
HAL Id: hal-01089250
https://hal.science/hal-01089250

Submitted on 10 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Periodic motions of coupled oscillators excited by dry
friction and harmonic force
Madeleine Pascal, Sergey Stepanov

To cite this version:
Madeleine Pascal, Sergey Stepanov. Periodic motions of coupled oscillators excited by dry friction
and harmonic force. 12th International Conference on Dynamical Systems-Theory and Applications
(DSTA 2013), Dec 2013, Łódź, Poland. pp.407–414, �10.1007/978-3-319-08266-0_30�. �hal-01089250�

https://hal.science/hal-01089250
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Periodic Motions of Coupled Oscillators Excited
by Dry Friction and Harmonic Force

Madeleine Pascal and Sergey Stepanov

Abstract Vibrating systems excited by dry friction are frequently encountered in
technical applications. These systems are strongly nonlinear, and they are usually
modeled as spring-mass oscillators. One of the most popular models of stick-slip
oscillators consists of several masses connected by linear springs; one (or more)
of the masses is in contact with a driving belt moving at a constant velocity. In
the past, several authors investigated the behavior of this system, with different
friction laws and with or without external actions and damping. In this work, we
consider a system composed of two masses connected by linear springs. One of the
mass is in contact with a driving belt moving at a constant velocity. Friction force,
with Coulomb’s characteristics, acts between the mass and the belt. Moreover, it
is assumed that the mass is also subjected to a harmonic external force. Several
periodic orbits including stick phases and slip phases are obtained in closed form. In
particular, the existence of periodic orbits including an overshooting part is proved.
In the case of a nonmoving belt, a set of nonsticking periodic solutions is obtained,
and we prove that these orbits are symmetrical in space and in time.

1 Introduction

This paper is a continuation of several investigations [5–7, 10] related to vibrating
systems excited by dry friction. One of the most popular models of stick-slip
oscillators consists of several masses connected by linear springs; one (or more)
of the masses is in contact with a driving belt moving at a constant velocity. In
the past, several authors investigated the behavior of this system, with different
friction laws and with or without external actions and damping [1, 2, 4, 11], mainly
via the numerical approach. However, assuming Coulomb’s laws of dry friction,
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the corresponding dynamical model is a piecewise linear system, and even for
multi-degree-of-freedom cases, some analytical results about the existence and the
stability of periodic orbits including stick-slip phases have been obtained [5–7]. One
interesting phenomenon is the existence, inside periodic orbits with stick and slip
parts, of an “overshooting” slip phase. During this part of the orbit, the mass in
contact with the belt moves in the same direction at a higher speed than the belt
itself. In this work, we consider the same model of dry friction oscillator subjected
to a harmonic external force. Several periodic orbits including stick phases and slip
phases are obtained in closed form. In particular, the existence of periodic orbits
including an overshooting part is proved. In the case of a nonmoving belt, a set
of nonsticking periodic solutions is obtained, and we prove that these orbits are
symmetrical in space and in time.

2 Problem Formulation

The system (Fig.1) is composed of two masses m1; m2 connected by two linear
springs of stiffness k1; k2. The second mass is in contact with a belt moving at
a constant velocity �0. A friction force QF acts between the mass and the belt.
Moreover, the second mass is also subjected to a driving force QR D Qp cos .!t C '/

( Qp; !; ' are constant parameters). The motion of this system are given by equations

x00
1 C x1 � �x2 D 0; x00

2 C �� .x2 � x1/ D �u C p cos .!t C '/ ; (1)

� D m1

m2

; � D k2

k1 C k2

; u D
QF

k1 C k2

; p D Qp
k1 C k2

;

t D ˝ t 0; ˝ D
s

k1 C k2

m1

; .O/0 D d .O/

dt
;

x1; x2 are the displacements of the masses.

Fig. 1 Dry friction oscillator
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The dry friction force u is obtained from Coulomb’s laws:

u D us sign
�
V � x0

2

�
; if V � x0

2 ¤ 0;

u D � .x2 � x1/ � r.t/; if V � x0
2 D 0; j� .x2 � x1/ � r.t/j < ur ;

u D us; if V � x0
2 D 0; � .x2 � x1/ � r.t/ > ur ;

u D �us; if V � x0
2 D 0; � .x2 � x1/ � r.t/ < �ur ;

0 < us < ur ; V D �0

˝
; r.t/ D p

�
cos .!t C '/ ;

ur is the static friction force, and us is the dynamic friction force.

