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Abstract We take advantage of a rigidity result for the equation satisfied
by an extremal function associated with a special case of the Caffarelli-Kohn-
Nirenberg inequalities to get a symmetry result for a larger set of inequali-
ties. The main ingredient is a reparametrization of the solutions to the Euler-
Lagrange equations and estimates based on the rigidity result. The symmetry
results cover a range of parameters which go well beyond the one that can be
achieved by symmetrization methods or comparison techniques so far.
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1 Introduction and main results

Let 2∗ :=∞ if d = 1, 2, and 2∗ := 2 d/(d− 2) if d ≥ 3. Define

ϑ(p, d) :=
d (p− 2)

2 p
, ac :=

d− 2

2
,

and consider the space D1,2
a (Rd) obtained by completion of D(Rd \ {0}) with

respect to the norm v 7→ ‖ |x|−a∇v ‖2L2(Rd). We will be concerned with the

following two families of inequalities

Caffarelli-Kohn-Nirenberg Inequalities (CKN) [2] Let d ≥ 1. For any
p ∈ [2, 2∗] if d ≥ 3 or p ∈ [2, 2∗) if d = 1, 2, for any θ ∈ [ϑ(p, d), 1] with θ > 1/2
if d = 1, there exists a positive constant CCKN(θ, p, a) such that

( ∫
Rd

|v|p

|x|b p
dx

) 2
p

≤ CCKN(θ, p, a)

( ∫
Rd

|∇v|2

|x|2 a
dx

)θ ( ∫
Rd

|v|2

|x|2 (a+1)
dx

)1−θ

(1)
holds true for any v ∈ D1,2

a (Rd). Here a, b and p are related by b = a−ac+d/p,
with the restrictions a ≤ b ≤ a + 1 if d ≥ 3, a < b ≤ a + 1 if d = 2 and
a + 1/2 < b ≤ a + 1 if d = 1. Moreover, the constants CCKN(θ, p, a) are
uniformly bounded outside a neighborhood of a = ac.

In [4], a new class of inequalities, called weighted logarithmic Hardy inequal-
ities, was considered. These inequalities can be obtained from (1) by taking
θ = γ (p− 2) and passing to the limit as p→ 2+.

Weighted Logarithmic Hardy Inequalities (WLH)[4] Let d ≥ 1, a < ac,
γ ≥ d/4 and γ > 1/2 if d = 2. Then there exists a positive constant CWLH(γ, a)
such that, for any v ∈ D1,2

a (Rd) normalized by∫
Rd
|x|−2 (a+1) |v|2 dx = 1 ,

we have∫
Rd

|v|2

|x|2 (a+1)
log
(
|x|2 (ac−a) |v|2

)
dx ≤ 2 γ log

[
CWLH(γ, a)

∫
Rd

|∇v|2

|x|2 a
dx

]
.

(2)
Moreover, the constants CWLH(γ, a) are uniformly bounded outside a neigh-
borhood of a = ac.

It is very convenient to reformulate the Caffarelli-Kohn-Nirenberg inequal-
ity in cylindrical variables as in [3]. By means of the Emden-Fowler transfor-
mation

s = log |x| ∈ R , ω =
x

|x|
∈ Sd−1 , y = (s, ω) , u(y) = |x|ac−a v(x) ,
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Inequality (1) for v is equivalent to a Gagliardo-Nirenberg-Sobolev inequality
for the function u on the cylinder C := R× Sd−1:

KCKN(θ, p, Λ) ‖u‖2Lp(C) ≤
(
‖∇u‖2L2(C)+Λ ‖u‖2L2(C)

)θ
‖u‖2 (1−θ)

L2(C) ∀u ∈ H1(C) .
(3)

Here and throughout the rest of the work we set

Λ := (ac − a)2 .

Similarly, with u(y) = |x|ac−a v(x), Inequality (2) is equivalent to∫
C
|u|2 log |u|2 dy ≤ 2 γ log

[
1

KWLH(γ, Λ)

(
‖∇u‖2L2(C) + Λ

)]
, (4)

for any u ∈ H1(C) such that ‖u‖L2(C) = 1. In both cases, we consider on C the

measure dµ = |Sd−1|−1dω ds obtained by normalizing the surface of Sd−1 to 1
(that is, the uniform probability measure), tensorized with the usual Lebesgue
measure on the axis of the cylinder.

We are interested in symmetry and symmetry breaking issues: when do
we know that equality in (1) and (2) is achieved by radial functions or, al-
ternatively, by functions depending only on s in (3) and (4)? Related with
inequality (3) is the Rayleigh quotient:

QθΛ[u] :=

(
‖∇u‖22 + Λ ‖u‖22

)θ ‖u‖2 (1−θ)
2

‖u‖2p
.

Here ‖u‖q :=
(∫
C |u|

q dµ
)1/q

. Then (3) and (4) are equivalent to state that

KCKN(θ, p, Λ) = inf
u∈H1(C)\{0}

QθΛ[u] ,

KWLH(γ, Λ) = inf
u∈H1(C)\{0}

‖u‖2=1

(
‖∇u‖22 + Λ

)
e−

1
2 γ

∫
C |u|

2 log |u|2 dµ .

Let K∗CKN(θ, p, Λ) and K∗WLH(γ, Λ) be the corresponding values of the infimum
when the set of minimization is restricted to functions depending only on s.
The main interest of introducing the measure dµ is that K∗CKN(θ, p, Λ) and
K∗WLH(γ, Λ) are independent of the dimension and can be computed for d = 1
by solving the problem on the real line R.

