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Abstract

Most aquatic animals propel themselves by flapping flexible appendages. To gain
insight into the effect of flexibility on the swimming performance, we have studied
experimentally an idealized system. It consists of a flexible plate whose leading edge
is forced into a harmonic heave motion, and which is immersed in a uniform flow. As
the forcing frequency is gradually increased, resonance peaks are evidenced on the
plate response. In addition to the forcing frequency, the Reynolds number, the plate
rigidity and the forcing amplitude have also been varied. In the range of parameters
studied, the main effect on the resonance is due to the forcing amplitude, which
reveals that non-linearities are essential in this problem.
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Résumé

Étude expérimentale de la réponse d’une plaque flexible à un forçage har-
monique dans un écoulement. La plupart des animaux aquatiques se propulsent
grâce au battement d’appendices flexibles. Afin d’avoir une meilleure compréhension
de l’effet de la flexibilité sur la performance de la nage, nous avons étudié expérimen-
talement un système idéalisé. Il consiste en une plaque flexible, immergée dans un
écoulement uniforme, dont le bord d’attaque est forcé en un mouvement harmonique
transverse à l’écoulement. En augmentant graduellement la fréquence de forçage, des
pics de résonance ont été mis en évidence. Outre la fréquence de forçage, le nombre
de Reynolds, la rigidité de la plaque et l’amplitude du forçage ont également été
variés. Dans le domaine des paramètres étudié, le principal effet sur la résonance
est dû à l’amplitude du forçage ce qui révèle que les non linarités sont essentielles
dans ce problème.
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1 Introduction

Animal swimming has attracted a lot of attention from hydrodynamicists in
the last decades. This interest was partly motivated by the design of bioin-
spired aquatic propulsion devices. Numerous reviews can be found on the
different aquatic propulsion modes, such as the monographs of Lighthill [1]
and Childress [2] or the articles of Lighthill [3], Sfakiotakis et al. [4] and Tri-
antafyllou et al. [5]. Propulsion using flapping appendages is common for large
aquatic animals and, in particular, most of the fast swimmers such as sharks,
tuna and dolphins flap their caudal fins to propel themselves. An observation
of these appendages shows that they are generally flexible along the chord.
It has often been argued (e.g. [6] and [7]), that this flexibility enhances the
swimming performance. However, the origin of this performance enhancement
has proved elusive so far.

Inspired by this caudal-fin swimming mode, different studies have been carried
out to quantify the propulsion efficiency of a flapping foil. Propulsion by rigid
foils has been first studied theoretically by Lighthill [8] and Wu [9]. It has
also been the object of experiments by Triantafyllou et al. [10], Anderson et
al. [11], Schouveiler et al.[12], and Buchholz and Smits [13], among others.
These experimental studies have all reported that propulsion performance is
maximized for a flapping frequency f corresponding to a Strouhal number
St ≈ 0.3, where St = 2fATE/U with ATE the amplitude of the trailing
edge motion and U the swimming speed. The same value of St ≈ 0.3 can
be observed in nature for swimmers with moderate aspect ratios (cetaceans,
sharks, salmons, trouts and scombrids) as seen in the data recently compiled
in [14].

The numerical simulations of Katz and Weihs [15] have shown that, using a
flapping foil flexible along its chord rather than a rigid one, yields an increase of
the propulsive efficiency. In this case, because of the foil flexibility, its natural
structural frequencies are introduced in the system, in addition to the flapping
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frequency. These structural frequencies depend not only on the geometry and
the material of the foil but also on the surrounding flow because of added-mass
effects. Two-dimensional numerical simulations of Alben [16] and Michelin and
Llewellyn Smith [17] have later revealed peaks in the amplitude of the plate
response, when the flapping and structural frequencies are resonant. They
showed that efficiency can be maximized at these resonance peaks.

Gain in propulsive performance through the chordwise flexibility has been
confirmed by the experimental works of Prempraneerach et al. [18], Heathcote
and Gursul [19], or Marais et al. [20]. Moreover, Dewey et al. [21] for a pitching
flexible plate, Alben et al. [22] and Quinn et al. [23] for a heaving flexible
plate have clearly evidenced the phenomenon of resonance experimentally,
as the forcing frequency is varied, and considered its link with propulsive
performance, but none of these studies has considered the effect of changing
the forcing amplitude.

