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Abstract A minimum effort optimal control problem for the undamped wave
equation is considered which involves L∞–control costs. Since the problem is
non-differentiable a regularized problem is introduced. Uniqueness of the solu-
tion of the regularized problem is proven and the convergence of the regularized
solutions is analyzed. Further, a semi-smooth Newton method is formulated
to solve the regularized problems and its superlinear convergence is shown.
Thereby special attention has to be paid to the well-posedness of the Newton
iteration. Numerical examples confirm the theoretical results.

Keywords Optimal control · wave equation · semi-smooth Newton methods ·
finite elements

1 Introduction

In this paper a minimum effort problem for the wave equation is considered.
Let Ω ⊂ R

d, d ∈ { 1, . . . , 4 }, be a bounded domain, T > 0, J = (0, T ),
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Q = J ×Ω, and Σ = J × ∂Ω. We consider the following problem





min
(y,u)∈X×U

1

2
‖Cωo

y − z‖2L2(Q) +
α

2
‖u‖2L∞(Q) , s.t.

Ay = Bωc
u in Q,

y(0) = y0 in Ω,

Cy = 0 on Σ

(P1)

for given state space X, control space U , initial point y0, parameter α > 0 and
desired state z ∈ L2(Q). A denotes the wave operator, Bωc

the control oper-
ator, Cωo

: X → L2(Q) an observation operator, where ωo, ωc ⊂ Ω describe
the area of observation and control, and C : X → L2(Q) denotes a boundary
operator. A detailed formulation in a functional analytic setting is given in the
following section.

The interpretation of the cost functional in (P1) can be described as mini-
mizing the tracking error by means of a control which is pointwise as small as
possible. The appearance of the L∞–control costs leads to nondifferentiability.
The analytic and efficient numerical treatment of this nonsmooth problem by
a semi-smooth Newton method stands in the focus of this work. We prove
superlinear convergence of this iterative method and present numerical exam-
ples.

Numerical methods for minimum effort problems in the context of ordinary
differential equation are developed in publications, see, e.g., Neustadt [13],
and Ito and Kunisch [9] and the references given there. In the context of
partial differential equations there exist only few results, see the publications
on elliptic equations by Grund and Rösch [5] and Clason, Ito, and Kunisch [1].

The literature for numerical methods for optimal control of the wave equa-
tion is significantly less rich than for that for equations of parabolic type.
Let us mention some selected contributions for the wave equation. In [6] Gu-
gat treats state constrained optimal control problems by penalty techniques.
Gugat and Leugering [7] analyze bang-bang properties for L∞–norm minimal
control problems for exact and approximate controllability problems and give
numerical results. Time optimal control problems are considered by Kunisch
and Wachsmuth [11] and semi-smooth Newton methods for control constrained
optimal control problems with L2–control costs in Kröner, Kunisch, and Vexler
[10]. Gerdts, Greif, and Pesch in [4] present numerical results driving a string
to rest and give further relevant references. A detailed analysis of discretization
issues for controllability problems related to the wave equation is contained in
the work by Zuazua, see e.g. [16] and Ervedoza and Zuazua [2].

We will present an equivalent formulation of the minimal effort problem
(P1) with a state equation having a bilinear structure and controls satisfying
pointwise constraints, i.e. we move the difficulty of nondifferentiability of the
control costs in the cost functional to additional constraints. To solve the
problem we apply a semi-smooth Newton method.

Special attention has to be paid to the well-posedness of the iteration of
the semi-smooth Newton scheme. The lack of smoothing properties of the
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equations (when compared to elliptic equations) requires careful choice of the
function space setting to achieve superlinear convergent algorithms; in partic-
ular, the problem is not reformulated in the reduced form as in [1] and the
well-definedness of the Newton updates has to be shown.

The restriction to dimensions d ≤ 4 is due to the Sobolev embedding
theorem which is needed in Lemma 5.1 to verify Newton differentiability.

The paper is organized as follows. In Section 2 we make some preliminary
remarks, in Section 3 we formulate the minimal effort problem, in Section 4
we present a regularized problem, in Section 5 we formulate the semi-smooth
Newton method, in Section 6 we discretize the problem, and in Section 7 we
present numerical examples.

2 Preliminaries

In this paper we use the usual notations for Lebesgue and Sobolev spaces.
Further, we set

Y 1 = H1
0 (Ω)× L2(Ω), P 1 = L2(Ω)×H1

0 (Ω),

Y 0 = L2(Ω)×H−1(Ω), P 0 = H−1(Ω)× L2(Ω).

There holds the following relation between these spaces

(Y 1)∗ = P 0, (Y 0)∗ = P 1,

where ∗ indicates the dual space. For a Banach space Y we set

L2(Y ) = L2(J, Y ),

H1(Y ) = H1(J, Y ).

Further, we introduce the following operators

A : X = L2(Y 1) ∩H1(Y 0) −→ Y = L2(Y 0)⊕
(
H1(P 0)

)∗
,

A∗ : Y ∗ = L2(P 1) ∩H1(P 0) −→ X∗ = L2(P 0)⊕
(
H1(Y 0)

)∗

with

A =

(
∂t − id
−∆ ∂t

)
, A∗ =

(
−∂t −∆
− id −∂t

)
(2.1)

for the Laplacian (−∆) : H1
0 (Ω) → H−1(Ω) and identity map id: L2(Q) →

L2(Q). For (y, p) = (y1, y2, p1, p2) ∈ X × Y ∗ there holds the relation

〈Ay, p〉Y,Y ∗ + (y(0), p(0))L2(Ω) = 〈y,A∗p〉X,X∗ + (y(T ), p(T ))L2(Ω), (2.2)

since
〈(

∂ty1 − y2
∂ty2 −∆y1

)
,

(
p1
p2

)〉

Y,Y ∗

+ (y(0), p(0))L2(Ω)

=

〈(
y1
y2

)
,

(
−∂tp1 −∆p2
−∂tp2 − p1

)〉

X,X∗

+ (y(T ), p(T ))L2(Ω). (2.3)
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We introduce the observation and control operator

Cωo
=

(
χωo

id, 0
)
: L2 → L2, (2.4)

Bωc
=

(
0, χωc

id
)
: L2 → L2 (2.5)

with the characteristic functions χωo
and χωc

of J × ωo and J × ωc for
given nonempty open subsets ωo, ωc ⊂ Ω. Here we used the notation L2 =
L2(L2(Ω)× L2(Ω)). Further, we define the boundary operators

C = CΩ ,

B = BΩ .

For the inner product in L2(Q) we write

(·, ·) = (·, ·)L2(Q).

Throughout this paper C > 0 denotes a generic constant.

3 The minimum effort problem for the wave equation

In this section we present the minimum effort problem (P1) in detail and for-
mulate an equivalent problem in which we move the difficulty of the nondiffer-
entiability of the control costs to additional control constraints. Furthermore
we derive the optimality system for the latter problem.

To make the minimum effort problem (P1) precise we choose U = L∞(Q),
y0 ∈ Y 1 and the operators A,Bωc

Cωo
,C and B as defined in the previous

section.
Problem (P1) can be formulated equivalently as





min
(y,u,c)∈X×U×R

+

0

J(y, c) =
1

2
‖Cωo

y − z‖2L2(Q) +
α

2
c2, s.t.

Ay = Bωc
u in Q,

y(0) = y0 in Ω,

Cy = 0 on Σ,

‖u‖U ≤ c.

(P2)

Except for the case c = 0 problem (P2) is equivalent to problem (P3) given
by





min
(y,u,c)∈X×U×R

+

0

J(y, c) =
1

2
‖Cωo

y − z‖2L2(Q) +
α

2
c2, s.t.

Ay = cBωc
u in Q,

y(0) = y0 in Ω,

Cy = 0 on Σ,

‖u‖U ≤ 1.

(P3)
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By standard arguments the existence of a solution (y∗, u∗, c∗) ∈ X × U ×
R

+
0 of problem (P3) can be verified. The reformulation of the problem has

the advantage that the domain of the control space does not depend on the
parameter c.