Radial symmetry of v = v(x) means that u = u(s, ω) is independent of ω.
Up to translations in s and a multiplication by a constant, the optimal func-
tions in the class of functions depending only on s ∈ R solve the equation

−u′′∗ + Λu∗ = up−1
∗ in R

if θ = 1. See Section 2 if θ < 1. Up to translations in s, non-negative solutions
of this equation are all equal to the function

u∗(s) :=
A[

cosh(B s)
] 2
p−2

∀ s ∈ R , (5)
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with Ap−2 = p
2 Λ and B = 1

2

√
Λ (p− 2). The uniqueness up to translations is

a standard result (see for instance [11, Proposition B.2] for a proof).
The symmetry breaking issue is now reduced to the question of knowing

whether the inequalities

KCKN(θ, p, Λ) ≤ K∗CKN(θ, p, Λ) and KWLH(γ, Λ) ≤ K∗WLH(γ, Λ) (6)

are strict or not, when d ≥ 2. Symmetry breaking occurs if the inequality
is strict and then optimal functions are not symmetric (symmetric means:
depending only on s in the setting of the cylinder, or on |x| in the case of
the Euclidean space). In [4, pp. 2048 and 2057], the values of the symmetric
constants have been computed. They are given by

K∗CKN(θ, p, Λ) :=
[

2pθ+2−p
(p−2)2

] p−2
2 p
[

2pθ
2pθ+2−p

]θ [
p+2

4

] 6−p
2 p

[√
π Γ( 2

p−2 )
Γ( 2

p−2 + 1
2 )

] p−2
p

Λθ−
p−2
2 p

(7)
and

K∗WLH(γ, Λ) =
γ (8πd+1 e)

1
4γ

Γ( d2 )
1
2γ

(
4Λ

4γ−1

) 4γ−1
4γ

if γ > 1
4 ,

K∗WLH(γ, Λ) = 2πd+1 e

Γ( d2 )
2 if γ = 1

4 .

Let

ΛFS(θ, p, d) := 4 d−1
p2−4

(2 θ−1) p+2
p+2 and Λ?(1, p, d) := 1

4 (d− 1) 6−p
p−2 . (8)

We will define Λ?(θ, p, d) for θ < 1 later in the Introduction. Symmetry break-
ing occurs for any Λ > ΛFS according to a result of V. Felli and M. Schneider
in [15] for θ = 1 and in [4] for θ < 1 (also see [3] for previous results and [14]
if d = 2 and θ = 1). This symmetry breaking is a straightforward consequence
of the fact that for Λ > ΛFS, the symmetric optimals are saddle points of an
energy functional, and thus cannot be even local minima. As a consequence,
we know that KCKN(θ, p, Λ) < K∗CKN(θ, p, Λ) if Λ > ΛFS(θ, p, d).

Concerning the log Hardy inequality, it was shown in [4] that symmetry
breaking occurs, that is, KWLH(γ, Λ) < K∗WLH(γ, Λ), when either d = 2 and
γ > 1/2 or d ≥ 3 and γ ≥ d/4 provided that

Λ > (d− 1)
(
γ − 1

4

)
.

Concerning symmetry, if θ = 1, from [12], we know that symmetry holds
for CKN for any Λ ≤ Λ?(1, p, d). The precise statement goes as follows.

Theorem 1 [12] Let d ≥ 2. For any p ∈ [2, 2∗] if d ≥ 3 or p ∈ [2,∞) if d = 2,
under the conditions

0 < µ ≤ Λ?(1, p, d) and Q1
µ[u] ≤ K∗CKN(1, p, µ) ,

the solution of
− ∆u+ µu = up−1 on C (9)

is given by the one-dimensional equation, written on R. It is unique, up to
translations.



Symmetry in Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities 5

Theorem 1 is a rigidity result. In [12], the proof is given for a minimizer of Q1
µ,

which therefore satisfies Q1
µ[u] ≤ K∗CKN(1, p, µ), but the reader is invited to

check that only the latter condition is used in the proof. The proof is based
on a chain of estimates which involve optimal interpolation inequalities on the
sphere and the Keller-Lieb-Thirring inequality. These inequalities turn out to
be equalities, and equality in each of the inequalities is shown to imply that the
solution only depends on s (no angular dependence). The result of Theorem 1
gives a sufficient condition for symmetry when θ = 1. We shall say that any
minimizer is symmetric if it is given by (5), up to multiplications by constants
and translations.

Theorem 2 [12] Let d ≥ 2. For any p ∈ [2, 2∗] if d ≥ 3 or any p ∈ [2,∞)
if d = 2, if 0 < Λ ≤ Λ?(1, p, d), then KCKN(1, p, Λ) = K∗CKN(1, p, Λ) and any
minimizer is symmetric.

In [12], the case θ < 1 is also considered. According to [12, Theorem 9], for
any d ≥ 3 , any p ∈ (2, 2∗) and any θ ∈ [ϑ(p, d), 1) , we have the estimate

C(θ, p)−
2 θ
q+2 K∗CKN(θ, Λ, p) ≤ KCKN(θ, Λ, p) ≤ K∗CKN(θ, Λ, p) (10)

where q := 2 (p−2)
(2 θ−1) p+2 and

C(θ, p) := (p+2)
p+2

(2 θ−1) p+2

(2 θ−1) p+2

(
2− p

2 (1− θ)
)1− q2 ·(Γ ( p

p−2 )

Γ ( θ p
p−2 )

)2 q (
Γ ( 2 θ p

p−2 )

Γ ( 2 p
p−2 )

)q

under the condition a2
c < Λ ≤ (d−1)

C(θ,p)
(2 θ−3) p+6

4 (p−2) . If θ = 1, the equality case

in the last inequality characterizes Λ?(1, p, d) as defined in (8). However (10)
does not give a range for symmetry unless θ = 1.

