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a b s t r a c t

This paper proposes an original set-membership approach for loop detection of mobile robots in the
situation where proprioceptive sensors only are available. To detect loops, the new concepts of the
t-plane (which is a two dimensional space with time coordinates) are introduced. Intervals of functions
(or tubes) are then used to represent uncertain trajectories and tests are provided in order to eliminate
parts of the t-plane that do not correspond to any loop. An experiment with an actual underwater robot
is proposed in order to illustrate the principle and the efficiency of the approach.

1. Introduction

Creating loops and detecting them is an important topic
for exploration (Lapierre, Zapata, & Lépinay, 2007) and SLAM
(Simultaneous Localization And Mapping) problems (Leonard &
Durrant-Whyte, 1992) where autonomous robots moving in an
unknown environment have to build a map of this environment
while simultaneously using this map to compute its location
(Angel, Filliat, Doncieux, & Meyer, 2008; Joly & Rives, 2008). When
the pose of the robot p (t) is perfectly known, loop detection
amounts to finding all t1 and t2 such that p (t1) = p (t2), with t1 ≠

t2. Now, to prove the injectivity of a function, say f (x), we generally
search for the set of all pairs (x1, x2) such that f (x1) = f (x2)with
x1 ≠ x2. If the resulting set is empty, then the function f is proved
to be injective. As a consequence, loop detection is close to the
injectivity checking problem. In the control community, proving
the injectivity has mainly been studied for identifiability analysis
(see, e.g., Ben-Zvi (2010)) using computer algebra (Raksanyi,
Lecourtier, Walter, & Venot, 1985) or numerical methods (Braems,
Jaulin, Kieffer, &Walter, 2001; Lagrange, Delanoue, & Jaulin, 2008)
based on interval analysis. For our loop detection problem, proving
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the injectivity is even more difficult because the trajectory of the
robot is badly known. The injectivity approach should then be
adapted to take into account this uncertainty. This paper dealswith
loop detection in the case where the robot is only able to measure
its velocity vector (which can be obtained from odometers, for
instance) with a known bounded error (Meizel, Preciado-Ruiz, &
Halbwachs, 1996). This detection is made possible by introducing
the new concept of the t-plane which contains pairs of times of
the form (t1, t2). A research on this t-plane with appropriate tests
is proposed in order to characterize the set of all feasible loops.

Classically, SLAM techniques (Thrun, Bugard, & Fox, 2005)
use exteroceptive sensors only (such as lidars or cameras) to
detect loops and then exploit the potential loop closures to get
a better estimate of the trajectory. However, even if we are able
to detect loops with proprioceptive sensors only, this detection
cannot be used to refine the trajectory. Solving the problem of
characterizing the set of all loops consistent with proprioceptive
sensors, as treated in this paper, can help any conventional SLAM
method by reducing the number of correspondences to be checked.
Moreover, it can also be used to limit the number of false loop
detections performed by classical SLAM approaches: a loop should
now be consistent with both proprioceptive and exteroceptive
observations.

The paper is organized as follows. Section 2 presents the loop
detection problem and introduces the notion of t-space. Section 3
presents the basic notions on intervals and tubes. These notions
will be used by Section 4 in order to build interval tests able
to classify boxes covering the t-plane. Section 5 presents the
algorithm for loop detections. A test-case related to an actual
experiment is described in Sections 6 and 7 concludes the paper.
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Fig. 1. A robot trajectory with one single loop.

2. Proprioceptive loop detection

Consider a robot (AUV, car, etc.) moving on a horizontal plane.
Denote by v (t) ∈ R2 its velocity vector which is assumed to be
measured. The time t belongs to the interval [0, tmax] associated to
the duration of the mission. Define the function

p (t) =

 t

0
v (τ ) dτ , (1)

which corresponds to the position of the robot’s center on a frame,
the origin of which corresponds to p (0). The two components of p
are denoted by (x, y). Define the loop set as

T∗
=


(t1, t2) ∈ [0, tmax]

2
| p(t1) = p (t2) , t1 < t2


, (2)

or equivalently

T∗
=


(t1, t2) ∈ [0, tmax]

2
|

 t2

t1
v(τ )dτ = 0, t1 < t2


. (3)