3 Three Modes of Motion Exhibited by the System

The dynamical behavior of this oscillator includes several phases of slip and stick
motion of m2. For each kind of motion, the closed form solution is available.

3.1 Slip Motion of m2 with x0
2
< V

The solution is obtained from a modal analysis of (1) where u D us

Z .t/ D H .t/ .Z0 � F0/ C F .t/ ; F .t/ D
�

R .t/

R0 .t/

�
;

R.t/ D Q cos.!t C '/; F0 D F.0/;

Z D
�

z
z0
�

; Z0 D Z.0/; Z D X � d0; X D
�

x1

x2

�
;

H .t/ D
�

H1 .t/ H2 .t/

H3 .t/ H1 .t/

�
; d0 D

�
d01

d02

�
; d01 D us

1 � �
; d02 D d01

�
;

Q D
�

q1

q2

�
; q1 D p�

.!2 � !2
1/.!2 � !2

2/
; q2 D q1

p.1 � !2/

�
:

The two-by-two matrices Hi .t/ .i D 1; 2; 3/ and the natural frequencies !1; !2 are
obtained in analytical form [5].
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3.2 Slip Motion of m2 with x0
2
> V (Overshooting)

The solution is obtained from (1) where u D �us

Z .t/ D H .t/ .Z0 � F0/ C F .t/ C 2L .t/ d0 L .t/ D H1 .t/ � I

H3 .t/

!
; I D 1 0

0 1

!
:

3.3 Stick Motion of m2 (x0
2
D V )

This motion is related to the dynamical system

x00
1 C x1 � �x2 D 0; x00

2 D 0: (2)

The solution [5] is given by

Z .t/ D � .t/ Z0; � .t/ D
�

�1 .t/ �2 .t/

�3 .t/ �1 .t/

�
:

�i .t/ .i D 1; 2; 3/ are obtained from a modal analysis of the system (2). Moreover,
during all this kind of motion, the following constraint holds:

j�� .x2 � x1/ � p cos .!t C '/j < �ur :

4 Periodic Orbits Including an Overshooting Part

Several periodic orbits including stick phases and slip phases have been obtained [7].
Among these orbits, a set of periodic orbits including an overshooting part is found.
For each period .0 < t < 2�=!/, the motion is composed of three parts. The first
one .0 < t < �/ is a slip motion of m2 with x0

2 < V , the next part (0 < t �� < �1) is
an overshooting slip motion of the mass (x0

2 > V ), and the last part (0 < t �� ��1 <

T; T D 2�=! � � � �1) is a stick motion of m2. At the beginning of the motion
for t D 0, we assume that

x0
2 .0/ D V; �� .x2 .0/ � x1 .0// D p cos ' C �ur

and at t D � , we assume the conditions

x0
2 .�/ D V; �� .x2 .�/ � x1 .�// � p cos .!� C '/ C �ur < 0: (3)

The last condition leads to an overshooting motion for t > � .
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Fig. 2 Phase portrait of the overshooting periodic solution

An example of a periodic orbit with an overshooting part is obtained for the set of
data

� D 0:2; � D 3:8; us D 0:059; ur D 0:5347; V D 1; ! D 0:6 ; p D 0:1; ' D 0:

The other parameters are computed:

� D 4:775; �1 D 2:65; T D 3:047; z1 .0/ D 1:1471; z2 .0/ D 3:6572; z01 .0/ D �0:7281:

The phase portraits of the system are shown in Fig. 2. The solid lines show slip
motion (thick black lines correspond to the overshooting motion); the dotted lines
are related to the stick motion.