Much more is known. According to [13,5], there is a continuous curve
p 7→ Λs(θ, p, d) with limp→2+

Λs(θ, p, d) = ∞ and Λs(θ, p, d) > a2
c for any

p ∈ (2, 2∗) such that symmetry holds for any Λ ≤ Λs(1, p, d) and there is
symmetry breaking if Λ > Λs(1, p, d), for any θ ∈ [ϑ(p, d), 1). Additionally, we
have that limp→2∗ Λs(1, p, d) = a2

c if d ≥ 3 and, if d = 2, limp→∞ Λs(1, p, d) =
0 and limp→∞ p2Λs(1, p, d) = 4. The existence of this function Λs has been
proven in an indirect way, and it is not explicitly known. It has been a long-
standing question to decide whether the curves p → Λs(θ, p, d) and the curve
p → ΛFS(θ, p, d) coincide or not. This is still an open question, at least for
θ = 1. For θ < 1, and for some specific values of p, it has been shown that,
in some cases, Λs(θ, p, d) < ΛFS(θ, p, d); see [5] for more details, as well as
some symmetry results based on symmetrization techniques. A scenario based
on numerical computations and asymptotic expansions at the point where
non-symmetric positive solutions bifurcate from the symmetric ones has been
proposed; see [7,9,10] for details.

Our interest in this work is to establish symmetry of the minimizers of
CKN for θ < 1 as well as of the log Hardy inequalities, thus identifying the
corresponding sharp constants.
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Our first result is an extension of Theorem 2 to the case θ < 1. Our goal is
to give explicit estimates of the range for which symmetry holds. This requires
some notations and a preliminary result. We set

Π∗(θ, p, q) :=

(
K∗CKN(θ, p, 1)

K∗CKN(1, q, 1)
q (p−2)
p (q−2)

) 1

θ− q (p−2)
p (q−2)

. (11)

Next we define

q∗ = q∗(θ, p) :=
2 p θ

2− p (1− θ)
. (12)

The condition θ > q (p−2)
p (q−2) is equivalent to q > q∗(θ, p) and we can notice that

p < q∗(θ, p) < 2∗ for any θ ∈ (ϑ(p, d), 1). For d ≥ 3 we define

Λ1(θ, p, d) := max
q∈(q∗,2∗)

min

{
Λ?(1, q, d),

θ Λ?(1, p, d)

(1− θ)Π∗(θ, p, q) + θ

}
,

whereas for d = 2

Λ1(θ, p, 2) := max
q∈(q∗,6)

min

{
Λ?(1, q, 2),

θ Λ?(1, p, 2)

(1− θ)Π∗(θ, p, q) + θ

}
.

Next, we can also define

N(θ, p) :=

(
K∗CKN(θ, p, 1)

)1/θ
K∗CKN

(
1, q∗(θ, p), 1

) . (13)

We refer to Section 3 for an explicit expression of N(θ, p). We introduce the
exponent

β = β(θ, p) := 1− p− 2

2 p θ
. (14)

For 2 < p < 6 and θ ∈ (ϑ(p, 3), 1) we denote by x∗ = x∗(θ, p) the unique root
of the equation

θ (6− p)
(
xβ − N

)
x−

(
2 p θ − 3 (p− 2)

) (
θ
(
xβ − N

)
+ (1− θ) (x− 1)N

)
= 0 ,

in the interval (N1/β ,∞) for N = N(θ, p), see Lemma 2 in Section 3. Next we
define

Λ2(θ, p, d) :=
Λ?(1, q

∗, d)

x∗(θ, p)
=

1

4
(d− 1)

2 p θ − 3 (p− 2)

(p− 2) x∗(θ, p)
,

and
Λ?(θ, p, d) := max

{
Λ1(θ, p, d), Λ2(θ, p, d)

}
.

Theorem 3 Suppose that either d = 2 and p ∈ (2, 6) or else d ≥ 3 and
p ∈ (2, 2∗). Then

KCKN(θ, p, Λ) = K∗CKN(θ, p, Λ) ,

and any minimizer of CKN (3) is symmetric provided that one of the following
conditions is satisfied:
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(i) d = 2, θ ∈ (ϑ(p, 2), 1) and 0 < Λ ≤ Λ1(θ, p, 2).
(ii) d = 2, θ ∈ (ϑ(p, 3), 1) and 0 < Λ ≤ Λ?(θ, p, 2),

(iii) d ≥ 3, θ = ϑ(p, d) and 0 < Λ ≤ Λ2(θ, p, d),
(iv) d ≥ 3, θ ∈ (ϑ(p, d), 1) and 0 < Λ ≤ Λ?(θ, p, d) .

Our definition of Λ?(θ, p, d) for θ < 1 is consistent with the definition of
Λ?(1, p, d) given in (8) because

lim
θ→1

Λ1(θ, p, d) = lim
θ→1

Λ2(θ, p, d) = Λ?(1, p, d) .

One of the drawbacks in the definition of Λ2(θ, p, d) is that x∗(θ, p) given by
Lemma 2 is not explicit. For an explicit estimate of Λ2(θ, p, d) see Proposition 2
in Section 5.