Fig. 1 presents a robot which performs a single loop. The set T∗ has
thus a single element which corresponds to t = (t1, t2). A vector
t = (t1, t2) is called a t-pair. The set of all t-pairs is called the
t-plane (see Fig. 2). For convenience, a t-pair in T∗ will often be
called a loop. Let us consider two loops ta =


ta1, t

a
2


and tb =

tb1 , t
b
2


. If


ta1, t

a
2


⊂


tb1 , t

b
2


, or equivalently, if ta is inside the right-

bottomquarterwith vertex tb, thenwe say that the loop tb encircles
the loop ta. In the t-plane, t is a small loop if it encircles no other
loop. Otherwise, it is a complex loop (i.e., a complex loop encircles
some other loops). Assume that the robot is only able to measure
the speed vector v with a known bounded error, i.e., a box [v] (t)
which contains v (t) is known for each t ∈ [0, tmax]. The set of all
feasible t = (t1, t2) is

T =


t | 0 ≤ t1 < t2 ≤ tmax, ∃v ∈ [v] ,

 t2

t1
v(τ )dτ = 0


(4)

where [v] is an interval of functions (or tube) as defined in
Section 3. The setT enclosesT∗. Themain contribution of the paper
is to provide an algorithm that is able to find an inner and an outer
subpaving approximation of the set T in this machine interval
experiment (Sainudiin, 2010) for loop detection. The algorithmwill
also be able to detect the number of loops by counting the number
of elements of T∗.

3. Intervals and tubes

Interval analysis (Chabert & Jaulin, 2009; Moore, 1979) is
composed of a set of numerical methods that make it possible
to solve nonlinear problems such as localization (Drevelle &
Bonnifait, 2009), SLAM (Delahoche, Brassart, & Clerentin, 2005),
path planning (Delanoue, Jaulin, & Cottenceau, 2006), control
(Lydoire & Poignet, 2003) or state estimation (Abdallah, Gning,

Fig. 2. Left: t-plane, with three loops composing T∗; right: trajectory of the robot
with two small loops (t1, t2), (t4, t5) and one complex loop (t3, t6). Note that
[t4, t5] ⊂ [t3, t6].

& Bonnifait, 2008). The unknown variables could be Boolean
numbers, integers, real numbers or functions. This section first
introduces the notion of intervals in its more general form. Then, it
presents the notion of tubes (or interval functions) and integrals of
tubes that will be used later to solve our loop detection problem.

3.1. Lattices

A lattice (E,≤) is a partially ordered set, closed under least
upper and greatest lower bounds (see Davey and Priestley (2002),
for more details). The least upper bound (or supremum) of x and y
is called the join and is denoted by x∨ y. The greatest lower bound
(or infimum) is called themeet and is written as x ∧ y.

Example. The set Rn is a lattice with respect to the partial order
relation given by x ≤ y ⇔ ∀i ∈ {1, . . . , n} , xi ≤ yi. We have
x∧ y = (x1 ∧ y1, . . . , xn ∧ yn) and x∨ y = (x1 ∨ y1, . . . , xn ∨ yn),
where xi ∧ yi = min (xi, yi) and xi ∨ yi = max (xi, yi). �

A lattice E is complete if for all (finite of infinite) subsets A
of E , the least upper bound (denoted by ∧A) and the greatest
lower bound (denoted ∨A) belong to E . When a lattice E is not
complete, it is possible to add new elements (corresponding to the
supremum or infimum of E ) to make it complete. For instance, the
set R is not a complete lattice whereas R = R ∪ {−∞,∞} is. By
convention, for the empty set, we set∧∅ = ∨E and∨∅ = ∧E . The
product of two lattices (E1,≤1) and (E2,≤2) is the lattice (E,≤)
defined as the set of all (a1, a2) ∈ E1 × E2 with the order relation
(a1, a2) ≤ (b1, b2) ⇔ ((a1 ≤1 b1) and (a2 ≤2 b2)).

