∈ ∆ such that ∆ 0 M is stable; 2) there exist 3 transfer functions Φ 11 (jω), Φ 12 (jω) and Φ 22 (jω) of RL ∞ , with Φ 11 (jω) = Φ 11 (jω) * and Φ 22 (jω) = Φ 22 (jω) * , such that the uncertainty set ∆ is {Φ11(jω), Φ12(jω), Φ22(jω)} dissipative and such that ∀ω ∈ R, L(M (jω), Φ 11 (jω), Φ 12 (jω), Φ 22 (jω), X(jω), Y (jω), Z(jω))>0 (2) 
Condition 1 is generally viewed as an assumption which is verified beforehand on the nominal system. This assumption is hopefully very mild and is even weaker to the one traditionally assumed in µ-analysis [START_REF] Skogestad | Multivariable Feedback Control, Analysis and Design[END_REF] i.e.

∆ 0 = 0. In our case, it is an important fact from a practical point of view: the theorem is recursively applied, the uncertainty set (the previous branches) does not necessarily contain 0.

1 The term propagation is kept in reference to [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF] even if the meaning is slightly different.

The fact that the uncertainty set ∆ is {Φ11(jω), Φ12(jω), Φ22(jω)} dissipative in condition 2 can also be verified a priori using Assumption 2.3 and the set of linearly parametrized dissipativity properties Φ(jω) as defined by Corollary 2.1. This assumption allows to increase the efficiency of the approach. It is possible to find them directly, and thus suppress it, as in [START_REF] Feron | Analysis and synthesis of robust control systems via parameter-dependent lyapunov functions[END_REF] for instance.

As a consequence, Theorem 2.1 boils down in practice to verify condition (2).

Corollary 2.2: Let ∆ be bounded and connected and let Φ(jω) be a set such that for any (Φ11(jω), Φ12(jω), Φ22(jω)) ∈ Φ(jω), the uncertainty set ∆ is {Φ11(jω), Φ12(jω), Φ22(jω)} dissipative.

Then the uncertain system ∆ M is stable and {X(jω), Y (jω), Z(jω)} dissipative if there exists (Φ11(jω), Φ12(jω),

Φ22(jω)) ∈ Φ(jω) such that ∀ω ∈ R (2) holds.
When two uncertain systems ∆ 1 M 1 and ∆ 2 M 2 are homogenous, then they share the same dissipative

properties: if M 1 = M 2 and ∆ 1 = ∆ 2 , then ∆ 1 M 1 is {X(jω), Y (jω), Z(jω)} dissipative if and only if ∆ 2 M 2
is {X(jω), Y (jω), Z(jω)} dissipative. This is the case of the PLL network example of Section IV.

C. Proposed approach with frequency gridding

As it is usual for LTI systems, a frequency by frequency approach can be performed without loss of generality [START_REF] Chou | Stability multipliers and µ upper bounds: connections and implications for numerical verification of frequency domain conditions[END_REF]. From now on, the frequency is thus set to some value and we manipulate complex matrices. For this reason, the dependency on jω is dropped.

Let us now illustrate the use of Corollary 2.2 with the system presented in Fig. 1. First, from the dissipative properties of ∆ 9 and ∆ 10 that were assumed to be know a priori, find several dissipative properties of the branch T 7 using Corollary 2.2 with ∆ = bdiag(∆ ) and M = M 4 to find dissipative properties of the branch T 4 , and so on until branch T 1 is reached where the dissipativity property is a performance index. The overall trade-off between conservatism and computation time then depends on the number of dissipative properties that are searched for at each step and which is user-defined.

However, this procedure is only possible if T 7 and then T 4 , T 1 etc. are bounded and connected sets. As it is presented in the following lemma, it is indeed the case if the dissipativity properties are well chosen. Typically, it is needed that X is negative definite, i.e. a conic sector property, see Section III-A.

Lemma 2.1: Let X, Y and Z be 3 complex matrices such that X = X * and Z = Z * . Assume that X < 0, then the set of matrices {H | H is {X, Y, Z} dissipative } is convex, and thus connected, and bounded.