By passing to the limit as p→ 2+ in the criterion Λ ≤ Λ2(θ, p, d), we also
obtain an explicit condition for symmetry in the weighted logarithmic Hardy

inequalities. For any N0 > 1, consider the smallest root x > N
1/β0

0 of

4 γ xβ0+1 − (8 γ − 3)N0 x+ (4 γ − 3)N0 = 0 with β0 = 1− 1

4 γ

and denote it by x∗0(γ) if N0 = N0(γ) := limp→2+
N(γ (p−2), p). An elementary

but tedious computation shows that

N0(γ) = 21− 3
4 γ e

1
4 γ

(2 γ − 1)1− 1
γ

(4 γ − 1)1− 3
4 γ

(
Γ
(
2 γ − 1

2

)
Γ (2 γ − 1)

) 1
2 γ

. (15)

Let us define

Λ0(γ, d) :=
(d− 1) (γ − 3/4)

x∗0(γ)
. (16)

We then have

Theorem 4 Assume that either d = 2 or 3 and γ > 3/4, or d ≥ 4 and
γ ≥ d/4. Then

KWLH(γ, Λ) = K∗WLH(γ, Λ) ,

and any minimizer of (4) is symmetric provided that

0 < Λ ≤ Λ0(γ, d) .

For an explicit estimate of Λ0(γ, d) see Proposition 3 in Section 5.
Theorem 3 provides us with a rigidity result, which is stronger than a

simple symmetry result. As a consequence, our estimates of Theorem 3 for the
symmetry region cannot be optimal.

Theorem 5 Suppose that either d = 2 and p ∈ (2, 6) or else d ≥ 3 and
p ∈ (2, 2∗). If θ > ϑ(p,min{3, d}), then

Λ?(θ, p, d) < Λs(θ, p, d) ≤ ΛFS(θ, p, d) .

If either d = 3 and θ = ϑ(p, 3), or d = 2 and θ > 0, then

Λ2(θ, p, d) < Λs(θ, p, d) ≤ ΛFS(θ, p, d) .
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It can be conjectured that Λs(θ, p, d) = ΛFS(θ, p, d) holds in the limit case
θ = 1, and probably also for θ close enough to 1, on the basis of the numerical
results of [9] and the formal computations of [10]. On the other hand, it is
known from [5] that Λs(θ, p, d) < ΛFS(θ, p, d) when θ−ϑ(p, d) is small enough,
at least for some values of p and d.

The expressions involved in the statement of Theorem 3 look quite techni-
cal, but they are interesting for two reasons:

• Theorem 3 determines a range for symmetry which goes well beyond what
can be achieved using standard methods and is somewhat unexpected in
view of the estimate of [12, Theorem 9]. It is a striking observation that
the reparametrization method which has been extensively used in [9,10]
allows us to extend to θ < 1 results which were known only for θ = 1.

• Even if they cannot be optimal as shown in Theorem 5, the estimates of
Theorem 3 are rather accurate from the numerical point of view, as will
be illustrated in Section 5.

This paper is organized as follows. Section 2 is devoted to the reparametri-
zation and the proof of symmetry when Λ ≤ Λ1(θ, p, d) in the subcritical case
ϑ(p, d) < θ < 1. To the price of some additional technicalities, the range
Λ ≤ Λ2(θ, p, d) and ϑ(p,min{3, d}) ≤ θ < 1 is covered in Section 3. The proofs
of Theorems 3 and 5 are established in Section 4. The last section is devoted
to an explicit approximation of Λ0 and Λ2, and some numerical results which
illustrate Theorems 3 and 5. The reader interested in the strategy of the proofs
as well as the origin of the expressions of Λ1(θ, p, d) and Λ2(θ, p, d) is invited
to read first Section 2 and the proof of Lemma 5 in Section 3.

2 Reparametrization and a first symmetry result

We begin by a reparametrization of the branches of the solutions which allows
us to reduce the case corresponding to θ < 1 and Λ to the case corresponding
to θ = 1 and some related µ, as in Theorem 1. Consider an optimal function u
for (3), which therefore satisfies

KCKN(θ, p, Λ) = QθΛ[u] = (t+ Λ)θ
‖u‖22
‖u‖2p

with t :=
‖∇u‖22
‖u‖22

.

According to [5, Theorem1], such a function u exists for any θ > ϑ(p, d). As a
critical point of QθΛ, u solves (9) with

θ µ = (1− θ) t+ Λ

if it has been normalized by the condition

‖∇u‖22 + Λ ‖u‖22 = θ ‖u‖pp .
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Because of the zero-homogeneity of QθΛ, such a condition can be imposed
without restriction and is equivalent to

‖u‖22 =
θ

t+ Λ
‖u‖pp . (17)

Proposition 1 Let us assume that u is a solution of (9), satisfying QθΛ[u] =
KCKN(θ, p, Λ) and (17), with θ µ = (1− θ) t+ Λ. Then we have

Q1
µ[u] ≤ K∗CKN(1, p, µ) . (18)

Proof From (6) we know that

(t+ Λ)θ
‖u‖22
‖u‖2p

≤ K∗CKN(θ, p, Λ) .

Using (17), we rewrite this estimate as

θ (t+ Λ)θ−1 ‖u‖p−2
p ≤ K∗CKN(θ, p, Λ) .