In this study, to have a better understanding of the dynamics of a flexible fin,
we have examined the response of an elastic plate immersed in a uniform flow
and forced into a harmonic heave motion at its leading edge. The objective has
been to quantify the influence of the different experimental parameters: the
amplitude and frequency of forcing, the flow velocity, and the plate bending
rigidity. This problem involves complex fluid-structure interactions since the
flow load deforms the plate, whose motion in turn affects the flow. We be-
lieve that the full complexity of these interactions can only be addressed with
experimental studies because, at the present time, accurate numerical sim-
ulations are limited to moderate Reynolds numbers and theoretical models
usually assume linear problems, i.e. small-amplitude propulsion.

This paper is organized as follows: first the experimental set-up and methods
are presented. Then the response of flexible plates to harmonic heave forcing
is analysed and effects of the different experimental parameters are discussed.
Finally, some conclusions are drawn and discussed in the context of swimming.

2 Experimental set-up

Experiments have been conducted with the set-up schematically illustrated in
Fig. 1(a). It consists of a horizontal flexible plate molded out of polysiloxane
with a rounded leading edge and a tapered trailing edge (Fig. 1(b)). The plates
used have a thickness e = 0.004 m, span s = 0.12 m, and chord c = 0.12 m,
giving an aspect ratio s/c = 1. During molding, a rigid axis is inserted inside
the plate at the leading edge; this axis has some roughness to prevent the
rotation of the plate around it. This set-up reduces the flexible length of the
chord to about 0.115 m. The plate is then immersed in a uniform flow, of
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Figure 1. Sketch of the experimental set-up (a) and of the flexible plate (b).

velocity U , of a free surface water channel. The test section is 0.38 m wide,
with a depth of water at rest of 0.45 m.

As shown in Fig. 1(a), the axis is attached to an inverted U-frame such that
the plate, at the leading edge, is maintained parallel to channel flow. This
inverted U-frame is set in vertical motion by a computer-controlled linear
actuator, which allows to impose an arbitrary heave motion to the leading
edge. In the present experiments, the leading edge has been forced into a
harmonic heave motion: ALE cos(2πft). The plate is confined between two
vertical walls separated from the plate by less than 1 mm. The role of these
confinement walls is, first, to minimize the flow around the side edges of the
plate and, second, the inverted U-frame being outside of these walls, to avoid
the perturbations from the wake of the frame. In addition, free surface effects
have been prevented by a rigid horizontal wall placed above the experiment.
Channel and confinement walls have been made of transparent material to
facilitate visualizations.

To investigate the response of the plate when forced into heave motion, visu-
alizations have been carried out through the side wall of the water channel
and recorded with a video camera. The successive shapes and positions of the
plate centerline have then been extracted by image analysis of the recordings.
A quantitative characterization of the plate response is achieved by measuring
the simultaneous displacements of the leading and trailing edges as a function
of time by means of two high-accuracy laser sensors (Fig. 1(a)).

In the present study, the variations of four experimental parameters have
been considered. First, the frequency f and amplitude ALE of the forcing
have been varied in the ranges f = 0.2 − 8 Hz and ALE = 0.004 − 0.014 m.
Then, the flow velocity has been increased up to U = 0.1 m.s−1. This velocity
is expressed in dimensionless form using the Reynolds number based on the
chord: Re = Uc/ν, where ν is the kinematic viscosity of water. Finally, three
plate rigidities have been tested using different materials: B = 0.018, 0.028,
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0.053 Nm. For these three plates, the density relative to the water is about
1.2.

A typical experiment consists, for a plate of given bending rigidity, in fixing
the Reynolds number Re and the forcing amplitude ALE and in recording the
plate response as the forcing frequency f is gradually varied. Experiments
have been repeated changing ALE, Re, and using plates of different bending
rigidity.