Remark 3.1 For c = 0 any control u with ‖u‖U ≤ 1 is a minimizer of (P3). To
avoid this case we assume that

J(y∗, c∗) <
1

2
‖z‖2L2(Q) (3.1)

for a solution (y∗, u∗, c∗). If c = 0 problem (P3) reduces to





min
(y,u)∈X×U

J(y) =
1

2
‖Cωo

y − z‖2L2(Q) , s.t.

Ay = 0 in Q,

y(0) = y0 in Ω,

Cy = 0 on Σ,

‖u‖U ≤ 1.

Thus, y is determined by the equation and u can be chosen arbitrarily as far
as the pointwise constraints are satisfied. If (3.1) holds, we have

1

2
‖Cωo

y − z‖2L2(Q) +
α

2
c2 <

1

2
‖z‖2L2(Q)

and with c = 0 this leads to the contradiction

1

2
‖z‖2L2(Q) <

1

2
‖z‖2L2(Q) .

By standard techniques the optimality system can be derived.

Lemma 3.1 The optimality system for problem (P3) is given by





A∗p+C∗
ωo
Cωo

y −C∗
ωo
z = 0, p(T ) = 0, Bp|Σ = 0,

(−B∗
ωc
p, δu− u) ≥ 0 for all δu with ‖δu‖L∞(Q) ≤ 1,

αc− (u,B∗
ωc
p) = 0,

Ay − cBωc
u = 0, y(0) = y0, Cy|Σ = 0

(3.2)

with p ∈ Y ∗.

From the pointwise inspection of the second relation in the optimality system
(3.2) we obtain for (t, x) ∈ J ×Ω

u(t, x) =





1 if B∗
ωc
p(t, x) > 0,

−1 if B∗
ωc
p(t, x) < 0,

s ∈ [−1, 1] if B∗
ωc
p(t, x) = 0

(3.3)
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or equivalently u ∈ Sgn(B∗
ωc
p) with

Sgn(s) =





1 if s > 0,
−1 if s < 0,
[−1, 1] if s = 0.

Eliminating the control we obtain the reduced system





A∗p+C∗
ωo
Cωo

y −C∗
ωo
z = 0, p(T ) = 0, Bp|Σ = 0,

αc−
∥∥B∗

ωc
p
∥∥
L1(Q)

= 0,

Ay − cBωc
sgn(B∗

ωc
p) ∋ 0, y(0) = y0, Cy|Σ = 0.

(3.4)

Under certain conditions the solution of (P3) is unique.

Lemma 3.2 For c 6= 0 and ωc ⊂ ωo the solution of problem (P3) is unique if
we set the control to zero on Q \ (J × ωc).

Remark 3.2 The value of the control on the domain Q \ (J × ωc) has no in-
fluence on the solution of the control problem as far as ‖u‖L∞(Q\(J×ωc))

≤
‖u‖L∞(J×ωc)

. To obtain uniqueness we set u ≡ 0 on Q \ (J × ωc).

Proof of Lemma 3.2 Because of the equivalence of (P3) and (P1) for c 6= 0
it suffices to prove uniqueness for the latter one. Let S : U → L2(Q) be the
control-to-state mapping for the state equation given in (P1). Further, let (y, u)
be a solution of (P1) with the cost given by

F (u) :=
1

2
‖Cωo

S(u)− z‖2L2(Q) +
α

2
‖u‖2L∞(Q) .

For ωo = Ω the map Cωo
S is injective and we have strict convexity of

1

2
‖Cωo

S(u)− z‖2L2(Q) .

Further, the L∞-norm is convex, so F is strictly convex and we obtain unique-
ness.

Uniqueness in the more general case ωc ⊂ ωo is proved as follows. Let

Ay1 = Bωc
u1 in Q, y1(0) = y0 in Ω, Cy1 = 0 on Σ,

Ay2 = Bωc
u2 in Q, y2(0) = y0 in Ω, Cy2 = 0 on Σ

for (yi, ui) ∈ X × U , i = 1, 2, with

Cωo
y1 = Cωo

y2. (3.5)

This implies, that y1− y2 = 0 on J ×ωo. Hence, A(y1− y2) = 0 on J ×ωo and
thus, u1 = u2 on J ×ωc. Consequently, we derive y1 = y2 on Q. Thus Cωo

S is
injective and we are in the situation as above.
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Remark 3.3 For general ωo ⊂ Ω and ωc ⊂ Ω we cannot expect uniqueness
due to the finite speed of propagation. Consider a one dimensional domain
Ω = (0, L), L > 0, with ωo = (0, ε), ε > 0 small, and ωc = Ω. Let (y, u) be a
corresponding solution of (P1) with y 6= 0 in an open subset of Q \ (J × ωo).
Then there exists an open set J in Q \ (J × ωo) in which the adjoint state p
does not vanish. Thus we have u 6= 0 on J . Let ŷ be the solution of

Aŷ = Bωc
g in Q, ŷ(0) = 0 in Ω, ŷ = 0 on Σ

with

g =

{
− sgn(u)η in Bδ,
0 else

for δ, η > 0 and Bδ ⊂ J and the usual sgn–function. Here, Bδ denotes a
ball with radius δ with respect to the topology of Q. Then ‖u+ g‖L∞(Q) =

‖u‖L∞(Q) and Cωo
(ŷ + y) = Cωo

y for δ, η > 0 sufficiently small. Thus we

obtain a second solution (u+ g, ŷ).

4 The regularized minimum effort problem

The optimality system in (3.4) is not (in a generalized sense) differentiable.
Therefore we consider a regularized minimum effort problem given by





min
(y,u,c)∈X×U×R

+

0

Jβ(y, u, c) =
1

2
‖Cωo

y − z‖2L2(Q) +
βc

2
‖u‖2L2(Q) +

α

2
c2,

s.t.

Ay = cBωc
u in Q,

y(0) = y0 in Ω,

Cy = 0 on Σ,

‖u‖L∞(Q) ≤ 1

(Preg)
for y0 ∈ Y 1, parameters α, β > 0, and z ∈ L2(Q).

The existence of a solution follows by standard arguments which we denote
by (yβ , uβ , cβ).

Remark 4.1 The regularization term scales linearly with the parameter c. Al-
ternative regularizations, where the penalty term is constant or quadratic in
c, are discussed in [1].

Remark 4.2 Let (yβ , uβ , cβ) be a solution of (Preg). To exclude the case cβ = 0
for β sufficiently small we assume z 6≡ 0 and

J(y∗, c∗) <
1

2
‖z‖2L2(Q) . (4.1)
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If cβ = 0 we have

1

2
‖z‖2L2(Q) =

1

2
‖Cωo

yβ − z‖2
L2(Q) +

βcβ
2

‖uβ‖2L2(Q) +
α

2
c2β

≤ 1

2
‖Cωo

y∗ − z‖2L2(Q) +
βc∗

2
‖u∗‖2L2(Q) +

α

2
(c∗)2

≤ J(y∗, c∗) +
β(c∗)2

2
meas(Q)

≤ 1

2
‖z‖2L2(Q) + J(y∗, c∗)− ‖z‖2L2(Q) +

β(c∗)2

2
meas(Q)

which is a contradiction to (4.1) for all β > 0 sufficiently small.

The optimality system for the regularized problem is given by





(βuβ −B∗
ωc
pβ , u− uβ) ≥ 0 for all u with ‖u‖L∞(Q) ≤ 1,

A∗pβ +C∗
ωo
(Cωo

yβ − z) = 0, pβ(T ) = 0, Bpβ |Σ = 0,

αcβ +
β

2
‖uβ‖2L2(Q) − (uβ ,B

∗
ωc
pβ) = 0,

Ayβ − cβBωc
uβ = 0, yβ(0) = y0, Cyβ |Σ = 0

with pβ ∈ Y ∗.
By pointwise inspection of the first relation we have

uβ = sgnβ(B
∗
ωc
pβ) =





1 B∗
ωc
pβ(t, x) > β,

−1 B∗
ωc
pβ(t, x) < −β,

1
β
B∗

ωc
pβ(t, x) |B∗

ωc
p(t, x)| ≤ β.