5 Nonsticking Periodic Solutions

In industrial applications, avoiding sticking phases of motion is sometimes nec-
essary. In the past, several authors [3, 8] investigated the existence of periodic
nonsticking solutions of a one-degree-of-freedom oscillator subjected to simple
harmonic loading. The mass is in contact with a fixed surface and a dry friction
force acts between the mass and the surface. The aim of these works is to obtain
some estimates of the minimum external force amplitude needed to prevent this
sticking motion. The nonsticking orbit involves for each period a slip motion with a
negative mass velocity and a slip motion with a positive mass velocity (overshooting
motion). Moreover, the authors assumed that the motion is symmetrical in space and
time [3, 8].
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In the following, this problem is revisited for the two-degree-of-freedom oscil-
lator considered in this work. Let us consider the system described in Fig.1 with
initial conditions

x0
20 D V; �� .x20 � x10/ > p cos ' C �ur : (4)

The nonsticking periodic orbit is composed of two parts: for 0 < t < � the system
undergoes a slip motion (x0

2 < V ); the second part for � < t < 2�=! is an
overshooting motion (x0

2 > V ). At t D � the conditions (3) are fulfilled. We prove
[7] that this kind of periodic orbits exists only if

V D 0; � D �=!; x .0/ D �x .�/ ; x0 .0/ D �x0 .�/ :

The nonsticking periodic orbits are symmetrical in space and time.
A numerical computation is performed for the parameters

� D 0:3; � D 4; ! D :6; p D 1; us D 0:1; ur D 0:2996 :

The corresponding values of the initial conditions and of the time lag ' are obtained:

x10 D 1:5608; x20 D 3:3295; x0
10 D 0:1523; ' D 0:3925 :

The phase portraits
�
xi ; x0

i

�
; i D .1; 2/ of the two masses are shown in Fig. 3 (the

thick black parts of the curves are related to the overshooting motion). These curves
are symmetrical with respect to the origin.

Fig. 3 Phase portrait of the nonsticking orbit
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6 Periodic Orbits with Abnormal Stops

The nonsticking orbit investigated in the last paragraph involves for each period two
normal stops

x0
2 .0/ D x0

2 .�/ D 0:

These stops occur when the displacement of the second mass reaches a local
extremum and the mass reverses its direction of motion at the turning point. In [9],
for a one-degree-of-freedom oscillator, with dry friction and harmonic load, a set of
periodic orbits including abnormal stops have been obtained. Abnormal stops occur
when at the turning point the mass moves in the same direction as its motion prior
to the stop. The same phenomenon can be observed for the two-degree-of-freedom
oscillator investigated in this paper. At t D 0 the initial conditions (4) are assumed
and for 0 < t < � , the system undergoes a slip motion (x0

2 < 0). Let us assume that
at t D �

x0
2 .�/ D 0; �� .x2 .�/ � x1 .�// � p cos .!� C '/ � �ur > 0:

A new phase of slip motion occurs. This motion ends at t D � C �1 if at this time

x0

2 .� C �1/ D 0; �� .x2 .� C �1/ � x1 .� C �1// � p cos .! .� C �1/ C '/ C �ur < 0:

For t > �C�1 the system undergoes an overshooting motion (x0
2 > 0). A periodic

orbit of period 2�=! is obtained, but due to the symmetry in space and in time of
this nonsticking orbit, the overshooting motion (� C �1 < t < 2�=!) involves
another abnormal stop for t D � C �1 C T , with the conditions

x0
2 .� C �1 C T / D 0;

�� .x2 .� C �1 C T / � x1 .� C �1 C T // � p cos .! .� C �1 C T / C '/ C �ur < 0:

Due to the symmetrical property we obtain

� C �1 D �=!; T D �; x .� C �1/ D �x .0/ ; x0 .� C �1/ D �x0 .0/ :

This kind of orbit exists only if us D ur .
An example of periodic orbits with abnormal stops is obtained for the data

� D 0:7; � D 3:8; ! D 2�=11; p D 1; ur D us D 0:1717; ' D 2:6455 :

The other parameters are computed:

� D T D 4; �1 D 1:5; x1 .0/ D 2:1249; x2 .0/ D 2:0451; x0
1 .0/ D �0:7267 :
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Fig. 4 Phase portrait of the orbit with abnormal stops

The phase portrait of the system is shown in Fig. 4 (the thick black parts of the
curves are related to the overshooting motion).
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