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Non-degenerate Liouville tori are KAM stable

Abed Bounemoura ∗

December 1, 2014

Abstract

In this short note, we prove that a quasi-periodic torus, with a non-resonant frequency
(that can be Diophantine or Liouville) and which is invariant by a sufficiently regular
Hamiltonian flow, is KAM stable provided it is Kolmogorov non-degenerate. When the
Hamiltonian is smooth (respectively Gevrey-smooth, respectively real-analytic), the in-
variant tori are smooth (respectively Gevrey-smooth, respectively real-analytic). This
answers a question raised in a recent work by Eliasson, Fayad and Krikorian ([EFK]). We
also take the opportunity to ask other questions concerning the stability of non-resonant
invariant quasi-periodic tori in (analytic or smooth) Hamiltonian systems.

1 Introduction and main result

1. Let n ≥ 2 and T
n := R

n/Zn. Consider a Hamiltonian system on T
n ×R

n associated to a
C l, l ≥ 2, function of the form

H(θ, I) = ω · I +A(θ)I · I +R(θ, I), (θ, I) ∈ T
n × R

n (1)

where · denotes the Euclidean inner product, ω ∈ R
n is a non-resonant vector (k · ω 6= 0

for any k ∈ Z
n \ {0}), A(θ) is, for each θ ∈ T

n, a square symmetric matrix of size n with
real coefficients and R(θ, I) = O3(I) is of order at least 3 in I. We will also be interested
in the smooth case l = ∞ and in the α-Gevrey case, α ≥ 1 (with α = 1 corresponding to
the real-analytic case). The set Tω := T

n × {I = 0} is invariant by the Hamiltonian flow
of H, it is a Lagrangian quasi-periodic torus with frequency ω, and any such torus (on an
arbitrary symplectic manifold) is of this form. The invariant torus is said to be Kolmogorov

non-degenerate if the symmetric matrix A0 :=
∫

Tn A(θ)dθ is non-singular.
If H is C∞, ω Diophantine (for some constant γ > 0 and τ ≥ n − 1, |k · ω| ≥ γ|k|−τ

1

for any k ∈ Z
n \ {0}, where |k|1 := |k1| + · + |kn| if k = (k1, . . . , kn)) and Tω Kolmogorov

non-degenerate, then it is KAM stable: in any sufficiently small neighborhood of Tω, there is
a set of smooth Lagrangian quasi-periodic invariant tori which has positive Lebesgue measure
and density one at Tω. If the Hamiltonian is real-analytic, the tori are real analytic. This
follows at once from a Birkhoff normal form and a classical version of the KAM theorem.

Now if ω is Liouville (which means not Diophantine), the Birkhoff normal form no longer
makes sense. In [EFK], it is proved (among several other results) that if H is real-analytic
and ω has a “finite uniform Diophantine exponent”, the torus is still KAM stable provided it
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is Kolmogorov non-degenerate. The latter arithmetic condition on ω, which is always satisfied
for n = 2, is satisfied for a residual subset of Liouville vectors but not for all of them if n ≥ 3.
In [EFK], the authors asked whether this arithmetic condition is necessary: in this note we
prove that it is not, and that the real-analyticity assumption is also unnecessary. Informally,
our main result is a follows

Theorem 1. The torus Tω is KAM stable provided it is Kolmogorov non-degenerate and l is
sufficiently large: in this case, the tori are only finitely differentiable. If l = ∞, the tori are

smooth. If H is α-Gevrey, α ≥ 1, the tori are α-Gevrey.

We refer to Theorem 4, Theorem 5 and Theorem 6 below for more precise and quantitative
statements concerning the regularity assumptions and conclusions, the threshold on the size
of the neighborhood and the measure estimate on the set of invariant tori. Unsurprisingly,
the more Liouville is the vector ω, the smaller is threshold on the size of the neighborhood
and the smaller is the estimate on the measure. Also, the more regular is the Hamiltonian,
the better is the estimate on the measure. The proof of the main result consists, by the use
of some standard scalings and some normal forms results proved in [Bou13a] and [Bou13b],
in reducing the above situation to a simpler situation in which classical KAM theorems apply
(such as those in [Pös82] or [Pop04]).