(4.2)

Before we prove uniqueness of a solution of (Preg) we recall the following well-
known property. Let N = { 0 } × L2(Q). Then we can introduce the inverse
operator

A−1 : N → L2, f 7→ y,

where y ∈ X, y(0) = 0, is the unique solution of

〈Ay, ϕ〉Y,Y ∗ = (f, ϕ)L2
∀ϕ ∈ Y ∗.

By a priori estimates, see, e.g., Lions and Magenes [12, p. 265], we obtain that
A−1 is a bounded linear operator. Consequently, there exists a well-defined
dual operator (A−1)∗ : L2 → N satisfying

((A−1)∗w, v)L2
= (w,A−1v)L2

(4.3)

for w ∈ L2 and v ∈ N .
Using this property we can guarantee uniqueness of a solution of the reg-

ularized problem under certain conditions. The uniqueness is not obvious be-
cause of the bilinear structure of the state equation.
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Lemma 4.1 Let (yβ , uβ , cβ) be a solution of (Preg). Then yβ and uβ are
uniquely determined by cβ. Conversely, cβ and yβ are uniquely determined
by uβ. Further, for α > 0 sufficiently large there exists a unique solution of
problem (Preg).

Proof To prove uniqueness we use a Taylor expansion argument as in [1, Ap-
pendix A]. To utilize (4.3) we need to transform (Preg) into a problem with
homogeneous initial condition. For this purpose let ȳ ∈ X be the solution of





Aȳ = 0 in Q,

ȳ(0) = y0 in Ω,

Cȳ = 0 on Σ.

(4.4)

We set z̄ = −Cωo
ȳ + z and introduce problem (Phom) given by





min
(y,u,c)∈X×U×R

+

0

Jβ(y, u, c) =
1

2
‖Cωo

y − z̄‖2L2(Q) +
βc

2
‖u‖2L2(Q) +

α

2
c2,

s.t.

Ay = cBωc
u in Q,

y(0) = 0 in Ω,

Cy = 0 on Σ,

‖u‖U ≤ 1.
(Phom)

The control problems (Preg) and (Phom) are equivalent. Thus, without re-
striction of generality we can assume that the initial state y0 is zero.

We define the reduced cost

F (u, c) =
1

2

∥∥Cωo
A−1(cBωc

u)− z
∥∥2
L2(Q)

+
βc

2
‖u‖2L2(Q) +

α

2
c2.

To shorten notations we set M = Cωo
A−1Bωc

, i.e.

M : L2(Q)
Bωc

−−−−→ N
A

−1

−−−−→ L2

Cωo

−−−−→ L2(Q).

Since M is a linear, bounded operator and using (4.3) we derive the optimality
conditions

cβ(βuβ −M∗z + cβM
∗Muβ , u− uβ) ≥ 0 for all ‖u‖L∞(Q) ≤ 1, (4.5)

αcβ +
β

2
‖uβ‖2L2(Q) − (uβ ,M

∗z) + cβ ‖Muβ‖2L2(Q) = 0. (4.6)
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The partial derivatives of F at (uβ , cβ) are given by

Fuu = c2βM
∗M+ βcβ id,

Fcc = ‖Muβ‖2L2(Q) + α,

Fuc = 2cβM
∗Muβ −M∗z + βuβ ,

Fuuc = 2cβM
∗M+ β id,

Fccu = 2M∗Muβ ,

Fuucc = 2M∗M.

Let (u, c) be an admissible pair. Then we set

û = u− uβ , ĉ = c− cβ .

The Taylor expansion is given as follows, we use the fact, that Fc(uβ , cβ) = 0,
see (4.6), and that the derivatives commute

F (u, c)− F (uβ , cβ) = cβ(βuβ −M∗z + cβM
∗Muβ , û)

+
c2β
2

‖Mû‖2L2(Q) +
βcβ
2

‖û‖2L2(Q)

+
1

2

(
‖Muβ‖2L2(Q) + α

)
ĉ2

+ (2cβM
∗Muβ −M∗z + βuβ , û)ĉ

+
3

6

(
2cβ ‖Mû‖2L2(Q) ĉ+ β ‖û‖2L2(Q) ĉ

)

+ (Muβ ,Mû)ĉ2

+
6

24
2 ‖Mû‖2L2(Q) ĉ

2.

Using twice (4.5) we further have

F (u, c)− F (uβ , cβ) ≥
c2β
2

‖Mû‖2L2(Q) +
β

2
(cβ + ĉ) ‖û‖2L2(Q) +

+
1

2

(
‖Muβ‖2L2(Q) + α

)
ĉ2 + cβ(Muβ ,Mû)ĉ

+ cβ ‖Mû‖2L2(Q) ĉ

+ (Muβ ,Mû)ĉ2 +
1

2
‖Mû‖2L2(Q) ĉ

2.

With

(Muβ ,Mû) = (
√
ηMuβ , (

√
η)−1Mû) ≥ −η

2
‖Muβ‖2L2(Q) −

1

2η
‖Mû‖2L2(Q)

we obtain

F (u, c)− F (uβ , cβ) ≥
c2β
2
(1− 1

η
) ‖Mû‖2L2(Q) +

β

2
c ‖û‖2L2(Q)

+
1

2
(α− η ‖Muβ‖2L2(Q))ĉ

2 + cβ ‖Mû‖2L2(Q) ĉ.

(4.7)
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Set K := sup { ‖Mu‖2L2(Q) | ‖u‖L∞(Q) ≤ 1 } and choose η = 1. For α > K2 we
have

F (u, c)− F (uβ , cβ) ≥
β

2
c ‖û‖2L2(Q) +

1

2
(α−K2)ĉ2 + cβ ‖Mû‖2L2(Q) ĉ ≥ 0.

(4.8)

Let (uβ , cβ) and (uβ′ , cβ′) be two solutions. Then we obtain from (4.8), that
(uβ , cβ) = (uβ′ , cβ′).

From (4.7) we see, that for cβ = cβ′ also uβ = uβ′ for any η ≥ 1 and
for uβ = uβ′ we have cβ = cβ′ for η > 0 sufficiently small. These last two
statements do not require any assumption on α.

In the following we analyze convergence of the the solution of (Preg) for
β → 0 and proceed as in [1].

Lemma 4.2 For β > 0 let (yβ , uβ , cβ) denote a solution of (Preg). Further
let (P3) have a solution (y∗, u∗, c∗) which we associate with β = 0 and also
denote by (y0, u0, c0). Then for any 0 ≤ β ≤ β′ we have

cβ′ ‖uβ′‖2
L2(Q) ≤ cβ ‖uβ‖2L2(Q) , (4.9)

J(yβ , cβ) ≤ J(yβ′ , cβ′), (4.10)

J(yβ , cβ) +
βcβ
2

‖uβ‖2L2(Q) ≤ J(y∗, c∗) +
βc∗

2
‖u∗‖2L2(Q) . (4.11)

Proof We recall the proof from [1] and apply it to the time-dependent case.
Since (yβ , uβ , cβ) is a solution of (Preg) and (y0, u0, c0) a solution of (P3),
respectively, we have for 0 ≤ β ≤ β′ that

J(yβ , cβ) +
βcβ
2

‖uβ‖2L2(Q) ≤ J(yβ′ , uβ′) +
βcβ′

2
‖uβ′‖2

L2(Q) .

Thus, further

J(yβ , cβ) +
βcβ
2

‖uβ‖2L2(Q) +
(β′ − β)cβ′

2
‖uβ′‖2

L2(Q)

≤ J(yβ′ , cβ′) +
β′cβ′

2
‖uβ′‖2

L2(Q)

≤ J(yβ , cβ) +
β′cβ
2

‖uβ‖2L2(Q) .

(4.12)

From the outer inequality we have (β′−β)(cβ′ ‖uβ′‖2
L2(Q)− cβ ‖uβ‖

2
L2(Q)) ≤ 0

implying the first assertion. From (4.12) we derive

J(yβ , cβ)− J(yβ′ , cβ′) ≤ β(cβ′ ‖uβ′‖2
L2(Q) − cβ ‖uβ‖2L2(Q)) (4.13)

and the right hand side is smaller than or equal to zero by the previous result
and thus (4.10) follows. Assertion (4.11) follows from the last inequality in
(4.12) by setting β′ = β and β = 0.
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After this preparation we prove convergence of minimizers of (Preg) follow-
ing [1].