3.2. Intervals

A closed interval (or interval) [x] of a complete lattice E is a
subset of E which satisfies [x] = {x ∈ E | ∧[x] ≤ x ≤ ∨[x]}. Both
∅ and E are intervals of E . An interval is a sub-lattice of E . The
set of all intervals of E is denoted by IE . An interval [x] of E will
also be denoted by [x] = [∧[x],∨[x]]E . For example, the sets ∅ =

[∞,−∞]R; R = [−∞,∞]R; [0, 1]R and [0,∞]R are intervals of
R, the set {2, 3, 4, 5} = [2, 5]N is an interval of the set of integers
N and the set {4, 6, 8, 10} = [4, 10]2N is an interval of 2N. The
interval hull (or hull) [A] of a subsetA of E is the smallest interval of
E which contains A. If [x] and [y] are two intervals of E , we denote
by [x]⊔ [y] the interval hull of [x]∪ [y]. Given two complete lattices
D , E and a function f : D → E . An inclusion function [f ] of f is a
function from ID to IE such that ∀ [x] ∈ ID, f ([x]) ⊂ [f ] ([x]).
The inclusion function [f ] is thin, if f ([x]) = [f ] ([x]) when [x] is a
singleton (or a degenerated interval). Otherwise, [f ] is thick.

3.3. Tubes

We now introduce the notion of tubes that will be used for
solving our loop closure problem. The set F n of all functions from



Fig. 3. A tube [x] of R which encloses the function x.

R to R̄n is a complete lattice with the following partial order x ≤

y ⇔ ∀t ∈ R, x(t) ≤ y(t). A tube [x] (see, e.g., Kurzhanski and Valyi
(1997) and LeBars, Sliwka, Reynet, and Jaulin (2012)) is an interval
x−, x+


of F n, i.e., a pair of two functions x−, x+ such that for all

t , x− (t) ≤ x+ (t). The set of all tubes of F n is denoted by IF n.
An element x of F n belongs to the tube [x] if ∀t, x (t) ∈ [x] (t).

Fig. 3 presents a function x ∈ F 1 which is inside the tube [x]. This
tube gives us information related to the unknown function x.

Interval evaluation of a tube. If x is a function from R to Rn

(i.e., x ∈ F n), we define x ([t]) = {x (t) | t ∈ [t]}. The interval
evaluation of a tube [x] is defined by

[x] ([t]) =


t∈[t]

[x] (t) ,

i.e., [x] ([t]) is the smallest boxwhich encloses all boxes [x] (t) , t ∈

[t]. It is easy to prove that x ∈ [x] , t ∈ [t] ⇒ x (t) ∈ [x] ([t]), and
that no box smaller than [x] ([t]) satisfies this property.

Fast interval evaluation. As it will be the case in this paper, many
interval evaluations of the tube [x] are required. In such a situation
an efficient strategy is to compute for all i ∈ {1, . . . , n}, the set T −

i
of all t which correspond to localminimizers of the lower bound x−

i
of [xi] and the set T +

i of all t which correspond to local maximizers
of the upper bound x+

i of [xi].
Tube arithmetic. We can extend some classical operations we

have on functions of F n, such as sums, multiplication, image by
a function, . . . to tubes (LeBars et al., 2012). It suffices to use
the classical notion of interval arithmetic and inclusion functions
(Moore, 1979) for all t . An arithmetic on tubes is thus a direct
extension of interval arithmetic. As it is the case for interval
computation, the result of an operation on tubes contains all results
of the same operation performed on the enclosed elements of F n.
Note that there also exist some techniques for the satisfaction of a
state equation (Goldsztejn, Hayes, & Collins, 2011; Raissi, Ramdani,
& Candau, 2004) that can be included in this arithmetic.

Integrals of tubes. Consider two numbers t1, t2 such that t2 ≥

t1 ≥ 0. The integral of a tube [x] over an interval [t1, t2] is defined
by t2

t1

[x] (τ ) dτ =

 t2

t1
x (τ ) dτ | x ∈ [x]


.

Since t2 ≥ t1, we deduce from the monotonicity of the integral
operator that t2

t1

[x] (τ ) dτ =

 t2

t1
x− (τ ) dτ ,

 t2

t1
x+ (τ ) dτ


.

From the definition of tube integrals, we have

x ∈ [x] ⇒

 t2

t1
x (τ ) dτ ∈

 t2

t1

[x] (τ ) dτ . (5)

Moreover, the interval primitive defined by
 t
0 [x] (τ ) dτ defines a

tube that vanishes for t = 0.
Integrals with interval bounds. Assume now that the positive

bounds t1, t2 of the interval [t1, t2] are uncertain, or more
precisely, we only know that t1, t2 belong to the intervals
[t1] , [t2]. The following theorem makes it possible to compute the
smallest interval which encloses all feasible values for the integral t2
t1

x (τ ) dτ . To the best of our knowledge, this theorem is proposed
here for the first time.