Using (17) again and the expression of µ, we obtain

Q1
µ[u] =

θ (t+ µ)

t+ Λ
‖u‖p−2

p = ‖u‖p−2
p ≤ f(t, θ, Λ, p)K∗CKN(1, p, µ)

with

f(t, θ, Λ, p) :=
1

θ (t+ Λ)θ−1

K∗CKN(θ, p, Λ)

K∗CKN(1, p, µ)
.

Using the expression of µ and (7), we find that

f(t, θ, Λ, p) = (p+2)
p+2
2 p

(2 p)1−θ

(
Λθ

2+(2 θ−1) p

)θ− p−2
2 p (t+ Λ)1−θ ((1− θ) t+ Λ

)− p+2
2 p

achieves its maximum at t0 := Λ
(

2 p θ
p−2 − 1

)−1
> 0. Hence f(t) ≤ f(t0) = 1,

which concludes the proof.

Using the notations (11) and (12), we obtain our first symmetry result,
which goes as follows.

Lemma 1 Suppose that either d = 2 and p ∈ (2, 6) or else d ≥ 3, p ∈ (2, 2∗).
If θ ∈ (ϑ(p, d), 1) and

Λ ≤ min

{
Λ?(1, q, d),

θ Λ?(1, p, d)

(1− θ)Π∗(θ, p, q) + θ

}
for some q ∈

(
q∗(θ, p), 6) when d = 2, or for some q ∈

(
q∗(θ, p), 2∗

)
when

d ≥ 3, then any optimal function for (3) is symmetric.
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Proof Let u be a solution as in Proposition 1. From (6), we know that

K∗CKN(θ, p, Λ) ≥ (t+ Λ)θ
‖u‖22
‖u‖2p

.

For p < q < min{6, 2∗} we have by Hölder’s inequality, ‖u‖p ≤ ‖u‖δ2 ‖u‖1−δq

provided δ = 2
p
q−p
q−2 , and thus 1− δ = q

p
p−2
q−2 . Hence

K∗CKN(θ, p, Λ) ≥ (t+ Λ)θ
(
‖u‖22
‖u‖2q

)1−δ

.

Now, for any λ ∈ (0, Λ?(1, q, d)], we know from Theorem 2 that

‖u‖2q ≤
‖∇u‖22 + λ ‖u‖22
K∗CKN(1, q, λ)

,

which shows that

K∗CKN(θ, p, Λ) ≥ (t+ Λ)θ
(
K∗CKN(1, q, λ)

t+ λ

)1−δ

.

Summarizing, we have found that

(t+ Λ)θ

(t+ λ)1−δ ≤
K∗CKN(θ, p, Λ)

(K∗CKN(1, q, λ))1−δ if λ ≤ Λ?(1, q, d) . (19)

Next we can make the ansatz λ = Λ. Provided Λ ≤ Λ?(1, q, d), we get that

(t+ Λ)θ+δ−1 ≤ K∗CKN(θ, p, Λ)

(K∗CKN(1, q, Λ))1−δ =
(
Π∗(θ, p, q)Λ

)θ+δ−1
,

so that t ≤ (Π∗(θ, p, q)− 1)Λ. According to Theorem 1, u is symmetric if

1

θ

(
(1− θ) t+ Λ

)
= µ ≤ Λ?(1, p, d) , (20)

because (18) holds by Proposition 1. This completes the proof.

In the next section we shall consider an alternative ansatz for which λ 6= Λ.

3 Another symmetry result

In this section we establish an estimate similar to the one of Lemma 1 but
based on a different ansatz, which moreover covers the critical case θ = ϑ(p, d).
We recall that β = β(θ, p) = 1 − p−2

2 p θ has been defined in (14). The proof is
slightly more technical than the one of Lemma 1. We start with an auxiliary
result.
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Lemma 2 For any N > 1, p < 6 and θ ∈ (ϑ(p, 3), 1), if β = β(θ, p) is given
by (14), the equation

θ (6− p)
(
xβ − N

)
x−

(
2 p θ − 3 (p− 2)

) (
θ
(
xβ − N

)
+ (1− θ) (x− 1)N

)
= 0 ,

has a unique root in the interval (N1/β ,∞).

When N = N(θ, p) > 1 is given by (13), we denote this root by x∗ = x∗(θ, p).

Proof Consider the function

f(x) := θ (6− p)
(
xβ − N

)
x−

(
2 p θ − 3 (p− 2)

)[
θ
(
xβ−N

)
+ (1−θ)(x−1)N

]
,

and notice first that f(N1/β) < 0 because θ > ϑ(p, 3) and N1/β > 1. Next we
observe that α := 2 p θ − 3 (p− 2) = 2 p

(
θ − ϑ(p, 3)

)
= 6− p− 2 p (1− θ) and

compute

f ′(x) = (6− p) θ
[
(1 + β)xβ − N

]
− 2 p

(
θ − ϑ(p, 3)

)[
β θ xβ−1 + (1− θ)N

]
and

f
′′
(x) = β θ xβ−2

[
(6− p) (1 + β)x− (β − 1)

(
6− p− 2 p (1− θ)

)]
> 0

for any x > 1. Using the fact that N > 1, we find that

f ′(N1/β) ≥ 2 (p− 2) (1− θ)N > 0 .

It follows that the function f(x) is increasing and convex for x > N1/β . Since
f(N1/β) < 0 we conclude that f(x) has a unique root for x > N1/β .

When N = N(θ, p) we only need to check that N(θ, p) > 1. This is shown
in Lemma 4. Before, we need a preliminary estimate. Consider the Digamma

function ψ(z) = Γ ′(z)
Γ (z) .