3 Results

Prior to the experiments with forcing, we have considered the response of the
plate to an impulse perturbation of its trailing edge, in water at rest. The
damped response to such a perturbation is shown in Fig. 2 for the plate of
bending rigidity B = 0.053 Nm. From this signal, we deduce the lowest natural
frequency f0 of the plate in water that will serve as a reference frequency in
the following. For the three plates tested in the present study, we find the
natural frequencies f0 = 0.75, 0.99, 1.30 Hz for bending rigidities B = 0.018,
0.028, 0.053 Nm respectively. Note that the ratios of these frequencies scale like
the square root of the bending rigidity ratios (as expected from the vibration
analysis of a cantilever beam) with an agreement better than 6%.
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Figure 2. Response of a plate to an impulse perturbation. The deflection of the
trailing edge is plotted as function of time for the plate of bending rigidity B =
0.053 Nm in water at rest.

The response of the flexible plates to the harmonic forcing, ALE cos(2πft),
imposed at their leading edge is then considered. We first note that for all the
cases tested the plate deforms mainly along the chord and its displacement
is harmonic with the same frequency as the forcing. The displacement of the
trailing edge can thus be expressed as ATE cos(2πft+φ) where φ is the phase
relative to the leading edge displacement.

The plate response is characterized considering the evolution of the relative
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amplitude ATE/ALE and the phase φ as the forcing frequency f is varied.
This response is illustrated in Fig. 3 for a representative case: ALE = 0.004
m, Re = 6000 and B = 0.018 Nm. In this plot, f is made dimensionless using
the natural frequency f0 of the plate.

Remarkably, the amplitude curve exhibits two distinct peaks. The first peak
is sharp and occurs at a frequency f close to the natural frequency f0, with a
maximum of the trailing edge amplitude more than 2.5 times the forcing ampli-
tude. The second peak, at a frequency f/f0 between 6.0 and 6.5, is flatter and
lower in amplitude. It is recalled that the three first natural vibration modes
of a clamped plate have dimensionless wavenumbers k0c = 1.875, k1c = 4.694,
and k2c = 7.855 and that the ratios of the corresponding natural frequen-
cies f0, f1 and f2 scale like the square of wavenumber ratios. It results that
f1/f0 = (k1/k0)

2 ≈ 6.3. We can thus conclude that the two peaks observed at
f ≈ f0 and f1 in Fig. 3 correspond to resonances of the forcing with the first
two natural structural modes. According to this analysis the third resonance
peak would be expected at a frequency f ≈ f2 with f2/f0 = (k2/k0)

2 ≈ 17.6,
which is outside of the frequency range explored in the present experiments.

The evolution of the trailing edge phase φ relative to the imposed leading
edge motion is also shown in Fig. 3. The phase appears to be close to −π far
from the two resonance peaks and approaches −π/2 at the first peak which
is what is expected from a simple damped oscillator model. In contrast, it is
not possible to distinguish a clear trend for φ at the second peak, where it
continuously varies between −3 and −5.
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Figure 3. Response of the plate to a harmonic heave forcing. The relative amplitude
of the trailing edge displacement, ATE/ALE , and the corresponding phase shift φ
are plotted as a function of the normalized forcing frequency f/f0, for ALE = 0.004
m, Re = 6000 and B = 0.018 Nm.

In Fig. 4, the deformation of the plate at the two resonant peaks is illustrated
by plotting superimposed views of the plate centerline during one forcing cy-
cle. It should be noted that direct visualizations of the plate do not reveal
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significative deformations along the span, such that the plate deflection is well
represented by the centerline displacement. It can also be remarked that a
weak up-and-down asymmetry in the mode shape is apparent, which is due to
the plate material being slightly denser than water.

Figs. 4(a) and (b) show the mode shapes at the two resonance peaks f/f0 = 1
and 6.3, respectively, in the laboratory frame. Contrary to the first mode, the
second mode exhibits a neck close to its trailing edge showing that higher
structural modes are involved at high frequencies. The same modes are repre-
sented in the frame attached to the plate leading edge in Figs. 4(c) and (d).
These views reveal their close similarities with the flutter instability modes of
a clamped plate immersed in a uniform flow investigated by Eloy et al. [24],
among others. Note that these deformations are different from the natural
modes of a flexible beam in vacuum. In particular, the second mode (Fig. 4(d))
does not exhibit a node but only a pseudo-node or neck, revealing once again
that the structural modes and their corresponding frequencies correspond to
the system plate + surrounding fluid and not the plate alone, as emphasized
by Michelin and Llewellyn Smith [17] in their numerical study.