Theorem 1. Consider a function x from R → Rn and t1, t2 ∈ R.
Assume that t2 ≥ t1 ≥ 0, t1 ∈ [t1] , t2 ∈ [t2] , x ∈ [x]. Then the
smallest box which encloses all feasible values for

 t2
t1

x (τ ) dτ is given
by [t2]

[t1]
[x] (τ ) dτ =


lb


y− ([t2])− y− ([t1])


,

× ub

y+ ([t2])− y+ ([t1])


, (6)

where [y] (t) =
 t
0 [x] (τ ) dτ is the interval primitive of [x].

Proof. Consider the ith component of the integral and let us try to
find its lower bound z−

i . It is given by

z−

i = min
 t2

t1
xi (τ ) dτ | t1 ∈ [t1] , t2 ∈ [t2] , xi ∈ [xi]


.

Since the integral operator is monotonic, the optimal contribution
of function xi is obtained for xi = lb ([xi]) = x−

i , we get

z−

i = min
 t2

t1
x−

i (τ ) dτ | t1 ∈ [t1] , t2 ∈ [t2]

.

Now, the ith lower bound y−

i (t) of [y] (t) corresponds to
 t
0

x−

i (τ ) dτ , the primitive of x−

i that vanishes for t = 0. Thus, we
get

z−

i = min

y−

i (t2)− y−

i (t1) | t1 ∈ [t1] , t2 ∈ [t2]

.

Since t1 and t2 occur only once in the expression y−

i (t2)− y−

i (t1),
we can write

z−

i = min

y−

i ([t2])− y−

i ([t1])


= lb

y−

i ([t2])− y−

i ([t1])

.

Using a similar reasoning for the upper bound z+

i of the ith
component of the integral, we get z+

i = ub

y+

i ([t2])− y+

i ([t1])

,

which terminates the proof. �

Example. Consider the tube defined by [x] (t) = [t − 2, 2t + 3],
with t ≥ 0. Take [t1] = [1, 4] , [t2] = [5, 6] and let us compute

I =

 [t2]

[t1]
[x] (τ ) dτ =

 [5,6]

[1,4]
[τ − 2, 2τ + 3] dτ .

From Theorem 1, we have

I =

lb


y− ([t2])− y− ([t1])


, ub


y+ ([t2])− y+ ([t1])


.

The primitive tube [y] is

[y] (t) =

 t

0
[x] (τ ) dτ =

 t

0
[τ − 2, 2τ + 3] dτ

=

 t

0
(τ − 2) dτ ,

 t

0
(2τ + 3) dτ


=


1
2
t2 − 2t, t2 + 3t


=


y− (t) , y+ (t)


.



Fig. 4. Illustration of the integral of a tube over interval bounds.

Since for our example both bounds y− (t) , y+ (t) are increasing,
we have

y− ([t1]) =


1
2


t−1

2
− 2t−1 ,

1
2


t+1

2
− 2t+1


=


−

3
2
, 0


y+ ([t1]) =


t−1

2
+ 3t−1 ,


t+1

2
+ 3t+1


= [4, 28]

y− ([t2]) =


1
2


t−2

2
− 2t−2 ,

1
2


t+2

2
− 2t+2


=


5
2
, 6


y+ ([t2]) =


t−2

2
+ 3t−2 ,


t+2

2
+ 3t+2


= [40, 54] .

Thus

y− ([t2])− y− ([t1]) =


5
2
, 6


−


−

3
2
, 0


=


5
2
,
15
2


y+ ([t2])− y+ ([t1]) = [40, 54] − [4, 28] = [12, 50] .

Finally

I =

lb


y− ([t2])− y− ([t1])


, ub


y+ ([t2])− y+ ([t1])


=


lb


5
2
,
15
2


, ub ([12, 50])


=


5
2
, 50


.