Lemma 3 For all z > 0, we have

1

2 z
< ψ

(
z + 1

2

)
− ψ(z) < ln

(
1 + 1

2 z

)
+

1

z
− 2

2 z + 1
.

Proof We use the following representation formula (cf. [1, § 6.3.21, p. 259]):

ψ(z) =

∫ ∞
0

(
e−t

t
− e−z t

1− e−t

)
dt

and elementary manipulations to get the lower bound

ψ
(
z + 1

2

)
− ψ(z) =

∫ ∞
0

e−z t

1 + e−t/2
dt >

1

2

∫ ∞
0

e−z t dt =
1

2 z
.
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As for the upper bound, we have the equivalences

ln
(
1 + 1

2 z

)
+

1

z
− 2

2 z + 1
−
∫ ∞

0

e−z t

1 + e−t/2
dt > 0

⇐⇒ ln
(
1 + 1

2 z

)
+

∫ ∞
0

e−z t dt− 2

2 z + 1
−
∫ ∞

0

e−z t

1 + e−t/2
dt > 0

⇐⇒ ln
(
1 + 1

2 z

)
+

∫ ∞
0

e−t/2 e−z t

1 + e−t/2
dt− 2

2 z + 1
> 0 .

The result follows from∫ ∞
0

e−(z+ 1
2 ) t

1 + e−t/2
dt >

1

2

∫ ∞
0

e−(z+ 1
2 ) t dt =

1

2 z + 1

and, by monotonicity of the function z 7→ ln
(
1 + 1

2 z

)
− 1

2 z+1 ,

ln
(
1 + 1

2 z

)
>

1

2 z + 1
.

Lemma 4 Assume that 2 < p < 6 and ϑ(p, 2) < θ ≤ 1. Then the function
θ 7→ N(θ, p) is decreasing and N(1, p) = 1.

Proof N(1, p) = 1 is a consequence of the definition of N. Using the precise
value pf K∗CKN(θ, p, Λ), we obtain the following explicit expression of the func-
tion N(θ, p), namely

(
2

2−p (1−θ)

)p−2
2 p θ (p+2

4

)6−p
2 p θ

(
2 (2−p (1−θ))
(2 θ−1) p+2

)2 p θ−3 (p−2)
2 p θ

[
Γ( 2

p−2 )Γ( 2−p (1−θ)
p−2 + 1

2 )
Γ( 2

p−2 + 1
2 )Γ( 2−p (1−θ)

p−2 )

] p−2
p θ

.

Let us define G := Nθ and compute

1

G

∂G

∂θ
=
p θ − 2 (p− 2)

2− p (1− θ)
− 2 p θ − 3 (p− 2)

(2 θ − 1) p+ 2
+ ln

(
2 (2− p (1− θ))
(2 θ − 1) p+ 2

)

+
Γ ′
(

2−p (1−θ)
p−2 + 1

2

)
Γ
(

2−p (1−θ)
p−2 + 1

2

) − Γ ′
(

2−p (1−θ)
p−2

)
Γ
(

2−p (1−θ)
p−2

) .

By Lemma 3 we get that

1

G

∂G

∂θ
<
p θ − 2 (p− 2)

2− p (1− θ)
− 2 p θ − 3 (p− 2)

(2 θ − 1) p+ 2
+ ln

(
2 (2− p (1− θ))
(2 θ − 1) p+ 2

)
+ ln

(
(2 θ − 1) p+ 2

2 (2− p (1− θ))

)
+

p− 2

2− p (1− θ)
− 2 (p− 2)

(2 θ − 1) p+ 2
= 0 .

Since
1

G

∂G

∂θ
= lnN +

θ

N

∂N

∂θ
< 0 ,

for θ ∈ (ϑ(p, 2), 1] and N(1, p) = 1, it follows that ∂
∂θN < 0.
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After these preliminaries, we can now state the main result of this section.

Lemma 5 Assume that

2 < p < 6 and ϑ(p, 3) < θ < 1 if d = 2 or 3 ,

2 < p < 2∗ and ϑ(p, d) ≤ θ < 1 if d ≥ 4 .

Then any optimal function for (3) is symmetric if Λ < Λ2(θ, p, d). Moreover,
we have limθ→1 Λ2(θ, p, d) = Λ?(1, p, d).

Proof As in the proof of Lemma 1, the starting point of our estimate is in-
equality (19), which becomes

t+ Λ

t+ λ
≤ N(θ, p)

(
Λ

λ

)β
if λ < Λ?(1, q, d) ,

under the restriction that we choose q = q∗(θ, p) given by (12), that is 1−δ = θ
with δ as in (11). Remarkably, we observe that, for this specific value of q, we
have

θ − p− 2

2 p
=

(
1− q − 2

2 q

)
(1− δ)

and, as a consequence,

t+ Λ

t+ λ
≤ N

(
Λ

λ

)β
where β := 1− p−2

2 p θ and N = N(θ, p). Hence we get that

t ≤ NΛβ λ− Λλβ

λβ − NΛβ
=: t̄ .

As in the proof of Lemma 1, we can apply Theorem 1 if

• Condition (20) holds and a sufficient condition is therefore given by the
condition

(1− θ) t̄+ Λ ≤ θ Λ?(1, p, d) ,

that is, (
θ Λ?(1, p, d)− Λ

) (
λβ − NΛβ

)
≥ (1− θ)

(
NΛβ λ− Λλβ

)
.