Theorem 4.1 Let (P3) have a unique solution. Then any selection of solu-
tions
{ (yβ , uβ , cβ) }β>0 of (Preg) are bounded in X × L∞(Q) × R

+
0 and converges

weak ∗ to the solution of (P3) for β → 0. It converges strongly in X×Lq(Q)×
R

+
0 for q ∈ [1,∞).

Proof Let ŷ ∈ X be the solution of (4.4). The point (ŷ, û, ĉ) = (ŷ, 0, 0) is
feasible for the constraints. Thus we have

‖Cωo
yβ − z‖2

L2(Q) + βcβ ‖uβ‖2L2(Q) + αc2β ≤ ‖Cωo
ŷ − z‖2L2(Q)

and consequently, the boundedness of cβ follows. The controls uβ are bounded
by the constant 1 in L∞(Q) and hence, yβ is bounded in X.

Therefore, there exists (ȳ, ū, c̄) ∈ X × L∞(Q)×R
+
0 such that for a subse-

quence there holds

(yβ , uβ , cβ)⇀
∗ (ȳ, ū, c̄)

in X × L∞(Q) × R. By passing to the limit in the equation we obtain that
(ȳ, ū, c̄) is a solution of





Ay = cBωc
u in Q,

y(0) = y0 in Ω,

Cy = 0 on Σ.

Since the L∞–norm is weak ∗ lower semicontinuous, we have ‖ū‖L∞(Q) ≤ 1.

Further, by the weak lower semicontinuity of Jβ : L
2(Q) × L2(Q) × R

+
0 → R

we derive that (ȳ, ū, c̄) is a solution of (P3). Uniqueness of the solution of (P3)
implies that (ȳ, ū, c̄) = (y∗, u∗, c∗). Thus we have proved weak ∗ convergence.

For strong convergence insert the weak limit (u∗, c∗) in (4.9) with β = 0
and obtain for all β′ > 0 from the lower semicontinuity of the norm that

cβ′ ‖uβ′‖2
L2(Q) ≤ c∗ ‖u∗‖2L2(Q) ≤ lim inf

β′→0
cβ′ ‖uβ′‖2

L2(Q) .

This implies

lim sup
β′→0

‖uβ′‖2
L2(Q) ≤ ‖u∗‖2L2(Q) ≤ lim inf

β′→0
‖uβ′‖2

L2(Q)

and consequently, strong convergence in L2(Q). Using

‖uβ′ − u∗‖
Lp(Q) ≤ ‖uβ′ − u∗‖

L2(Q) ‖uβ′ − u∗‖
L∞(Q)

we obtain strong convergence of uβ′ → u∗ in every Lq(Q), q ∈ [1,∞). Further-
more, this implies strong convergence of the corresponding state yβ′ .
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Remark 4.3 In case of non-unique solvability of (P3) the assertion of The-
orem 4.1 remains true if we consider the convergence of subsequences to a
solution of (P3).

From the strong convergence of uβ we can derive a convergence rate for the
error in the cost functional.

Corollary 4.1 Let (P3) have a unique solution (y∗, u∗, c∗). Then there holds

J(yβ , cβ)− J(y∗, c∗) = o(β)

for β → 0.

Proof From (4.13) we have

0 ≤ J(yβ , cβ)− J(y∗, u∗) ≤ β(cβ ‖uβ‖L2(Q) − c∗ ‖u∗‖L2(Q))

which proves the assertion.

From know on we will assume, that problem (Preg) has a unique solution.

5 Semi-smooth Newton method

In this section we formulate the semi-smooth Newton method and prove its
superlinear convergence. To keep notations simple we omit the index β for the
solution of the regularized problem. Using

‖p‖L1
β
(Q) =

∫

Q

|p(t, x)|βdxdt, |p(t, x)|β =





p(t, x)− β
2 if p(t, x) > β,

−p(t, x)− β
2 if p(t, x) < −β,

1
2β p(t, x)

2 if |p(t, x)| ≤ β

we reformulate the optimality system for the regularized problem. We elimi-
nate the control u using (4.2) and obtain

A∗p+C∗
ωo
(Cωo

y − z) = 0, p(T ) = 0, Bp|Σ = 0, (5.1)

αc−
∥∥B∗

ωc
p
∥∥
L1

β
(Q)

= 0, (5.2)

Ay − cBωc
sgnβ(B

∗
ωc
p) = 0, y(0) = y0 Cy|Σ = 0. (5.3)

To write the system equivalently as an operator equation we set

W = X × Y ∗
0 ×R

+,

Z = X∗ ×R× Y × Y 1.

For convenience of the reader we recall that Y 1 = H1
0 (Ω) × L2(Ω), Y 0 =

L2(Ω) × H−1(Ω), X = L2(Y 1) ∩ H1(Y 0), P 1 = (Y 0)∗, P 0 = (Y 1)∗, Y ∗
0 =
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{ p ∈ L2(P 1) ∩H1(P 0) | p(T ) = 0 }, and Y = L2(Y 0)⊕
(
H1(P 0)

)∗
. Then, we

can define the operator T by

T : W −→ Z, T(x) = T(y, p, c) =




A∗p+C∗
ωo
Cωo

y −C∗
ωo
z

αc−
∥∥B∗

ωc
p
∥∥
L1

β
(Q)

Ay − cBωc
sgnβ(B

∗
ωc
p)

y(0)− y0


 (5.4)

and obtain (5.1)–(5.3) equivalently as

T(x) = 0 (5.5)

for x ∈W .
To formulate the semi-smooth Newton method we need Newton differen-

tiability of the operator T. Let

WR = X × Y ∗
0 ×R.

Lemma 5.1 The operator T is Newton differentiable, i.e. for all x ∈ W and
h ∈WR there holds

‖T(x+ h)−T(x)−T′(x+ h)h‖Z = o(h) for ‖h‖WR → 0. (5.6)

Proof The operator

max: Lp(Q) → Lq(Q), p > q ≥ 1

is Newton differentiable with derivative

(DN max(0, v − β)h)(t, x) =

{
h(t, x), v(t, x) > β,
0, v(t, x) ≤ β

for v, h ∈ Lp(Q), β ∈ R, and (t, x) ∈ Q, see Ito and Kunisch [8, Example 8.14].
For the min operator an analog Newton derivative can be obtained. Since

sgnβ(v) =
1

β
(v −max(0, v − β)−min(0, v + β))

we obtain for the operator

sgnβ : L
p(Q) → Lq(Q), p > q ≥ 1,

the Newton derivative

(
DN sgnβ(p)h

)
(t, x) =

{
0, |p(t, x)| > β,
1
β
h(t, x), |p(t, x)| ≤ β

for v, h ∈ Lp(Q), β ∈ R
+, and (t, x) ∈ Q.

The mapping w : R → R, s 7→ |w(s)|β defines a differentiable Nemytskii
operator from Lp(Q) to L2(Q) for p ≥ 4 according to Tröltzsch [15, Chap-
ter 4.3.3]. Thus, the mapping

‖·‖L1
β
(Q) : L

p(Q) → R, p ≥ 4
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is Newton differentiable with Newton derivative

DN (‖v‖L1
β
(Q))h = (sgnβ(v), h)

for v, h ∈ Lp(Q), see Clason, Ito, and Kunisch [1].
Further, since B∗

ωc
p ∈ C(H1(Ω)) →֒ Lq(Q) for q = 2d

d−2 the mappings

p 7→ B∗
ωc
p 7→

∥∥B∗
ωc
p
∥∥
L1

β
(Q)

, Y ∗ → L4(Q) → R,

p 7→ B∗
ωc
p 7→ cBωc

sgnβ(B
∗
ωc
p), Y ∗ → L4(Q) → L2(Q) → X∗

(5.7)

for d ≤ 4 are Newton differentiable. Consequently, we obtain the assertion.