2. The situation becomes much more complicated for Kolmogorov degenerate invariant tori.
In [EFK], there are many other interesting results concerning KAM stability of invariant
tori. Perhaps the most remarkable one is that if H is real-analytic and ω Diophantine, then,
without any further assumptions, Tω is accumulated by KAM tori. If one assumes moreover
that n = 2 , then Tω is KAM stable (this is a result of Rüssmann) but for n ≥ 3, it is not
known if this set has positive Lebesgue measure, which was a question asked by Herman (in
a related context, see [Her98]). In fact, even without the Diophantine condition on ω, the
following question is open.

Question 1. Assume ω is non-resonant and H real-analytic, is Tω accumulated by KAM

tori?

A positive answer to the above question would be quite surprising. However, constructing
an example showing that the answer is negative seems very difficult, as even the simpler
question below is open.

Question 2. Assume ω is non-resonant and H real-analytic, can Tω be “unstable” in the

following sense: for any ε > 0 sufficiently small, there exists an orbit (θ(t), I(t)) and a time

τ = τ(ε) such that |I(0)| < ε and |I(τ)| > 2ε?

One should expect that the answer here is positive, even for a “generic” Hamiltonian if
n ≥ 3, but no examples are known for the moment.

If one assumes thatH is smooth but not analytic, an example of unstable torus is contained
in [Dou88], and an example of torus which is not accumulated by a set of positive Lebesgue
measure of invariant tori is contained in [EFK]. The example of [EFK] is, in fact, accumulated
by a set invariant tori (along a hyperplane, so this set has zero measure). Hence the following
question is still open.

Question 3. Assume ω is non-resonant and H smooth, is Tω accumulated by KAM tori?
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2 Proof

1. Let us start with the case of finitely differentiable Hamiltonians. For later use, we fix a
real number l0 > 3n − 1 and we assume that l ≥ l0 + 1 > 3n. Consider a Hamiltonian as
in (1) on the domain

T
n ×B2ε := T

n × {I ∈ R
n | |I| < 2ε}, |I| := max

1≤i≤n
|Ii|,

for some small 0 < ε < 1. Up to the scalings

I 7→ εI, H 7→ ε−1H (2)

it is equivalent to consider the Hamiltonian

H(θ, I) = ω · I + εA(θ)I · I + ε2R(θ, I), (θ, I) ∈ T
n × R

n (3)

on the domain T
n ×B2, with the estimates

|A|Cl(Tn) ≤ C1, |R|Cl(Tn×B2) ≤ C2.

Here, | . |Cl(Tn×B2) denotes the usual C l-norm on the domain T
n × B2. Without loss of

generality, we assume that |ω| = 1. For any Q ≥ 1, let us define the function Ψ = Ψω by

Ψ(Q) := max{|k · ω|−1 | k ∈ Z
n, 0 < |k|1 ≤ Q}

and for any x ≥ 1, the function ∆ = ∆ω by

∆(x) := sup{Q ≥ 1 | QΨ(Q) ≤ x}.

In the sequel, we shall denote by ci, for i = 1, . . . , 10, positive constants which depend only
on n, C1, C2 and the operator norm of the constant matrix A0 and its inverse A−1

0 , and by c
some universal constant which depends only on n.

2. Let us now define f = fε by

f(θ, I) := A(θ)I · I + εR(θ, I)

so that the Hamiltonian (3) can be written as

H(θ, I) = ω · I + εf(θ, I).

Let us also define the average of the perturbation by

f̄(I) :=

∫

Tn

f(θ, I)dθ = A0I · I + εR̄(I)

and another “small” parameter
µ(ε) := ∆∗

ω(cε
−1)−1. (4)

We have the following proposition.

3



Proposition 2. Assume that µ(ε) ≤ c1. Then there exists a symplectic embedding Φ :
T
n ×B1 → T

n ×B2 of class C l−1 such that

H̃(θ, I) := H ◦ Φ(θ, I) = ω · I + εf̄(I) + εµ(ε)f̃ (θ, I)

with the estimates |Φ− Id|Cl−1(Tn×B1) ≤ c2µ(ε) and |f̃ |Cl−1(Tn×B1) ≤ c3.