• Condition λ < Λ?(1, q, d), which is required to get (19), holds, i.e.,

λ < Λ?(1, q, d) =
1

4
(d− 1)

6− q
q − 2

=
1

4
(d− 1)

2 p θ − 3 (p− 2)

p− 2
.
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For a suitable x = λ/Λ > N1/β , to be chosen, these two conditions amount to

Λ ≤ φ(x) :=
θ Λ?(1, p, d)

(
xβ − N

)
θ (xβ − N) + (1− θ) (x− 1)N

,

Λ < χ(x) :=
1

4
(d− 1)

2 p θ − 3 (p− 2)

p− 2

1

x
.

After replacing Λ?(1, p, d) by its value according to (8), we get that φ(x)−χ(x)
has the sign of f(x) as defined in the proof of Lemma 2. By Corollary 4, we
know that N ≥ 1 and conclude henceforth that any minimizer is symmetric if
Λ < χ(x∗(θ, p)) = Λ2(θ, p, d).

In the limiting regime corresponding to as θ → 1−, we observe that
φ(x) = Λ?(1, p, d) and χ(x) = Λ?(1, p, d)/x, so that limθ→1 Λ2(θ, p, d) =
χ(1) = Λ?(1, p, d).

4 Proof of the main results

Proof (Theorem 3) It is a straightforward consequence of Lemma 1 and Lem-
ma 5. Notice that limθ→1 Λ1(θ, p, d) = Λ?(1, p, d) because

lim
θ→1

θ Λ?(1, p, d)

(1− θ)Π∗(θ, p, q) + θ
= Λ?(1, p, d) .

Proof (Theorem 5) The function q 7→ Λ1(1, q, d) is monotone decreasing and

q∗(θ, p)− p =
p (p− 2) (1− θ)

2− p (1− θ)
≥ 0

so that, for i = 1, 2,

Λi(θ, p, d) ≤ Λ?(1, q∗(θ, p), d) ≤ Λ?(1, p, d) < ΛFS(θ, p, d) .

By definition of Λs(θ, p, d), we know that Λ?(θ, p, d) ≤ Λs(θ, p, d). By The-
orem 3, if Λ = Λ?(θ, p, d) any minimizer for KCKN(θ, p, Λ) is symmetric. On
the other hand, by continuity, we know that

KCKN

(
θ, p, Λs(θ, p, d)

)
= K∗CKN

(
θ, p, Λs(θ, p, d)

)
.

Let us assume that Λs(θ, p, d) < ΛFS(θ, p, d) and consider a sequence
(λn)n∈N converging to Λs(θ, p, d) with λn > Λs(θ, p, d). If un is a non-symmetric
minimizer of KCKN(θ, p, λn), we can pass to the limit: up to the extraction
of a subsequence, (un)n∈N converges in H1(C) towards a minimizer u for
KCKN(θ, p, Λs(θ, p, d)). The function u cannot only depend on s, because any
symmetric minimizer for K∗CKN(θ, p, Λ) is a strict local minimum in H1(C) due
to the fact that Λs(θ, p, d) < ΛFS(θ, p, d). Hence, for Λ = Λs(θ, p, d) there are
two distinct minimizers for KCKN(θ, p, Λ): one is symmetric and the other one is
not symmetric. This proves that Λ?(θ, p, d) < Λs(θ, p, d) if θ > ϑ(p,min{3, d}).

In the other cases, that is, if either d = 3 and θ = ϑ(p, 3), or d = 2 and
θ > 0, the same method applies if we replace Λ?(θ, p, d) by Λ2(θ, p, d).
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Proof (Theorem 4) Let us consider f(x) as in the proof of Lemma 2 and
assume that θ = γ (p− 2). As p→ 2+, f(x)/(p− 2) converges towards

f0(x) := 4 γ xβ0+1 − (8 γ − 3)N0 x+ (4 γ − 3)N0 with β0 = 1− 1
4 γ .

We easily check that the function f0(x) is convex for x > 0, f0(N
1/β0

0 ) < 0 and

f ′0(N
1/β0

0 ) = 2N0 > 0. We conclude that f0(x) has a unique root for x > N
1/β0

0 .
We denote this unique root by x∗0 = x∗0(γ). It follows that x∗(γ (p − 2), p)
converges to x∗0(γ) as p→ 2+. Symmetry then is established by passing to the
limit for any Λ ∈

(
0, Λ0(γ, d)

)
with Λ0(γ, d) given by (16).

5 An approximation and some numerical results

The functions x∗(θ, p) and x∗0(γ) which enter in the results of Theorem 3 and
Theorem 4 are not explicit but easy to estimate, which in turn gives explicit
estimates of Λ2(θ, p, d) and Λ0(γ, d). Let

α = 2 p
(
θ − ϑ(p, 3)

)
= 2 p θ − 3 (p− 2) ,

β = β(θ, p) = 1− p− 2

2 p θ
,

and

Λ2,approx(θ, p, d) :=
(d− 1)α

4 (p− 2)

β θ (6− p)− α (1− θ + β θN−1/β)

β θ (6− p)N1/β − α (β θ + 1− θ)
.

Proposition 2 Suppose that either d = 2 and p ∈ (2, 6) or else d ≥ 3 and
p ∈ (2, 2∗). Then for any θ ∈ (ϑ(p, 3), 1), we have the estimate

Λ2(θ, p, d) > Λ2,approx(θ, p, d) .