To formulate the semi-smooth Newton method we consider

T′ : W → L(WR, Z) (5.8)

with

T′(x)(δy, δp, δc) =




A∗δp+C∗
ωo
Cωo

δy
αδc− (sgnβ(B

∗
ωc
p),B∗

ωc
δp)

Aδy − δcBωc
sgnβ(B

∗
ωc
p)− c

β
Bωc

B∗
ωc
δpχIp

δy(0)


 (5.9)

for x = (y, p, c) ∈W and (δy, δp, δc) ∈WR. Here χIp denotes the characteristic
function for the set

Ip = { (t, x) ∈ Q | |B∗
ωc
p(t, x)| ≤ β } . (5.10)

The operator T′(x) is invertible on its image as we see in the next lemma.
The proof is presented in the appendix.

Lemma 5.2 For x ∈W the operator

T′(x) : WR → Im(T′(x)) ⊂ Z

is bijective and we can define

T′(x)−1 : Im(T′(x)) →WR.

Furthermore, there holds the following estimate

∥∥T′(x)−1(z)
∥∥
WR

≤ C ‖z‖Z (5.11)

for z ∈ Im(T′(x)) ∩ Z1 uniformly in x ∈W , where

Z1 = S ×R×M × { 0 } ⊂ Z

and S = { (χωo
v, 0) | v ∈ L2(L2(Ω)) }, M = { (0, v) | v ∈ L2(H−1(Ω)) }.
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Directly applying the Newton method to equation (5.5) leads to the itera-
tion

T′(xk)(δx) = −T(xk), (5.12)

xk+1 = δx+ xk, x0 ∈W, (5.13)

where in every Newton step the following system

A∗δp+C∗
ωo
Cωo

δy = −A∗pk −C∗
ωo
Cωo

yk +C∗
ωo
z,

(5.14)

δp(T ) = 0,

Bδp|Σ = 0,

αδc− (sgnβ(B
∗
ωc
pk),B∗

ωc
δp) = −αck +

∥∥B∗
ωc
pk
∥∥
L1

β
(Q)

,

Aδy − δcBωc
sgnβ(B

∗
ωc
pk)− ck

β
Bωc

B∗
ωc
δpχIk = −Ayk + ckBωc

sgnβ(B
∗
ωc
pk),

(5.15)

δy(0) = −yk(0) + y0, (5.16)

Cδy|Σ = 0

with Ik = Ipk has to be solved. To simplify the system we reformulate it
equivalently as follows

A∗pk+1 +C∗
ωo
Cωo

yk+1 = C∗
ωo
z, (5.17)

pk+1(T ) = 0, (5.18)

Bpk+1|Σ = 0, (5.19)

αck+1 − (sgnβ(B
∗
ωc
pk),B∗

ωc
pk+1) =

− (sgnβ(B
∗
ωc
pk),B∗

ωc
pk) +

∥∥B∗
ωc
pk
∥∥
L1

β
(Q)

,

(5.20)

Ayk+1 − ck+1Bωc
sgnβ(B

∗
ωc
pk)− ck

β
Bωc

B∗
ωc
pk+1χIk = −c

k

β
Bωc

B∗
ωc
pkχIk ,

(5.21)

yk+1(0) = y0, (5.22)

Cy|Σ = 0, (5.23)

δy = yk+1 − yk (5.24)

for k ∈ N0. The iterates pk+1 are solutions of wave equations with right hand
side in L2(Q)×{ 0 } and the iterates yk+1 are solutions of wave equations with
right hand side in { 0 }×L2(Q) for all k ≥ 0 and initialization (y0, p0, c0) ∈W .

Under certain conditions the well-definedness of the Newton iteration can
be shown.
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Lemma 5.3 For x0 ∈W the Newton iterates xk satisfy

xk ∈W, T(xk) ∈ Im(T′(xk))

for k ∈ N0 if ck > 0.

Remark 5.1 Let x∗ be the solution of (Preg). In Theorem 5.1 we will show that
for β and

∥∥x0 − x∗
∥∥
WR

sufficiently small the iterates ck remain positive.

Proof of Lemma 5.3 For given iterate xk ∈W we consider the control problem





min
(y,u,c)∈X×U×R

+

0

J(c, u, y) =
1

2
‖Cωo

y − z‖2L2(Q) +
βck

2
‖u‖2L2(Q)

+
α

2
|c− z1|2,

s.t.

Ay − cBωc
sgnβ(B

∗
ωc
pk)− ckBωc

uχIk = z2 in Q,

y(0) = y0 in Ω,

Cy|Σ = 0 on Σ
(5.25)

with Ik = Ipk , z2 ∈ L2({ 0 } × L2(Ω)), z1 ∈ R, y0 ∈ Y 1, xk = (yk, pk, ck) and
α, β, y0 as in (5.17)–(5.23). This problem has a unique solution (y, u, c).

The optimality system of (5.25) is given by (5.17)–(5.23) if we choose

z1 = − 1

α

(
(sgnβ(B

∗
ωc
pk),B∗

ωc
pk)−

∥∥B∗
ωc
pk
∥∥
L1

β
(Q)

)
, (5.26)

z2 = −c
k

β
Bωc

B∗
ωc
pkχIk . (5.27)

From (5.17)–(5.19) we derive that p ∈ Y ∗
0 . This implies xk ∈ W for all New-

ton iterates. Since (5.12)–(5.13) and (5.17)–(5.24) are equivalent, the second
assertion follows, when setting δy = y − yk.

To apply (5.11) we need T(xk) ∈ Z1. For k ≥ 1 this follows immediately
from (5.17)–(5.23). To obtain T(x0) ∈ Z1, we choose x0 = (y0, p0, c0) ∈ W ,
such that

y0(0) = y0, (5.28)

∂ty
0
1 = y02 , (5.29)

A∗p0 +C∗
ωo
Cωo

y0 −C∗
ωo
z = 0. (5.30)

To prove superlinear convergence of the Newton method we need the fol-
lowing estimate.
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Lemma 5.4 Let x∗ ∈ W be the solution of (Preg) and let x0 ∈ W satisfy
(5.28)–(5.30). Then the Newton iterates satisfy

xk+1 − x∗ = −T′(xk)−1
(
T(xk)−T(x∗)−T′(xk)(xk − x∗)

)
(5.31)

and there holds the following estimate
∥∥xk+1 − x∗

∥∥
WR

≤ C
∥∥T(xk)−T(x∗)−T′(xk)(xk − x∗)

∥∥
Z

(5.32)

for k ∈ N0 if ck > 0 with xk = (yk, pk, ck).

Proof There holds T(x∗) = 0 and T′(xk)(xk − x∗) ∈ Im(T′(xk)), and accord-
ing to Lemma 5.3 we have T(xk) ∈ Im(T′(xk)). Consequently,

T(x∗)−T(xk)−T′(xk)(xk − x∗) ∈ Im(T′(xk))

for all k ∈ N0. Further, we derive from (5.17)–(5.24) and (5.28)–(5.30) that
for k ∈ N0

T(x∗)−T(xk)−T′(xk)(xk − x∗) ∈ Im(T′(xk)) ∩ Z1.

Thus, the assertion follows with Lemma 5.2.

The superlinear convergence of the Newton method is shown in the next
main theorem.

Theorem 5.1 Let x∗ = (y∗, p∗, c∗) be the solution of (Preg) with z 6≡ 0 and
β sufficiently small, such that c∗ > 0 (cf. Remark 4.2). Further let x0 ∈
W satisfy (5.28)–(5.30) and let

∥∥x0 − x∗
∥∥
WR

be sufficiently small. Then the

iterates xk = (yk, pk, ck) ∈W of the semi-smooth Newton method (5.12)-(5.13)
are well defined and they satisfy

∥∥xk+1 − x∗
∥∥
WR

≤ o(
∥∥xk − x∗

∥∥
WR

) (5.33)

for
∥∥xk − x∗

∥∥
WR

→ 0.