(a) (b)

(c) (d)

Figure 4. Mode shapes, at the first f/f0 = 1 (a, c), and second resonance peak,
f/f0 = 6.3 (b, d). These deformations are shown in the laboratory frame (a, b) and
in the frame attached to the leading edge (c, d), ALE = 0.004 m, Re = 6000 (flow
from left to right) and B = 0.018 Nm.

So far, we have described the frequency response of a flexible plate for fixed
values of the forcing amplitude ALE, the Reynolds numberRe, and the bending
rigidity B. We will examine now how variations of these parameters affect the
frequency response. To do so, the same protocol is used: ALE, Re and B
are fixed and the relative response ATE/ALE is plotted as function of the
normalized frequency f/f0 (Fig. 5).

3.1 Effect of the plate rigidity

In Fig. 5(a), the response curves are plotted as a function of the dimensional
forcing frequency f for three values of the plate rigidity B. We note that the
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Figure 5. Effects of the experimental parameters on the frequency response. Re-
sponse curves as a function of the forcing frequency f (a) and of the normalized
frequency f/f0 (b) for ALE = 0.004 m, Re = 6000 and three values of the bending
rigidity B. Frequency response for ALE = 0.004 m, B = 0.028 Nm and three values
of the Reynolds number Re (c) and for Re = 6000, B = 0.018 Nm and three values
of the forcing amplitude ALE (d).

amplitude maxima are not affected by changing B and that the resonance
peaks move toward higher frequency as B is increased. However, the natural
frequencies f0 increasing with the plate rigidity, when the response curves are
plotted using the dimensionless frequency f/f0, they all collapse on a single
curve as seen in Fig. 5(b). In conclusion, in the limit of the present study,
which considers plates with bending rigidities varying by a factor 3, we could
not detect any significant effect of the plate rigidity, as long as the frequency
is properly normalized with the natural frequency f0.

3.2 Effect of the Reynolds number

The effect of the Reynolds number Re = Uc/ν on the plate response is illus-
trated in Fig. 5(c) representing the frequency response for three values of Re.
The first value is Re = 0 corresponding to water at rest, the two others are
6000 and 12000, corresponding to U = 0.05 and 0.1 m.s−1, respectively. We
observe both a decrease of the amplitude maxima and a shift of the resonance
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peaks toward higher frequencies, as Re is increased. This latter observation
is due to the normalization performed using the natural frequency f0 of the
plate in water at rest while the natural vibration modes are modified by a sur-
rounding flow as noted in [17]. However, these variations in the plate response
as Re is changed appear only minor. This is likely due to the large values
of the reduced frequency fr = πfc/U , which measures the ratio between the
typical time taken by a fluid particle to travel along the chord to the forcing
period. For smaller values of fr, one would expect the wake to become more
important and to affect the frequency response more significantly.

3.3 Effect of the forcing amplitude

Contrary to the others parameters tested, variations of the forcing amplitude
ALE have a strong influence on the plate response. This influence is shown
in Fig. 5(d) where the frequency response is plotted for three values of ALE.
An increase of the forcing amplitude by a factor of 3.5 (from 0.004 to 0.014
m) leads to a decrease of the relative response amplitude of the trailing edge
by more than 30% and a slight decrease of the normalized frequency at the
resonance peaks. This important effect of the forcing amplitude is a signature
of non-linear effects.

These non-linearities likely originate from the large-amplitude plate deforma-
tions, which introduce non-linear terms in both the plate and flow dynamical
equations, through geometrical and damping terms. For instance, the imper-
meability condition, which ensures the coupling between the plate and the
fluid, has to be applied on a displaced interface, yielding terms that depend
non-linearly on the motion amplitude. These terms correspond to cubic non-
linearities [25]. Another source of nonlinearity is the drag force exerted on the
plate normally to its surface as it moves, also called the resistive force, which
corresponds to quadratic non-linearities [26].