Proof Let us consider the function f defined in the proof of Lemma 2 and
recall that f ′′(x) is positive for any x ≥ N1/β > 1. Moreover we verify that

f(N1/β) = − (1− θ)αN (N1/β − 1) < 0 ,

f ′(N1/β) = N
[
β θ (6− p)− α

(
1− θ + β θN−1/β

)]
> 0.

which provides the estimate

x∗(θ, p) < N1/β − f(N1/β)

f ′(N1/β)
=

β θ (6− p)N1/β − α (β θ + 1− θ)
β θ (6− p)− α

(
1− θ + β θN−1/β

) ,
and the result follows.
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Next we give an estimate of Λ0(γ, d) in Theorem 4. Let

Λ0,approx(γ, d) :=
(d− 1) (γ − 3

4 )

2
(
γ − 1

4

)
N

4γ
4γ−1

0 − 2
(
γ − 3

4

) ,
with N0(γ) as defined by (15).

Proposition 3 Assume that d ≥ 2 and γ > 3/4. Then

Λ0(γ, d) > Λ0,approx(γ, d) .

Proof Recall that β0 = 1− 1
4 γ . Let us consider the function f0 defined in the

proof of Theorem 4. We note that f ′′0 (x) is positive for x > 0. Moreover we

verify that f ′0(N
1/β0

0 ) = 2N0 > 0 and f0(N
1/β0

0 ) = −(4 γ−3)N0 (N
1/β0

0 −1) < 0,
which provides the estimates

x∗0(γ) < N
1/β0

0 − f(N
1/β0
0 )

f ′(N
1/β
0 )

= 2
(
γ − 1

4

)
N

4γ
4γ−1

0 − 2
(
γ − 3

4

)
,

and the result follows.

To conclude this paper, let us illustrate Theorems 3 and 5 with some nu-
merical results. First we address the case of subcritical θ ∈ (ϑ(p, d), 1) and
compare Λ? with ΛFS: Fig. 1 corresponds to the particular case d = 5 and
θ = 0.5.

The expression of Λ?(θ, p, d) is not explicit but easy to compute numeri-
cally. We recall that Λ? is the maximum of Λ1 and Λ2, both of them being
non-explicit. In practice, for low values of the dimension d, the relative differ-
ence of Λ1 and Λ2 is in the range of a fraction of a percent to a few percents,
depending on θ and on the exponent p. Moreover, we numerically observe that
Λ1 ≤ Λ2, at least for the values of the parameters considered in Fig. 1. The
estimate Λ2,approx(θ, p, d) of Proposition 2 is remarkably good.

In Fig. 2, we consider the critical case θ = ϑ(p, d). The plot corresponds to
d = 5 and all p in the interval (2, 10/3). The exponent ϑ(p, d) is the one which
enters in the Gagliardo-Nirenberg inequality

‖u‖2Lp(Rd) ≤ CGN(p, d) ‖∇u‖2ϑ(p,d)

L2(Rd)
‖u‖2 (1−ϑ(p,d))

L2(Rd)
∀u ∈ H1(Rd)

on the Euclidean space Rd, without weights. Here CGN(p, d) denotes the opti-
mal constant and p ∈ (2,∞) if d = 1 or 2, p ∈ (2, 2∗] if d ≥ 3. The optimizers
are radially symmetry but not known explicitly.

It has been shown in [8, Theorem 1.4] that optimal functions for (1) exist
if CGN(p, d) < CCKN(θ, p, a). On the other hand, optimal functions cannot
be symmetric CGN(p, d) > C∗CKN(θ, p, a): see [5, Section 5] for further details
and consequences. This symmetry breaking condition determines a curve p 7→
ΛGN(p, d) which has been computed numerically in [6,7]: there are values of p
and d for which the condition Λ > ΛGN(p, d), which guarantees symmetry
breaking (but not existence), is weaker than the condition Λ > ΛFS(θ, p, d),
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2.1 2.2 2.3 2.4

5

10

15

p

Λ (θ, p, d)

ΛFS(θ, p, d)

Fig. 1 Curves p 7→ Λ?(θ, p, d) and Λ 7→ ΛFS(θ, p, d) with θ = 0.5 and d = 5. Symmetry holds
for Λ ≤ Λ?(θ, p, d), while symmetry is broken for Λ ≥ ΛFS(θ, p, d). The relative difference of Λ1

and Λ2, i.e., Λ2(θ, p, d)/Λ1(θ, p, d) − 1, is below 4%. The estimate of Proposition 2 is such that

1− Λ2,approx(θ, p, d)/Λ2(θ, p, d) is of the order of 5× 10−3.

that is ΛGN(p, d) < ΛFS(θ, p, d). See Fig. 2. A rather complete scenario of
explanations, based on numerical computations and some formal expansions,
has been established in [9,10]. As it had to be expected, we numerically observe
that Λ?(θ, p, d) ≤ min{ΛFS(θ, p, d), ΛGN(p, d)} when θ = ϑ(p, d), for any p ∈
(2, 2∗).

2.0 2.2 2.4 2.6 2.8 3.0 3.2

2.0

2.5

3.0

3.5

Λ (ϑ(p, d), p, d)

ΛFS(ϑ(p, d), p, d)

ΛGN(p, d)

p

Fig. 2 With θ = ϑ(p, d), the curve p 7→ Λ?(θ, p, d) is always below the curves p 7→ ΛFS(θ, p, d)
and p 7→ ΛGN(p, d) for any p ∈ (2, 2∗), although ΛFS and ΛGN are not ordered. The plot corre-
sponds to d = 5 and we may notice that ΛGN(p, d) < ΛFS if p is small enough.
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