Proof: Let us define

H c = -X -1 Y and R * R = Z -Y * X -1 Y. (3) 
The dissipativity property of a system H writes then

(z -z c ) * (-X)(z -z c ) < w * R * Rw (4) 
with z = Hw and z c = H c w. Or equivalently (-X)

1/2 (H -H c )w 2 < Rw 2 , which gives σ((-X) 1/2 (H -H c )R -1 ) < 1 (5) 
with σ the maximum singular value. This set corresponds to a ball centered around H c with a weighted norm. It is thus convex and bounded.

III. PRACTICAL FORMULATION OF DISSIPATIVITY PROPAGATION

In this section, we show how to find dissipative properties (referred to as 'propagated' in the introduction) for the uncertain system ∆ M from the ones of ∆: it is the propagation of dissipativity properties. The problem can be stated as follows.

Problem Note that this optimization problem parametrizes all the possible propagated properties from the ones of ∆ in Φ: it is non conservative from a propagation perspective.

In the way the propagation is used, ∆ is either a leaf or a branch. In both case, either due to Assumption 2.3 or Corollary 2.1, the set Φ is of the form k τ k (Φ 11k , Φ 12k , Φ 22k ) with a priori known (Φ 11k , Φ 12k , Φ 22k ). The optimization problem thus boils down to find τ i and X, Y and Z such that (2) holds. It is thus an LMI optimization problem, is convex and can be solved efficiently. Corollary 2.2 defines a optimization problem with complex LMI constraints. For computational purpose, they can readily be converted as real LMI constraints [START_REF] Boyd | Method of centers for minimizing generalized eigenvalues[END_REF]. These remarks hold for all the optimization problems involved in this section.

To improve the overall conservatism of the hierarchical analysis, it is interesting to obtain the 'tightest' propagated dissipativity property. It is performed by interpreting the property in geometrical terms. For each geometrical interpretation, a notion of size is defined and one is interested in minimizing this size.

A. Conic sector: X < 0

In the case when X < 0, the dissipativity property can be rewritten as ( 3) and ( 4) and defines the same set as a conic sector [START_REF] Safonov | Propagation of conic model uncertainty in hierarchical systems[END_REF] in which a system H is said to be in the conic sector (C, P, Q), with C the cone center, whenever

Q -1/2 (z -Cw) 2 < P 1/2 w 2 with z = Hw
The link is provided by

Q = -X -1 , C = H c and P = R * R.
For a SISO system, the inequality (4) defines a disk of center z c and radius w * (X/(R * R))w. More generally, it is an ellipsoid. Indeed, the inequality can be rewritten for real matrices and vectors as

  z R -z cR -(z I -z cI )   T P   z R -z cR -(z I -z cI )   < 1 with P =   -X R -X I X I -X R     w R -w I   T   (R * R) R (R * R) I -(R * R) I (R * R) R     w R -w I   . (6) 
Thus, for a given non null input w, the corresponding output signal

z = z T R -z T I T (with zc = z T cR -z T cI T )
belongs to the ellipsoid

P = {z | (z -zc ) T P(z -zc ) < 1}. ( 7 
)
Definition 3.1: The volume of the ellipsoid P defined by ( 7) and ( 6) is defined as

vol( P ) 2 = β det(P -1 )
where β is a positive scalar which depends on the size n z of the vector z -zc (see [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF]).

We are interested in finding the ellipsoid with the smallest volume for all inputs such that w = 1. From the set Φ, find X, Y and Z such that:

1) the uncertain system ∆ M is {X, Y, Z} dissipative;

2) they minimize max ∆∈∆ max w =1 vol( P ) 2 .

Theorem 3.1 (see [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF] for the proof): Problem 3.2 is solved by the following optimization problem: find

(Φ11, Φ12, Φ22) ∈ Φ, X, Y , Z that minimize log   det     -X R -X I X I -X R   -1     and such that 1) L(M, Φ11, Φ12, Φ22, X, Y, Z) > 0 holds; 2)   I 0 0 0   ≥   Z Y * Y X   holds.
This optimization problem is a determinant maximization under linear matrix inequality constraints [START_REF] Vandenberghe | Determinant maximization with linear matrix inequality constraints[END_REF] and is convex.