Proof From the estimates (5.6) and (5.32) and the positiveness of c∗ > 0 we
conclude that ck > 0 for all k ∈ N if

∥∥x0 − x∗
∥∥
WR

is sufficiently small. Thus
by Lemma 5.3 all iterates are in W .

Estimate (5.33) follows from Lemma 5.1, Lemma 5.4 and [8, Proof of The-
orem 8.16].

To realize the semi-smooth Newton method we introduce the active sets

A+
k = { (t, x) ∈ Q | B∗

ωc
pk(t, x) > β } ,

A−
k = { (t, x) ∈ Q | B∗

ωc
pk(t, x) < −β }

for iterates pk ∈ Y ∗. With Ik = Ipk (cf. the definition in (5.10)) we have Q =
Ik ∪A+

k ∪A−
k . The Newton method is realized as presented in Algorithm 5.1.

Remark 5.2 The solution of system (5.17)–(5.24) in Step 7 of Algorithm 5.1
can be found by solving the control problem (5.25) if we assume that the scalar
c is always positive.
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Algorithm 5.1 Semi-smooth Newton algorithm with path-following

1: Choose n = 0, y
0

= (y
01
, y

02
) ∈ X satisfying (5.28) and (5.29), c0 ∈ R+,

q ∈ (0, 1), tol, tolβ , β0 ∈ R+, and n̄ ∈ N.
2: For given y

0
solve the adjoint equation (5.1) and obtain p

0
∈ Y ∗.

3: repeat

4: Set k = 0 and (y0, p0, c0) = (y
n
, p

n
, cn).

5: repeat

6: Compute the active and inactive sets A+
k
, A−

k
, and Ik:

A+
k

= { (t, x) ∈ Q | B∗

ωc
pk(t, x) > β } ,

Ik = { (t, x) ∈ Q | |B∗

ωc
pk(t, x)| ≤ β } ,

A−

k
= { (t, x) ∈ Q | B∗

ωc
pk(t, x) < −β } .

7: Solve for xk = (yk, pk, ck) system (5.17)–(5.24) and obtain

xk+1 = (yk+1, pk+1, ck+1).

8: Set k = k + 1.
9: until

∥

∥xk − xk−1
∥

∥

WR < tol.

10: Set (y
n+1

, p
n+1

, cn+1) = xk.

11: Compute uk+1 = sgnβ(B
∗

ωc
(pk+1)).

12: Set βn+1 = qβn.
13: Set n = n+ 1.
14: until βn+1 < tolβ or n > n̄.

6 Discretization

To realize Algorithm 5.1 numerically we present the discretization of problem
(5.25) for data given by (5.26)–(5.27).

For the discretization of the state equation we apply a continuous Galerkin
method following Kröner, Kunisch, and Vexler [10]. For temporal discretization
we apply a Petrov–Galerkin method with continuous piecewise linear ansatz
functions and discontinuous (in time) piecewise constant test functions. For
the spatial discretization we use conforming linear finite elements. Let

J̄ = {0} ∪ J1 ∪ · · · ∪ JM

be a partition of the time interval J̄ = [0, T ] with subintervals Jm = (tm−1, tm]
of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the time discretization parameter k as a piecewise constant function
by setting k|Jm

= km for m = 1, . . . ,M . Further, for

0 = l0 < l1 < · · · < lN−1 < lN = L

let
Th = L1 ∪ · · · ∪ LN
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be a partition of the space interval Ω = (0, L) with subintervals Ln = (ln−1, ln)
of size hn and h = maxn=1,...,M hn. We construct on the mesh Th a conforming
finite element space Vh in a standard way by setting

Vh =
{
v ∈ H1

0 (Ω)
∣∣ v|Ln

∈ P1(Ln)
}
.

Then the discrete ansatz and test space are given by

Xkh = { v ∈ C(J̄ , L2(Ω)) | v|Jm
∈ P1(Jm, Vh) } ,

X̃kh = { v ∈ L2(J,H1
0 (Ω)) | v|Jm

∈ P0(Jm, Vh) and v(0) ∈ L2(Ω) } ,

where Pr(Jm, Vh) denotes the space of all polynomials of degree lower or equal
r = 0, 1 defined on Jm with values in Vh. For the discretization of the control
space we set

Ukh = X̃kh.

In the following we present the discrete optimality system for (5.25) as-
suming that the iterates ck are positive. With the notation

(·, ·)Jm
:=

∫

Jm

(·, ·)L2(Ω)dt

for the Newton iterates ck ∈ R, ukkh ∈ Ukh, y
k
kh = (yk1 , y

k
2 ) ∈ Xkh ×Xkh, and

pkkh = (pk1 , p
k
2) ∈ X̃kh × X̃kh, k ∈ N, the adjoint equation is given by

−
M−1∑

m=0

(ψ1(tm), pk+1
1 (tm+1)− pk+1

1 (tm))L2(Ω) + (∇ψ1,∇pk+1
2 )

+ (ψ1(tM ), pk+1
1 (tM ))L2(Ω) = −(ψ1, χωo

(yk+1
1 − z)) ∀ψ1 ∈ Xkh, (6.1)

−
M−1∑

m=0

(ψ2(tm), pk+1
2 (tm+1)− pk+1

2 (tm))L2(Ω) − (ψ2, pk+1
1 )

+ (ψ2(tM ), pk2(tM ))L2(Ω) = 0 ∀ψ2 ∈ Xkh, (6.2)

the optimality conditions by

αck+1 − (sgnβ(χωc
pk2), χωc

pk+1
2 ) = −(sgnβ(χωc

pk2), χωc
pk2) +

∥∥χωc
pk2
∥∥
L1

β
(Q)

,

(6.3)

(βuk+1
kh , τu) = (χIkh

χωc
pk+1
2 , τu) ∀τu ∈ Ukh, (6.4)

for Ikh = Ipkh
and the state equation by

M∑

m=1

(∂ty
k+1
1 , ξ1)Jm

−(yk+1
2 , ξ1)+(yk+1

1 (0)−y0,1, ξ1(0))L2(Ω) = 0 ∀ξ1 ∈ X̃kh,

(6.5)
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M∑

m=1

(∂ty
k+1
2 , ξ2)Jm

+ (∇yk+1
1 ,∇ξ2) + (yk+1

2 (0)− y0,2, ξ
2(0))L2(Ω)

− ck+1(sgnβ(χωc
pk2), ξ

2)− ck(χωc
uk+1
kh χIkh

, ξ2)

= −ck(sgnβ(χωc
pk2), ξ

2) ∀ξ2 ∈ X̃kh (6.6)

with y0 = (y0,1, y0,2).

When evaluating the time integrals by a trapedoizal rule the time stepping
scheme for the state equation results in a Crank Nicolson scheme.

To solve the system (6.1)–(6.6) we introduce the control-to-state operator
for the discrete state equation (6.5)–(6.6)

Sk
kh : Ukh ×R → L2(Q), (ukh, c) 7→ y1

and the discrete reduced cost functional

jkkh : Ukh ×R → R
+
0 ,

jkkh(ukh, c) =
1

2
‖χωo

Skh(ukh, c)‖2L2(Q) +
βc

2
‖ukh‖2U +

α

2
|c− z1|2,

with

z1 = − 1

α

(
(sgnβ(χωc

pk2), χωc
pk2)−

∥∥χωc
pk2
∥∥
L1

β
(Q)

)
,

where pkkh = (pk1 , p
k
2) results from the previous iterate. Then the solution of

the system is given as a solution of the reduced problem

min jkkh(ukh, c), (ukh, c) ∈ Ukh ×R.

The necessary optimality condition is given by

(jkkh)
′(ukh, c)(δu, δc) = 0 ∀(δu, δc) ∈ Ukh ×R.

We solve this reduced problem by a classical Newton method, i.e. the Newton
update (τu, τc) ∈ Ukh ×R is given by

(jkkh)
′′(ukh, c)(τu, τc, δu, δc) = −(jkkh)

′(ukh, c)(δu, δc) ∀(δu, δc) ∈ Ukh ×R.
(6.7)

The explicit representations of the derivatives of the reduced cost functional
are given in the Appendix 8.2.
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7 Numerical examples

In this section we present numerical examples confirming the theoretical results
from above. In the first three examples we consider the convergence behaviour
of the Newton iteration in the inner loop of Algorithm 5.1, i.e. we consider
the case with path iteration number n̄ = 0. Further, we present an example in
which we consider the algorithm with n̄ large and analyze the behaviour for
β → 0.