This is a very special case of Theorem 1.1 in [Bou13b], to which we refer for a proof
(this proof is actually based on a result contained [BF13]). To explain the difference between
this (one step) normal form and (one step of) Birkhoff normal form, assume for simplicity
that f(θ, I) reduces to the quadratic part A(θ)I · I (the higher order terms R(θ, I) are then
normalized by successive steps of Birkhoff procedure). To normalize the quadratic part, one
has to solve a usual homological equation but the difficulty here (as opposed to the case of an
elliptic equilibrium point) is that when expanded in Fourier series, f(θ, I) contains arbitrarily
high harmonics. If α satisfies a Diophantine condition, the homological equation can be solved
and the quadratic part normalized (assuming a Diophantine condition, this scheme would be
much better as one could obtain a normal form as above but with ε2 instead of εµ(ε)).
When α is not Diophantine, the equation can not be solved exactly but only approximately.
One possible approximation is to replace f(θ, I) by a trigonometric polynomial in θ (with
coefficients that are functions of I). With the aim of proving persistence of invariant tori with a
condition weaker than the Diophantine condition, Rüssmann has obtained quite precise results
on the approximation of real-analytic periodic function by trigonometric polynomials ([Rüs01],
[Rüs10]) that could be applicable here (assuming real-analyticity). A different approximation
scheme was proposed in [BF13]: instead of approximating the perturbation f , the frequency ω
itself is approximated by linearly independent periodic frequencies: at least one advantage of
this method is that it gives quite precise results for non-analytic Hamiltonians (as explained
in [Bou13a] and in [Bou13b]; in the real-analytic case such an approach is “quantitatively”
equivalent to the one of Rüssmann, compare [BF13] and [Pös11]). Let us also point out that
using this scheme, the remainder term f̃ has no particular structure whereas if one could use
Birkhoff procedure (which requires, once again, ω Diophantine) this remainder would contains
terms of order at least 3 in I: roughly speaking, with our procedure the graduation by degree
(in I) is completely broke after one step of normal form, but fortunately this is not useful for
the problem we are considering (as we are assuming a Kolmogorov non-degeneracy).

3. Now consider the Hamiltonian H̃ given by Proposition 2, that can be written again as

H̃(θ, I) = ω · I + εA0I · I + ε2R̄(I) + εµ(ε)f̃ (θ, I).

Up to the scalings
H 7→ ε−1H, t 7→ εt, (5)

it is equivalent to consider the Hamiltonian

H̃(θ, I) = ε−1ω · I +A0I · I + εR̄(I) + µ(ε)f̃(θ, I). (6)

We will apply to this Hamiltonian the classical KAM theorem for finitely differentiable Hamil-
tonians due to Pöschel, stated as Theorem A in [Pös82]. It would be more natural to consider
the term f̃ as the perturbation, and the other three terms of H̃ as the integrable part. How-
ever, Pöschel’s result do require the integrable part to be real-analytic. Therefore we write

H̃(θ, I) = H0(I) +H1(θ, I)
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with
H0(I) := ε−1ω · I +A0I · I, H1(θ, I) := εR̄(I) + µ(ε)f̃(θ, I).

The Hamiltonian H0 is integrable, and since it is a polynomial it can be (trivially) extended
as a real-analytic function on the domain

Vρ(B1) :=
⋃

I∈B1

{ξ ∈ C
n | |ξ − I| < ρ}

for any ρ > 0 (we may simply choose ρ = 1). Moreover, it is non-degenerate in the sense of
Kolmogorov: the Hessian matrix of H0 at any point is given by 2A0 and so it is non-singular.
Since ε is (much) smaller than µ(ε), the size of the perturbation H1 is (up to a constant)
bounded by µ(ε), and as H1 is of class C

l−1 with l−1 ≥ l0 > 3n−1, an application of [Pös82]
yields the following proposition.

Proposition 3. Assume that
√

µ(ε) ≤ c4. Then there exists a set K̃ = K̃ε contained in

T
n × B1 which consists of Lagrangian quasi-periodic tori, invariant by the Hamiltonian flow

of H̃. Each invariant torus is of class C l′
0 , for l′0 < l0 − 2n + 1, and we have the Lebesgue

measure estimate

c5
√

µ(ε)Leb(Tn ×B1) ≤ Leb(Tn ×B1 \ K̃) ≤ c6
√

µ(ε)Leb(Tn ×B1).