Fig. 4 illustrates that for unknown t1, t2, x, we havet1 ∈ [t1]
t2 ∈ [t2]
x ∈ [x]

⇒

 t2

t1
x (τ ) dτ ∈

 [t2]

[t1]
[x] (τ ) dτ .

Note also that for this particular case, [t2]

[t1]
[x] (τ ) dτ =

 5

4
(τ − 2) dτ ,

 6

1
(2t + 3) dt


. �

Fast evaluation of interval integrals. Assume that we have to
compute the interval integral

 [t2]
[t1]

[x] (τ ) dτ for many different
intervals [t1] and [t2] (as it will be the case latter in this paper to
solve the loop detection problem). We first compute the interval
primitive

[y] (t) =

 t

0
[x] (τ ) dτ =

 t

0
x− (τ ) dτ ,

 t

0
x+ (τ ) dτ


.

Since [y] (t) does not depend on [t1] and [t2], the calculus has to
be performed only once. In a second step we have to compute fast
evaluations of y− ([t1]) , y+ ([t1]) , y− ([t2]) , y+ ([t2]). Finally, the
optimal interval integral is obtained from the formula (6).

3.4. Newton operator

Consider a smooth function f : Rn
→ Rn and denote by Jf

its Jacobian matrix. The Newton operator (Moore, 1979) is the
operator from IRn to IRn defined by
N (f, [Jf] , [x]) =x − [Jf]−1 ([x]) · f (x) ,
where [Jf] is an inclusion function of Jf and wherex is the center of
[x]. We know from Moore (Moore, 1979) that
N (f, [Jf] , [x]) ⊂ [x] ⇒ ∃!x ∈ [x] , f(x) = 0,
where ∃! means ‘there exists a unique’. For some applications (as
it will be the case for our loop detection problem), f is not exactly
known, but only a thick inclusion function [f] of f is available. In
such a case, since f ∈ [f], we obviously have
N ([f] , [Jf] , [x]) ⊂ [x] ⇒ ∃!x ∈ [x] , f(x) = 0
where N ([f] , [Jf] , [x]) =x− [Jf]−1 ([x]) · [f] (x). Equivalently, we
could write
N ([f] , [Jf] , [x]) ⊂ [x] ⇒ ∀f ∈ [f] , ∃!x ∈ [x] , f(x) = 0.

4. Tests

The loop set T∗ is composed of a finite set of points of the
t-plane. The set T of all feasible t, defined by (4), encloses T∗.
Consider a t-box [t] of the t-plane. If [t] ⊂ T, it is said to be feasible.
If [t] ∩ T = ∅, it is unfeasible; otherwise, it is undetermined. In
some situations, we can prove that [t] contains a single point of
T∗. This section proposes different tests that will be used by the
main algorithm in order to classify boxes [t] of the t-plane.

4.1. Integral test

Proposition 1. Given a t-box [t] = [t1] × [t2], we have

[t1] − [t2] ⊂ R− and [t2]

[t1]
v−(τ )dτ ≤ 0 ≤

 [t2]

[t1]
v+(τ )dτ

 ⇒ [t] ⊂ T,

and
[t1] − [t2] ⊂ R+ or

0 ∉

 [t2]

[t1]
[v] (τ )dτ

 ⇒ [t] ∩ T = ∅.

Proof. From (4), t ∈ T if and only if (i) t1 − t2 < 0 and (ii)
∃v ∈ [v],

 t2
t1

v(τ )dτ = 0. Now, condition (ii) is equivalent to
∃v1 ∈ [v1] ,

 t2

t1
v1(τ )dτ = 0

∃v2 ∈ [v2] ,
 t2

t1
v2(τ )dτ = 0

⇔


 t2

t1
v−

1 (τ )dτ ≤ 0 and
 t2

t1
v+

1 (τ )dτ ≥ 0 t2

t1
v−

2 (τ )dτ ≤ 0 and
 t2

t1
v+

2 (τ )dτ ≥ 0

⇔

 t2

t1
v−(τ )dτ < 0,

 t2

t1
v+(τ )dτ > 0. �

4.2. Injectivity test

When [t1] ∩ [t2] ≠ ∅, the integral test will not be able to reject
a t-box, even if it has a small width. Now, if inside the interval




t−1 , t

+

2


, the function p(t) as defined by (1) is injective, wewill not

be able to find t1 ∈ [t1] and t2 ∈ [t2] such that p(t1) = p(t2). And
thus the box [t1]× [t2] will be outsideT. The following proposition,
based on this local injectivity condition, will be used to possibly
reject such t-boxes.