Calling x the amplitude of the first bending mode of the plate, we expect a
weakly nonlinear dynamical equation of the form

ẍ+ (2πf0)
2x+ µẋ+ ν|ẋ|ẋ+ δx3 = γ cos(2πft), (1)

where the first two terms describe the bending mode of the plate as an har-
monic oscillator (with eigenfrequency f0), the third term is related to the
internal damping of the plate (µ > 0), the fourth term is the quadratic non-
linearity due to the drag normal to the plate (ν > 0), and the fifth term gathers
all the cubic nonlinearities originating from the fluid-structure interaction, the
plate dynamics, and the fluid load (in reality there should also be terms of
the form x2ẍ and xẋ2). The right-hand side corresponds to the forcing due
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to the heaving motion, where γ > 0 without loss of generality. This equation
is the classic Duffing oscillator with an additional quadratic term, ν|ẋ|ẋ. It is
beyond the scope of the present paper to calculate the coefficients µ, ν, and δ
appearing in this equation, however, it can be formally solved by assuming

x(t) = a cos(2πft+ φ) + h.o.t., (2)

where h.o.t. stands for “higher order terms” and refers here to higher har-
monics that can be neglected near resonance. Neglecting also the cubic non-
linearities for simplicity, the dynamical equation (1) can be projected onto
the main harmonics to give an implicit equation for the amplitude a of the
bending mode oscillations

(2π)4
(
f 2
0 − f 2

)2
a2 + (2π)2

(
µf +

16

3
νf 2a

)2

a2 = γ2. (3)

Solving this implicit equation shows, in particular, that at the resonance (i.e.
f = f0), the relative amplitude a/γ is a monotonic decreasing function of γ.
This is conform to the experimental observations, where the relative amplitude
ATE/ALE is also a decreasing function of the forcing amplitude ALE. In Fig. 6,
the relative amplitudes a/γ obtained with equation (3) for different values of
the forcing parameter γ are plotted as a function of the normalized forcing
frequency f/f0. It shows a good qualitative agreement with the experimental
measurements reported in Fig. 5(d) near the first resonance. In particular, the
value of the relative response at its maximum (around f ≈ f0) is decreasing
when the forcing amplitude is increased. The shift of the response peak towards
lower frequencies for large forcing amplitude is also reproduced. However, the
second peak observed in Fig. 5(d) around f/f0 ≈ 6 is not reproduced in the
model (Fig. 6) since it only accounts for a single natural mode of vibration
whereas the flexible plate has an infinite number of structural modes.

The experimental results presented in Fig. 5(d) and the above discussion on
the Duffing equation show that an accurate description of the plate response at
resonance must include non-linear effects. It is important to stress that these
non-linear effects are relevant even if the relative amplitude of the deforma-
tion, ATE/c, and the angle between the plate and the flow direction are both
relatively small. Yet, these effects are usually neglected in the literature, prob-
ably because until now, to our knowledge, there has not been any systematic
measurements of the response of a flexible plate when the forcing amplitude
is varied (see e.g. [21]-[23]).
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Figure 6. Response curves obtained with equation (3) for different values of the
forcing γ. The following parameters have been used: f0 = 1/2π, µ = 0.1, ν = 3, and
γ = 0.04, 0.1, or 0.14.

4 Conclusion

In summary, experiments have been conducted to investigate the response
of a flexible plate in a uniform flow, when its leading edge is forced into a
harmonic heave motion. This study focussed in particular on the influence of
the different experimental parameters on the characteristics of the frequency
response.

As observed in previous studies, the response curves, representing the relative
response amplitude with respect to the forcing frequency, exhibit peaks of
resonance for the natural modes of the plate in the fluid flow. The flow velocity
and the plate bending rigidity have only minor effects on the response curves
as long as the forcing frequency is properly normalized with the natural mode
frequency. In contrast, the forcing amplitude strongly affects the plate response
indicating the importance of non-linearities in this system.

The present experiments performed with an idealized geometry can help to
gain insight into the physical mechanisms of thrust production by flapping
flexible appendages. It is known from the seminal work of Lighthill [27] that
the thrust scales as the square of the trailing edge deflection amplitude in the
linear limit. This study shows that this amplitude can be maximized when
the flapping frequency is close to the frequency of one of the natural modes.
However, the non-linear effects probably affect Lighthill’s scaling of thrust
production for large amplitude and there is likely an optimal amplitude at
which propulsion efficiency is maximized. Moreover, the present experimental
results show that if one wants to model the fluid-structure interactions of a
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flapping flexible plate in a uniform flow plate, non-linear effects have to be
taken into account. Such a model is currently being developed and will be
subject of a forthcoming work.
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