Let us make some comments on the above proposition. The smoothness requirement and
conclusion are apparently different than those of [Pös82]; however, as pointed out by Sevryuk
in [Sev03], they are in fact the same. More importantly, since µ(ε) is much smaller than ε,
one should explain why the ε-dependence of the integrable part does not obstruct the result.
Observe that the frequency domain, that is the image of B1 by the gradient of H0, is simply
the image of B1 by the linear map 2A0 translated by the vector ε−1ω. So the frequencies are
high (they have large norm) but the important point is that the Hessian matrix of H0, which
is nothing but the matrix 2A0, and its inverse, have bounds uniform with respect to ε. The
set of frequencies preserved are, as usual, those which are (γ, τ)-Diophantine, with some γ > 0
and τ > n − 1, and which are at a distance at least γ from the boundary; but recalling the
scaling in time this actually corresponds to the persistence of (unperturbed) quasi-periodic
motions with frequencies α+2εA0I which are (εγ, τ)-Diophantine. Eventually, the threshold
is, as usual, of the form µ(ε) ≤ c4γ

2 for γ ≤ 1, which allows to choose γ proportional to
√

µ(ε) to obtain the measure estimate. Let us also note, for later use, that by construction,
this Kolmogorov set K̃ is at distance at least, up to a constant,

√

µ(ε) to the boundary of
T
n ×B1.

4. Undoing the scalings (5), one finds a set of KAM tori K̃, with the properties stated in
Proposition 3, which is invariant by the Hamiltonian flow of H̃ = H◦Φ given by Proposition 2.
Using the fact that µ(ε) is smaller than

√

µ(ε), the threshold and the estimate on Φ given
by Proposition 2, one easily ensures that the image of Φ contains K̃. Therefore we can define
K = Φ−1(K̃), and since Φ is symplectic and of class C l0 , K is a set which consists of Lagrangian
quasi-periodic tori, invariant by the Hamiltonian flow of H defined by (3), and which are of
class l′0, for l

′
0 < l0 − 2n+ 1. For the measure estimate, observe that the estimate on Φ given

by Proposition 2 implies that its Jacobian is close to one, hence

c7
√

µ(ε)Leb(Tn ×B1) ≤ Leb(Tn ×B1 \ K) ≤ c8
√

µ(ε)Leb(Tn ×B1).
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Undoing the scalings (2), one finds a set, that we sill denote by K for simplicity, which is
contained in T

n ×Bε and invariant by the Hamiltonian flow of H defined by (1), and which
consists of Lagrangian quasi-periodic invariant tori, with the measure estimate

c9
√

µ(ε)Leb(Tn ×Bε) ≤ Leb(Tn ×Bε \ K) ≤ c10
√

µ(ε)Leb(Tn ×Bε).

We have just proved the following statement.

Theorem 4. Let H be as in (1), assume it is of class C l for l ≥ l0 + 1 > 3n, that ω
is non-resonant and A0 is non-singular. Then if µ(ε) ≤ c1 and

√

µ(ε) ≤ c4, where µ(ε) is

defined in (4), there exists a set K ⊂ T
n×Bε, which consists of Lagrangian quasi-periodic tori

invariant by the Hamiltonian flow of H. Moreover, each tori is of class C l′
0, for l′0 < l0−2n+1,

and we have the measure estimate

c9
√

µ(ε)Leb(Tn ×Bε) ≤ Leb(Tn ×Bε \ K) ≤ c10
√

µ(ε)Leb(Tn ×Bε).

This result justifies the first part of Theorem 1. As a matter of fact, since Theorem 4
reduces to a classical KAM theorem, more information is available. For instance, this set K,
which forms a Cantor family, is in fact regular (in the sense of Whitney) over this Cantor
set: here this transverse regularity is l′′0 , for any l′′0 < (l0 − 2n + 1)/n. But of course only a
Lipschitz transverse regularity is necessary to obtain the measure estimate.

5. When H is C∞, using the smooth version of Theorem 1.1 in [Bou13b] and the smooth
version of Theorem A in [Pös82], one gets the following result.

Theorem 5. Assume that H is C∞, and that the assumptions of Theorem 4 are satisfied.

Then the conclusions of Theorem 4 hold true, and, in addition, the tori are C∞.

This justifies the second part of Theorem 1. Here one would expect more conclusions:
for instance, given any fixed integer κ ≥ 1, the measure of the set not covered by KAM tori
should be of order

√

µ(ε)κ. Indeed, assuming H is smooth, Theorem 1.1 in [Bou13b] gives a
normal form

H̃(θ, I) := H ◦Φ(θ, I) = ω · I + εf̄(I) + εµ(ε)g(I) + εµ(ε)κf̃(θ, I)

where g is integrable (for κ = 1, which is the case considered in Proposition 2, this Hamil-
tonian g can be taken to be identically zero). After scaling as in (5), the dominant part
in the integrable part of H̃ is still f̄ , hence this integrable Hamiltonian is Kolmogorov non-
degenerate. However, Pöschel’s result [Pös82] demands a real-analytic integrable part: in our
case it is only smooth and since g is quite arbitrary, we do not know how to write H̃ as a
real-analytic integrable Hamiltonian plus a perturbation of order µ(ε)κ. Let us remark here
that the real-analyticity assumption in Pöschel’s result seems quite artificial, so in the end
one should have this improved measure estimate but of course we do not claim such a result.