The computations are done by using MATLAB, for the plot in Figure 7.3
the optimization library RoDoBo [14] was used.

Example 7.1 Let the data be given as follows

z(t, x) = − sin(2πx), α = 10−2, β = 10−3, y0(x) = (x(1− x), 0), n̄ = 0

for x ∈ Ω = (0, 1) and T = 1. The control and observation area is given by

ωo = (0, 1), ωc = (0, 1).

As an initial point for the algorithm we choose

y0(t, x) = (x(1− x), 0) , c0 = 10

satisfying (5.28) and (5.29). We discretize our problem as presented in the
previous section on uniform meshes with N = 256 and M = 255.

Table 7.1: Error of the Newton iterates

k c ekc ekc/e
(k−1)
c eky eky/e

(k−1)
y ekp ekp/e

(k−1)
p am ap

0 10.0 8.49 - 9.63 - 0.74 - 42025 17450
1 1.214853 2.95e-01 3.48e-02 8.30e+00 8.63e-01 2.32e-01 3.12e-01 32298 25740
2 1.393382 1.17e-01 3.95e-01 7.51e-01 9.05e-02 3.12e-02 1.34e-01 22186 33754
3 1.489242 2.08e-02 1.78e-01 3.14e-01 4.18e-01 8.52e-03 2.73e-01 26101 31073
4 1.509587 4.43e-04 2.13e-02 3.28e-02 1.04e-01 1.04e-03 1.22e-01 24874 31490
5 1.510022 8.19e-06 1.85e-02 1.48e-03 4.52e-02 4.40e-05 4.22e-02 25120 31450
6 1.510031 9.14e-08 1.12e-02 5.53e-06 3.73e-03 9.35e-08 2.13e-03 25133 31448
7 1.510031 1.62e-10 1.77e-03 3.70e-10 6.69e-05 6.97e-12 7.45e-05 25133 31448
8 1.510031 0.00 0.00 0.00 0.00 0.00 0.00 25133 31448

In Table 7.1 we see the errors in the scalar ekc = |ck − c∗|, in the state
eky =

∥∥yk − y∗
∥∥
X

and in the adjoint state ekp =
∥∥pk − p∗

∥∥
L2(P 1)∩L2(P 0)

in

every Newton iteration k. For the exact solution (y∗, p∗, c∗) we choose the 8th
iterate. We do not consider the full norm of Y ∗

0 for the adjoint state, since we
discretize the adjoint state by piecewise constants in time. By am we denote the
number of mesh points in set A− and by ap the number of mesh points in set
A+. As the stopping criterion for the Newton iteration we choose tol = 10−9.
If we go beyond this tolerance the residuums in the conjugate gradient method
to solve the Newton equation (6.7) reach the machine accuracy. The behaviour
of the errors presented in Table 7.1 indicate superlinear convergence.
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Example 7.2 In this example we keep the data as above except for

ωo = (0, 1), ωc = (0, 1/3),

i.e. the control domain is a subset of the domain of observation, cf. Lemma
3.2. In Table 7.2 the behaviour of the errors of the Newton iterates are shown.
For the exact solution we choose the 6th Newton iterate and as in the previous

Table 7.2: Error of the Newton iterates

k c ekc ec
k
/ec

(k−1)
eky ey

k
/ey

(k−1)
ekp ep

k
/ep

(k−1)
am ap

0 10.0 9.62 - 11.64 - 8.67e-01 - 19923 0
1 0.346298 2.88e-02 3.00e-03 4.43e-01 3.80e-02 1.71e-02 1.97e-02 15559 2782
2 0.374087 1.06e-03 3.67e-02 2.81e-02 6.35e-02 1.21e-03 7.10e-02 15892 1699
3 0.375135 9.41e-06 8.89e-03 2.13e-04 7.59e-03 8.98e-06 7.40e-03 15875 1784
4 0.375145 4.24e-09 4.51e-04 5.15e-08 2.41e-04 1.64e-09 1.83e-04 15875 1785
5 0.375145 3.36e-13 7.93e-05 1.31e-12 2.54e-05 4.86e-14 2.96e-05 15875 1785
6 0.375145 0.00 0.00 0.00 0.00 0.00 0.00 15875 1785

example the iterates converge superlinearly.

Example 7.3 In this example we choose the data as above except for

ωo = (1/2, 1), ωc = (0, 1/3),

i.e. ωc 6⊂ ωo. Further, we set tol = 10−7 for the reason already mentioned in
Example 7.1. The behaviour of the errors of the Newton iterates is presented
in Table 7.3. As the exact solution we take the 4th iterate and again we obtain

Table 7.3: Error of the Newton iterates

k c ekc ekc/e
k−1
c eky eky/e

k−1
y ekp ekp/e

k−1
p am ap

0 10.0 9.45 - 10.67 - 0.41 - 0 10075
1 0.491219 1.28e-02 1.35e-03 3.91e+00 3.67e-01 1.81e-02 4.36e-02 0 11444
2 0.503892 1.57e-04 1.22e-02 1.07e-02 2.73e-03 2.63e-05 1.45e-03 0 11927
3 0.504049 1.10e-08 7.01e-05 2.01e-08 1.89e-06 4.69e-10 1.78e-05 0 11927
4 0.504049 0.00 0.00 0.00 0.00 0.00 0.00 0 11927

superlinear convergence.

We note that in these three examples above am and ap are identified before
we stop. In fact not only the cardinality of the sets A− and A+ stagnates but
the sets themselves are identified.

Example 7.4 In this example we apply a simple path-following strategy by
choosing in every iteration the new regularization parameter by the rule

βn+1 = qβn, n ∈ N0,

with some given q ∈ (0, 1) and β0 > 0.
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We choose

z = −1, α = 10−2, β0 = 10−1, y0(x) = (sin(2πx),−4 sin(2πx)), n̄ = 6
(7.1)

for x ∈ Ω = (0, 1) and T = 1. Further we set q = 0.2 and ωc = ωo = Ω. We
solve the problem on a spatial and temporal mesh with N = 100 andM = 127.
For initialization we choose

y0(t, x) = ((t− 1)4 sin(2πx), 4(t− 1)3 sin(2πx)), c0 = 1 (7.2)

for (t, x) ∈ Q. The results are presented in Table 7.4. For decreasing β the
corresponding values of the cost functional and the behaviour of the error
eJβn

= J(uβn
, cβn

)− J(u∗, c∗) is shown. For the exact solution (u∗, c∗) we take
(uβ6

, cβ6
). Further the number of Newton steps ns is presented.

Table 7.4: Error in the cost functional

n βn J(uβn
, cβn

) J(uβn
, cβn

)− J(u∗, c∗) eJ
βn

/eJ
βn−1

cβn
am ap ns

0 1.0 0.25171 3.77e-02 - 2.94061 2590 0 3
1 2.0e-02 0.22346 9.47e-03 0.25 3.70135 6833 0 3
2 4.0e-03 0.21623 2.24e-03 0.24 3.96424 8720 722 3
3 8.0e-04 0.21444 4.53e-04 0.20 4.04065 9702 1563 2
4 1.6e-04 0.21407 8.57e-05 0.18 4.05790 10164 1915 2
5 3.2e-05 0.21401 1.47e-05 0.17 4.06136 10371 2054 2
6 6.4e-06 0.21400 0.00 0.00 4.06209 10520 2120 1

The values of the cost functional decrease which confirms the theoretical
result in (4.10). Further, the behaviour of the errors indicates superlinear con-
vergence for β → 0, which confirms the result of Corollary 4.1. The number of
active points in A− is larger than in A+ which we expect for the given desired
state.