B. Half Planes: X = 0 a) Half plane: A dissipativity property with X = 0 rewrites

ξ T   z R -z I   -η > 0 with ξ = 2   Y R Y I -Y I Y R     w R -w I   , η = -   w R -w I   T   Z R Z I -Z I Z R     w R -w I  
which express that for a given input signal w the output signal z belongs to a half plane defined by the hyperplane:

     z R z I   ξ T   z R -z I   = η    .
Where ξ is a vector normal to the hyperplane and η is the twice 'signed distance' of the hyperplane to the origin (the dot product of any point of the hyperplane with ξ).

b) Band: A band is the intersection of two half planes with the same normal direction but opposite sign. The size of a band is defined by the distance between the two parallel hyperplanes.

Definition 3.2: Let ξ, η 1 and η 2 be of appropriate dimensions and define the two half planes

ξ T   z R -z I   -η1 > 0 and -ξ T   z R -z I   -η2 > 0.
The size of the corresponding band is defined by

d Y = η 2 -η 1 .
As for the conic sector, we are interested in the smallest band for a given direction, that is for a given Y for all inputs such that w = 1. dissipative. Let Y be a matrix of appropriate dimension.

From the set Φ and Y , find Z 1 and Z 2 such that:

1) the uncertain system ∆ M is {0, Y, Z1} dissipative;

2) the uncertain system ∆ M is {0, -Y, Z2} dissipative;

3) they minimize max ∆∈∆ max w =1 d Y .

Theorem 3.2 (see [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF] for the proof): Problem 3.3 is solved by the following optimization problem: find

(Φ 111 , Φ 121 , Φ 221 ) ∈ Φ and (Φ 211 , Φ 212 , Φ 222 ) ∈ Φ, Z 1 , Z 2 that minimize d such that 1) L(M, Φ111, Φ112, Φ122, 0, Y, Z1) > 0 holds; 2) L(M, Φ211, Φ212, Φ222, 0, -Y, Z2) > 0 holds; 3) Z1 + Z2 ≤ dI holds;
This optimization problem is a minimization of a linear cost under linear matrix inequality constraints [START_REF] Boyd | Linear Matrix Inequalities in Systems and Control Theory[END_REF] and is convex.

It is then possible to generate several bands with different normals as performed in the example of Section IV.

It is also possible to search for the direction of the band by letting Y to be free.

IV. PLL NETWORK EXAMPLE

Let us now consider a numerical example of hierarchical performance analysis of an uncertain large-scale system. One takes as an example the performance analysis of the active clock distribution network from [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF] subject to technological dispersions. An active clock distribution network is composed of N = 16 mutually synchronized Phase-Locked-Loops (they constitute branches of the tree) delivering the clock signals to the chip. Please note that the PLL is a Single Input Single Output (SISO) system. To be able to synchronize the PLLs exchange the information on their relative phase through the interconnection network and the phase detectors. This example is particularly well adapted as the performance is measured in frequency domain.

A. PLL network description

Since the principal aim of the system is the synchronization, the PLLs are homogeneous i.e. have a common interconnection and the same uncertainty set. Of course, during the manufacturing process, there are inevitable technological dispersions which can be represented in the form of parametric uncertainties belonging to the same set. We have thus ∀i ∈ {1, . . . , N }:

T i (jω) = k i (jω + a i ) -ω 2 + k i jω + k i a i (8) 
where k i , a i are the real uncertain parameters defined as ki ∈ 0.76 • 10 4 , 6.84 • 10 4 and ai ∈ (91. 1, 273.3) and ω is the current frequency defined by gridding.

The exchange of information between the PLLs in the network is modeled by an interconnection matrix M net as defined in [START_REF] Dinh | Convex hierarchical analysis for the performances of uncertain large-scale systems[END_REF] (see equation ( 8)). In this example, the transfer function between external signals w and z expresses the performance of the global PLL network and namely its ability to synchronize with periodic reference signal w.

This reference signal is represented by its phase so that the PLL network has to track a ramp (see [START_REF] Korniienko | Control law design for distributed multi-agent systems[END_REF], [START_REF] Korniienko | Control law synthesis for distributed multi-agent systems: Application to active clock distribution networks[END_REF] for more details).