6. To conclude, let us consider the α-Gevrey case, for α ≥ 1, which includes the real-analytic
case α = 1. More precisely, we assume that H is (α,L)-Gevrey for some L > 0 in the sense
of [MS02]. When α = 1, H is real-analytic and this constant L is comparable to a width of
analyticity.

Let us denote by c̄ some universal constant depending only on n, α and L, and let

ν(ε) := exp
(

−c̄µ(ε)−α−1
)

. (7)
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Using Theorem 1.1 of [Bou13a] (which uses results from [BF13] and [MS02]), for µ(ε) small,
one finds a normal form

H̃(θ, I) := H ◦ Φ(θ, I) = ω · I + εf̄(I) + εµ(ε)g(I) + εν(ε)f̃ (θ, I)

such that g and f̃ are bounded in (α, L̃)-Gevrey norm, for some fixed L̃ < L. After scalings
as in (5), we do have a perturbation of order ν(ε) of a Kolmogorov non-degenerate integrable
Hamiltonian: both the integrable Hamiltonian and the perturbation are (α, L̃)-Gevrey, the
Hessian of the integrable part at any point is close to 2A0 and this is enough to apply the main
theorem of [Pop04], which is an extension of Pöschel’s result in Gevrey classes. Therefore we
can state the following result.

Theorem 6. Let H be as in (1), assume it is (α,L)-Gevrey, that ω is non-resonant and A0

is non-singular. Then if µ(ε) ≤ c11 and
√

ν(ε) ≤ c12, where µ(ε) is defined in (4) and ν(ε)
is defined in (7), there exists a set K ⊂ T

n ×Bε, which consists of Lagrangian quasi-periodic

tori invariant by the Hamiltonian flow of H. Moreover, each tori is of class (α, L̃′), for some

L̃′ < L̃, and we have the measure estimate

c13
√

ν(ε)Leb(Tn ×Bε) ≤ Leb(Tn ×Bε \ K) ≤ c14
√

ν(ε)Leb(Tn ×Bε).

This justifies the last part of Theorem 1. Let us remark here that the (α,L)-Gevrey norm
used by [Pop04] is different that the one used in [MS02]; however, up to changing L by its
inverse, they are comparable. The above positive constants c11, c12, c13, c14 depend, as before,
on n, C1, C2 (which are bounds, respectively, on the (α,L)-Gevrey norms of A and R that
appears in (3)), the operator norm of the constant matrix A0 and its inverse A−1

0 , but also
on α and L. The proof of Theorem 6 goes exactly as the proof of Theorem 4, with only one
mild difference:

√

ν(ε) plays the role of
√

µ(ε), but this time it is much smaller than µ(ε).
Therefore in the Gevrey version of Proposition 3 (which follows from [Pop04]), one looks for
a set K̃ of KAM tori not in T

n×B1 but on smaller domain, say in T
n×B1/2, so that one can

easily ensures that this set is contained in the image of the transformation Φ given by the
Gevrey version of Proposition 2 (which follows from [Bou13a]), which in turns ensures that
the set of KAM tori K = Φ−1(K̃) is well-defined. This only affects the measure estimate by
constants depending on n.

In the special case where α is (γ, τ) Diophantine, then µ(ε) is of order ε(1+τ)−1

and hence

ν(ε) is order exp
(

−ε−(α(1+τ))−1

)

. In the analytic case α = 1, it is well-known that the

measure of the complement of the Kolmogorov set is exponentially small; our result extends
this for any α ≥ 1.

References

[BF13] A. Bounemoura and S. Fischler, A diophantine duality applied to the KAM and

Nekhoroshev theorems, Math. Z. 275 (2013), no. 3, 1135–1167.

[Bou13a] A. Bounemoura, Normal forms, stability and splitting of invariant manifolds I.

Gevrey Hamiltonians, Regul. Chaotic Dyn. 18 (2013), no. 3, 237–260.

[Bou13b] , Normal forms, stability and splitting of invariant manifolds II. Finitely

differentiable Hamiltonians, Regul. Chaotic Dyn. 18 (2013), no. 3, 261–276.

7
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