For β smaller than presented in Table 7.4 the number of active and in-
active nodes remains constant up to 3 switching nodes, however one looses
the superlinear convergence. The number of Newton steps decreases which re-
lies on the fact that the iteration is nested. For a non nested iteration (i.e.
(y

n
, p

n
, cn) = (y

0
, p

0
, c0) for all n) the number of Newton steps is increasing

for smaller β, see Table 7.5.

Table 7.5: Newton steps for decreasing β

β 1.0e-00 2.0e-02 4.0e-03 8.0e-04 1.6e-04 3.2e-05 6.4e-06

ns 3 5 5 5 6 7 12

In Figure 7.1 we compare for time horizon T = 2 the state of the regularized
control problem for data given in (7.1), (7.2) and β = 4 ·10−3 with the solution
of the state equation for u ≡ 0. The plots show the behaviour of the state with
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Fig. 7.1: State for the controlled and uncontrolled (u ≡ 0) problem

respect to time. The first plot indicates that the state tries to reach the desired
state z = −1 different from the second (uncontrolled) one.

If we go beyond the time horizon T = 2 the tracking of the desired state
by the optimal state of the regularized problem further improves.

In Figure 7.2 we see the corresponding optimal control of the regularized
problem which is nearly of bang-bang type.

Figure 7.3 shows the optimal state for problem (P1) when replacing the
L∞– by L2–control costs with α given as in (7.1). The tracking of the desired
state is nearly the same as in case of the regularized problem presented in
Figure 7.1. But we see that in some parts the deflection in positive direction
is less than for the regularized problem. This reflects our expectation, since
the L2–control space is larger than the L∞–space and thus allows a better
approximation of the desired state.

We also tested the case with ωo = [0, 1/3] and ωc = [2/3, 1] and observed
similar numerical behaviour for different initializations y

0
and c0.
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Fig. 7.2: Optimal control
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Fig. 7.3: Optimal state for L2–control costs

8 Appendix

8.1 Proof of Lemma 5.2

In the first step we show the bijectivity of the map T′(x) : WR → Im(T′(x))
for x ∈ W . The surjectivity is obvious. To verify injectivity we proceed as
follows. Assume T′(x)v = T′(x)w for given v, w ∈ WR. Then v − w is the
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solution of the following optimal control problem





min
(δy,δu,δc)∈X×U×R

J(δy, δu, δc) =
1

2
‖Cωo

δy − z0‖2L2(Q) +
βc

2
‖δu‖2L2(Q)

+
α

2
|δc|2, s.t.

Aδy − δc Bωc
sgnβ(B

∗
ωc
p)− cBωc

δuχIp = 0 in Q,

δy(0) = 0 in Ω,

Cδy|Σ = 0 on Σ.
(8.1)

with x = (y, p, c) and z0 ≡ 0. Existence of a unique solution follows by con-
sidering the reduced functional j(δu, δc) = J(δc, δu, δy(δu, δc)), where δy is
the solution to the constraining partial differential equation as a function of
(δu, δc). The solution is necessarily zero.

In the second step we prove the estimate (5.11). Let x = (y, p, c) ∈ W ,
δx = (δy, δp, δc) ∈ WR and z = (z0, z1, z2, 0) ∈ Im(T′(x)) ∩ Z1. Then the
equation T′(x)−1(z) = δx is equivalent to the following system

A∗δp+C∗
ωo
Cωo

δy = C∗
ωo
z0, (8.2)

δp(T ) = 0,

Bδp|Σ = 0,

αδc− (sgnβ(B
∗
ωc
p),B∗

ωc
δp) = z1, (8.3)

Aδy − δcBωc
sgnβ(B

∗
ωc
p)− c

β
Bωc

B∗
ωc
δpχIp = z2, (8.4)

δy(0) = 0,

Cδy|Σ = 0.

Multiplying (8.2) with δy and (8.4) with −δp and adding both equations we
obtain

‖Cωo
δy‖2L2(Q) + δc(sgnβ(B

∗
ωc
p),Bωc

δp) +
c

β

∥∥B∗
ωc
δpχIp

∥∥2
L2(Q)

= −〈z2, δp〉Y,Y ∗ + (C∗
ωo
z0, δy). (8.5)

Here we used (2.2) and that δy(0) = 0 and δp(T ) = 0.
By multiplying (8.3) with − 1

α
(sgnβ(B

∗
ωc
p),B∗

ωc
δp) and adding it to (8.5)

we have

‖Cωo
δy‖2L2(Q) +

1

α
(sgnβ(B

∗
ωc
p),Bωc

δp)2 ≤ ‖z2‖Y ‖δp‖Y ∗

+
∥∥C∗

ωo
z0
∥∥
L2(Q)

‖Cωo
δy‖L2(Q) +

1

α
|(sgnβ(B∗

ωc
p),B∗

ωc
δp)| |z1|.

From the priori estimate in [12, p. 265] we have

‖δp‖Y ∗ ≤ C
∥∥C∗

ωo
(Cωo

δy − z0)
∥∥
L2

(8.6)
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with Y ∗ = L2(P 1) ∩H1(P 0). Using Young’s inequality we further derive

‖Cωo
δy‖2L2(Q) ≤ C ‖z2‖2Y +

1

4
‖Cωo

δy‖2L2(Q) + C
∥∥C∗

ωo
z0
∥∥2
L2

+
∥∥C∗

ωo
z0
∥∥2
L2

+
1

4
‖Cωo

δy‖2L2(Q) +
1

4
‖Cωo

δy‖2L2(Q) + C|z1|2

and hence,

‖Cωo
δy‖L2(Q) ≤ C

(
‖z0‖L2

+ |z1|+ ‖z2‖Y
)
. (8.7)

This implies

‖δp‖Y ∗ ≤ C ‖z‖Z (8.8)

and together with (8.3)

|δc| ≤ C ‖z‖Z . (8.9)

Finally, from (8.4), (8.8), (8.9)

‖δy‖X ≤ C ‖z‖Z .

8.2 Tangent and additional adjoint equations

Let δykh = (δyk+1
1 , δyk+1

2 ) be the solution of the tangent equation

M∑

m=1

(∂tδy
k+1
1 , ξ1)Jm

−(δyk+1
2 , ξ1)+(δyk+1

1 (0), ξ1(0))L2(Ω) = 0 ∀ξ1 ∈ X̃kh,

M∑

m=1

(∂tδy
k+1
2 , ξ2)Jm

+ (∇δyk+1
1 ,∇ξ2) + (δyk+1

2 (0), ξ2(0))L2(Ω)

− δck+1(sgnβ(χωc
pk2), ξ

2)− ck(χωc
δuk+1

kh χIkh
, ξ2) = 0 ∀ξ2 ∈ X̃kh,

and δpkh = (δpk+1
1 , δpk+1

2 ) of the additional adjoint

−
M−1∑

m=0

(ψ1(tm), δpk+1
1 (tm+1)− δpk+1

1 (tm))L2(Ω) + (∇ψ1,∇δpk+1
2 )

+ (ψ1(tM ), δpk+1
1 (tM ))L2(Ω) = −(ψ1, χωo

δyk+1
1 ) ∀ψ1 ∈ Xkh,

−
M−1∑

m=0

(ψ2(tm), δpk+1
2 (tm+1)− δpk+1

2 (tm))L2(Ω) − (ψ2, δpk+1
1 )

+ (ψ2(tM ), δpk2(tM ))L2(Ω) = 0 ∀ψ2 ∈ Xkh,
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then the first and second derivative of jkh at a point (ukh, c) ∈ Ukh × R are
given by

(jkkh)
′(ukh, c)(δu, δc) = βck(ukh, δu) + α(c+

1

α
(sgnβ(χωc

pk2), χωc
pk2))δc

−
∥∥χωc

pk2
∥∥
L1

β
(Q)

δc− δc(sgnβ(χωc
pk2), p

k+1
2 )− ck(χωc

δuχIkh
, pk+1

2 )

and

(jkkh)
′′(ukh, c)(τu, τc, δu, δc) = βck(τu, δu)+αδc·τc−δc(sgnβ(χωc

pk2), δp
k+1
2 )

− ck(χωc
τuχIkh

, δpk+1
1 )

for δu, τu ∈ Ukh and δc, τc ∈ R.
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