Proposition 2. Given a t-box [t] = [t1] × [t2], we have
0 ∉ [v]


t−1 , t

+

2


⇒ [t] ∩ T = ∅.

Proof. In order to show the theorem by contradiction, let us
suppose that 0 ∉ [v]


t−1 , t

+

2


and [t] ∩ T ≠ ∅. Take (t1, t2) ∈

[t] ∩ T, from (4), we have

∃v ∈ [v] ,
 t2

t1
v(τ )dτ = 0. (7)

The function q (t) =
 t
0 v (τ ) dτ (see (1)) is differentiable with

respect to t . We can thus apply the generalized mean value
theorem (Lagrange, Delanoue, & Jaulin, 2007) on the interval
t−1 , t

+

2


. We get that if t1, t2 ∈


t−1 , t

+

2


, then

∃v̄ ∈


dq
dt


t−1 , t

+

2


, q (t2)− q (t1) = v̄ · (t2 − t1) , (8)

where
 dq
dt


t−1 , t

+

2


denotes any box enclosing the set

 dq
dt (t) | t

∈

t−1 , t

+

2


. Now, from (7),wehaveq (t2)−q (t1) = 0 and dq

dt (t) =

v (t). Thus (8) implies that ∃v̄ ∈ [v]

t−1 , t

+

2


, 0 = v̄ · (t2 − t1),

i.e., ∃v̄ ∈ [v]

t−1 , t

+

2


, v̄ = 0 which is in contradiction with the

supposition that 0 ∉ [v]

t−1 , t

+

2


. �

4.3. Newton test

Using the Newton test for proving unicity properties in the
context of dynamical systems has been first proposed by Tucker
(1999) to prove the existence of the Lorenz attractor.

Proposition 3. Given a t-box [t] = [t1]×[t2], such that [t1]−[t2] ⊂

R−, if

t̂ −

− [v] ([t1]) [v] ([t2])

−1
·

 t̂2

t̂1

[v] (τ )dτ ⊂ [t],

then, there exists a unique t ∈ [t] such that t ∈ T∗.

Proof. Take a box [t] = [t1] × [t2] such that [t2] − [t1] ⊂ R+.
From (3), we have (t1, t2) ∈ T∗

∩ [t] ⇔ ∃t ∈ [t] , f(t) = 0,
where f (t) =

 t2
t1

v(τ )dτ , t = (t1, t2). The Newton operator can
prove that there exists a unique t ∈ [t] which belongs to T∗. More
precisely, from Section 3.4, we have

N ([f] , [Jf] , [t]) ⊂ [t] ⇒ ∃!t ∈ [t] , f(t) = 0,

where N ([f] , [Jf] , [t]) = t − [Jf]−1 ([t]) · [f]
t. In our context,

since

Jf (t) =


∂f
∂t1

(t)
∂f
∂t2

(t)


=

−v (t1) v (t2)


,

the Newton operator to be used is

N ([v] , [t]) = t̂ −

− [v] ([t1]) [v] ([t2])

−1
·

 t̂2

t̂1

[v] (τ )dτ .

If N ([v] , [t]) ⊂ [t], then there exists a unique t-pair (t1, t2) ∈ [t]
that belongs to T∗. �

Remark. Even if the Newton test N ([v] , [t]) ⊂ [t] is true, the set
of feasible t = (t1, t2) in [t] defined by

Table 1
Algorithm for detecting loops made by a mobile robot.

Algorithm Loop(in: ε, tmax, [v]; out: Tin,T?,Tout)

1 Q := {[0, tmax] × [0, tmax]}; Tin
= ∅; T?

= ∅; Tout
= ∅;

2 If Q ≠ ∅, take an element [t] in Q; else return.

3 If


[t1] − [t2] ⊂ R+ or

0 ∉

 [t2]

[t1]
[v] (τ )dτ or

0 ̸∈ [v]

t−1 , t

+

2

 , then Tout
:= Tout

∪ [t]; go to 2;

4 If


[t1] − [t2] ⊂ R− and [t2]

[t1]
v−(τ )dτ ≤ 0 ≤

 [t2]

[t1]
v+(τ )dτ ,

then Tin
:= Tin

∪ [t]; go to 2;
5 If width ([t]) < ε, then T?