B. Hierarchical analysis set up

The proposed hierarchical analysis approach is applied in two steps for this PLL network:

1) obtain dissipativity properties of each individual PLL, each PLL being a branch. Since the PLLs are homogeneous, the dissipativity properties obtained for one PLL is valid for the others as well;

2) obtain the performance of the overall network thought the interconnection of the 16 PLL branches and M net .

Individual PLL: Each PLL can be readily written in the form of an interconnection, which leads after normalization of the uncertainties to:

T i (jω) = ∆ i M P LL , ∆ i ∈ ∆ with ∆ of the form      δki 0 0 δai   , δ =   δki δai   ∈ R 2 , δ ∞ ≤ 1    .
It is a standard elementary uncertainty set (the leaves) representing parametric uncertainties. The dissipativity property of the uncertainty set Φ can then be chosen in the form of D-G scaling as for classical µ-analysis [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF]. Additionally the L scaling was introduced in [START_REF] Scorletti | Improved efficient analysis for systems with uncertain parameters[END_REF] to reduce the conservatismproposing D-G-L scaling which will be used hereafter.

As for the dissipativity properties of the PLL itself, we chose:

• a conic sector alone (for comparison with the result obtained in [START_REF] Dinh | Embedding of uncertainty propagation: Application to hierarchical performance analysis[END_REF]);

• a conic sector and 4 bands (vertical, horizontal, and with a slope of +/-45 deg): Y ∈ { 1, j, 1 + j, 1 -j }. This choice has been made a priori, without particular knowledge on a PLL frequency response.

Please note that for this choice of dissipativity properties the Lemma 2.1 and hence proposed hierarchical analysis approach can be applied since at least one dissipativity property is defined with X < 0.

Network performance: The network performance is measured by its frequency response magnitude bound.

The dissipativity property is thus chosen of the form

  -I 0 0 γ 2 I  
which is a particular conic sector.

C. Results

Individual PLL: For illustration purpose, Fig. 2 displays the obtained dissipativity properties of a PLL for a fixed frequency ω = 203 rad/sec. The red circle (the red star is its center) and lines represent the embeddings where as the green stars and purple circles represent the PLL frequency response at ω = 203 rad/sec for some values of the uncertainties.

Network performance:

We are now interested in the performance of the PLLs network displayed in Fig. 3 while Table I displays the characteristics of the different analysis (the number in parenthesis for the hierarchical analysis columns is a comparison with the µ-analysis results i.e. direct approach of [START_REF] Fan | Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[END_REF].

All the analysis reveal that the PLL network is able to track a ramp as the slope of frequency response magnitude at low frequencies is 40 dB/dec. Table I illustrates the trade-off between conservatism and computation time that can be set by the user with the hierarchical analysis approach: when using the conic sector alone, the result is conservative but is obtained really quickly; when using the conic sector with the bands, the result is much less conservative but is obtained in much more time. For this last hierarchical setup, the difference in the maximal peak value with µ-analysis is +0.1 dB, that corresponds to 1.2 % of ratio, which is negligible; the result was obtained in 60 % of the time needed for µ-analysis.

V. CONCLUSION

In this paper, a hierarchical analysis approach has been proposed for the performance of uncertain large-scale systems. It relies on the propagation of dissipativity properties of sub-systems through an interconnection; this propagation result is recursively applied leading to a multi steps analysis. The aim is to propose a trade-off adapted to these large-scale systems when a one-step approach as µ-analysis can lead to a large computation time. A numerical example on a PLL network illustrated the new achieved trade-off.

Further work directions are:

• find other dissipative properties that can be used. We think to a cone as proposed in [START_REF] Tits | Robustness under bounded uncertainty with phase information[END_REF] for instance;

• further assess the achieved trade-off for other examples, especially for Multi Input Multi Output (MIMO) ones;

• consider frequency ranges instead of frequency points in order to avoid possible frequency gridding problems

• assess the evolution of the achieved trade-off in function of the dissipativity properties used.
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	dissipative.

From the set Φ, find X, Y and Z such that the uncertain system ∆ M is {X, Y, Z} dissipative.

Based on Corollary 2.2, problem 3.1 is solved by the following optimization: find (Φ 11 , Φ 12 , Φ 22 ) ∈ Φ, X, Y and Z such that Corollary 2.2 conditions are satisfied.