:= T?
∪ [t]; go to 2;

6 Bisect [t] and store the resulting boxes in Q; go to 2.

T̂ ([v], [t]) =


v∈[v]


(t1, t2) ∈ [t] |

 t2

t1
v(τ )dτ = 0


encloses an infinite number of elements. Now, for all feasible
velocity functions v ∈ [v], the set

T̂ (v, [t]) =


(t1, t2) ∈ [t] |

 t2

t1
v(τ )dτ = 0


has a unique element. This is also the case for the true v, since
it belongs to [v]. As a consequence, the Newton test proves that
there exists a single loop corresponding to [t], even if there exist
an infinite number of feasible loops.

4.4. Summary

Given a t-box [t], a t-pair t̂ ∈ [t], we have the following tests

[t1] − [t2] ⊂ R+ or

0 ∉

 [t2]

[t1]
[v] (τ )dτ or

0 ∉ [v]

t−1 , t

+

2


 ⇒ [t] ∩ T = ∅,

[t1] − [t2] ⊂ R− and [t2]

[t1]
v−(τ )dτ ≤ 0 ≤

 [t2]

[t1]
v+(τ )dτ

 ⇒ [t] ⊂ T,

[t1] − [t2] ⊂ R− and

t̂ −

− [v] ([t1]) [v] ([t2])

−1

·

 t̂2

t̂1

[v] (τ )dτ ⊂ [t]

 ⇒ ∃!t ∈ [t] ∩ T∗. (9)

5. Algorithm

The algorithm to be proposed to characterize the set T∗ is
a branch and bound algorithm similar to SIVIA (Set Inverter
Via Interval Analysis) (Jaulin, Kieffer, Didrit, & Walter, 2001).
The main idea of the algorithm is to partition the t-plane with
non overlapping boxes and to classify all boxes using the tests
developed in Section 4. The input of the algorithm is the tube [v],
the accuracy ε and the duration of the mission tmax. The algorithm
returns three subpavings (i.e., union of boxes): Tin which encloses
boxes [t] which have been proved to be inside T; Tout which
encloses [t] which are outsideT andT? which contains small boxes
[t] for which nothing is known. The algorithm is given by Table 1.



Fig. 5. The autonomous underwater vehicle, Redermor, built by theGESMA (Groupe
d’Etude Sous-Marine de l’Atlantique).

Fig. 6. Tube (painted gray) enclosing the trajectoryp of the robot. The 14 black/gray
crosses correspond to detected loops.

At Step 1, the list Q is initialized with a single box which
corresponds to the search box in the t-plane. At Step 2, a t-box is
taken from Q, if Q is non-empty. If the list is empty, the algorithm
terminates. Steps 3 and 4 try to show that the current t-box [t] is
outside or inside T using the tests developed in Section 4. If one of
the tests succeeds, another box is taken in the list Q at Step 2. If
the current t-box [t] is too small, the algorithm stores it into T? at
Step 5 and [t] will not be bisected anymore. If all tests failed and if
[t] is still large enough, it is bisected at Step 6 into two boxes that
are stored in the current listQ. When the algorithm terminates, we
have (Jaulin & Walter, 1993)

Tin
⊂ T ⊂


Tin

∪ T? .
To detect loops, we take all boxes [t] stored inside Tin. Then, we
apply an epsilon-inflation (Moore, 1979), andwe apply theNewton
test presented in Section 4.3. All boxes [t] for which the Newton
test succeeds are stored inside a list TN . Note that without the
epsilon inflation the Newton test would always fail. Now, this
inflation generates overlapping boxes corresponding to identical
loops. These redundant detections could be deleted by replacing
all pairs


[ta] ,


tb


of overlapping boxes inTN by their intersection

[ta] ∩

tb


, until no more overlapping boxes exists in TN .

6. Test case

Consider an underwater robot moving on a horizontal plane
described by the following state equations

Fig. 7. Inner and outer approximation of T.

ṗ = v =


cosψ − sinψ
sinψ cosψ


·


ux
uy


,

where

ux, uy

T are the coordinates of the robot speed in the
robot frame and ψ is the heading angle. The initial position p (0)
corresponds to the origin of the frame. Only ux, uy, ψ aremeasured
and we assume that tubes [ux] ,


uy


, [ψ] are available. Using

interval arithmetic, we can thus get a tube [v] for v. Consider for
instance an experiment described in Jaulin (2009) where the robot
to be considered (see Fig. 5) is a mine hunter, named Redermor.
The robot moves on a horizontal plane 20m deep and the duration
of the mission was about two hours in the Douarnenez bay, in
Brittany (France). The actual speed (in meters per second) u is
known to satisfy

u ∈


[0.996ux − 0.004, 1.004ux + 0.004]
0.996uy − 0.004, 1.004uy + 0.004

 , (10)

where
ux,uy


denotes the speed returned by the loch-Doppler

(Workhorse Navigator Doppler Velocity Log). If ψ̃ is the heading (in
radian) returned by our gyrocompass (Octans III from IXSEA), then
the actual heading should satisfy ψ ∈ ψ̃ ± 0.00527. Using an
interval integration,we get the tube

 t
0 [v] (τ ) dτ of Fig. 6. Note that

since only proprioceptive sensors are assumed to be available, the
size of the boxes increases with time. The black curve represents
an estimation of the true trajectory obtained by aKalman smoother
with exteroceptive sensors that are not assumed to be available for
our loop detection. The two black points correspond to the initial
and the final pose of the robot. The algorithm Loop described in
Table 1 generates the approximation of Fig. 7 in less than 2 min
(for amission of two hours)with a conventional laptop. The dashed
line corresponds to the no-delay line t2 − t1 = 0. All loops at the
neighborhood of this line correspond to small loops. They are all
easily detected with a good accuracy even if t1, t2 are large. The
Newton test has proved the existence and uniqueness of a loop
for 14 disjoint t-boxes which are in black in Fig. 7. It means that
we have been able to prove the existence of at least 14 loops,
whereas there exist 28 loops on the trajectory estimated by the
Kalman smoother. Most of these 14 t-boxes are small and near the
no-delay line. Only the largest boxes can be seen, as for instance
[ta], [tb] and [tc ]. Since all boxes on the right and below [tc ] are
inside Tout, we can conclude that the corresponding loop is a small
loop. In the same manner, we can also conclude that [tb] is a
complex loop which encloses the small loop corresponding to [tc ].
A spacial approximation of these 14 detected loops is represented



Fig. 8. Zoom of the paving generated by Loop around a feasible zone.

by the thick gray/black crosses of Fig. 6. The three black crosses
correspond to loops ta, tb, and tc . The black circle of Fig. 7 shows a
tiny connected components of T enclosed by a t-box for which the
Newton test succeeds. A zoomaround this feasible zone is depicted
in Fig. 8. The dark gray, light gray and white boxes belong to Tin,
Tout andT?, respectively. Therefore,we can conclude that theunion
of all white and dark gray boxes of Fig. 8 contains exactly one loop
(t1, t2). The QT-C++ program with all data and source codes are
made available at (Aubry, Desmare, and, & Jaulin, 2012).

7. Conclusion

This paper has presented a new method to detect and localize
loops made by a robot during a mission using proprioceptive
sensors only. It is only assumed that the robot moves on a 2D
environment and that velocity of the robot is known with an
error that can be bounded. This is different from the existing loop
detection approaches in SLAM (Angel et al., 2008; Joly & Rives,
2008) which mainly work outs the common features observed
from similar points in the scene so that amore accurate estimation
of the robot trajectory can be obtained. Since the presented
approach does not use scene observations, even if it detects loops it
is not able to refine the trajectory envelope. However, our method
can help classical SLAM techniques by selecting only t-pairs that
are consistent with proprioceptive measurements. This decreases
the computing burden of the scene-based loop detection and
reduces the number of false detections. Moreover, this paper has
presented an original formalization of the loop detection problem
using the new notion of t-space. The introduction of the new
concept of integral with interval bounds has made it possible to
develop inclusion tests that have beenused for the characterization
of the set of all feasible loops. The efficiency of themethod has been
demonstrated on an actual experimentwhere an underwater robot
has performed a mission of two hours with many loops (28 for the
estimated trajectory).
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