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Dynamic Power Management in a Wireless Sensor Network using

Predictive Control

Olesia Mokrenko1, Suzanne Lesecq1, Warody Lombardi1, Diego Puschini1, Carolina Albea2

and Olivier Debicki1

Abstract— Technological advances have made wireless sensor
nodes cheap and reliable enough to be brought into various
application domains. These nodes are powered by battery, thus
they have a limited lifespan which is a major drawback for their
acceptance. This paper addresses a power consumption control
problem of wireless nodes equipped with batteries. Dynamic
power management is used to dynamically re-configure the
set of sensor nodes in order to provide given service and
performance levels with a minimum number of active nodes
and/or a minimum load on such components. The power
control formulation is based on model predictive control with
constraints and binary optimization variables, leading to a
mixed integer quadratic programming problem. Simulations
are performed to demonstrate the efficiency of the proposed
control method.

I. INTRODUCTION

Wireless sensor networks (WSN) are usually made of low-

power, low-cost, and energy-constrained sensor nodes (SNs)

that are deployed to sense a physical phenomenon of interest.

The data are collected by access points. From the collected

data, an application is built to monitor and/or control the

physical world. In both situations, the nodes can be dedicated

to specific roles, namely, sensing, actuation and control,

or to any combination of the three main roles. Whatever

the assigned functionality is, the node embeds processing

capability associated with memory capacity, both possibly

limited.

In the literature, the SNs are typically split in four main

subsystems (SSs) [1] (see Fig. 1):

• the communication subsystem connects the sensor node

(SN) to the global architecture in order to send/receive

information;

• the computing subsystem contains a processing element

(for example, a micro-controller unit (MCU)) together

with its associated memory;

• the sensing subsystem senses physical variables. It can

contains several sensors with their adapter (for example,

a analog-to-digital converter (ADC)) (when mandatory);

• the power supply subsystem that contains the battery

used by all the subsystems described above.

Most of the wireless SNs are powered by batteries. This is

very convenient from a deployment point of view because no
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Fig. 1: Functional subsystems of a wireless sensor node

plug is needed by the node. However, the limited available

energy makes the node lifespan a tremendous drawback

of the wireless node technologies. Moreover, this limited

energy may influence the robustness and/or reliability of the

monitoring and/or control application built on top of the

WSN. As a consequence, nodes have to be designed with

stringent power/energy consumption constraints [1] in order

to increase the node lifespan. [2] proposes a survey of various

approaches that can be implemented in order to increase the

WSN lifespan. The authors consider the sensing and com-

munication subsystems. They split the possible approaches

in three families, namely: duty cycling, data driven and

mobility, for the node energy conservation. The experiment

is conducted using TelosB [3] nodes.

Even if each subsystem in the sensor node is designed with

power efficiency objectives, their association does not neces-

sarily lead to a low-power SN. Consequently, a power/energy

management policy for the whole SN is mandatory.

The ability to enable and disable SNs as well as to

adapt their performance to the workload, is key to achieve

energy efficient functioning of the whole sensor network.

Dynamic Power Management (DPM) is proposed here to

dynamically re-configure a WSN in order to provide the

requested services and performance levels with a minimum

number of active SNs and/or a minimum load on the

nodes. DPM is used in the System-on-Chip (SoC) area.

It encompasses a set of techniques that achieve energy-

efficient computation by selectively turning off or reducing

the performance of the system components when they are

idle (or partially unexploited). The fundamental premise for

the DPM applicability is that systems (and their components)

experience non-uniform workloads during the operation time.

This assumption is valid for most systems, both when con-

sidered in isolation (e.g. SoC platform) and when connected

via a network (e.g. a set of SNs). A second assumption of



DPM is that it is possible to predict, with a certain degree

of confidence, the workload fluctuations. Note that when

“energy-hungry” sensors [4] are embedded in the nodes,

an efficient DPM must be implemented in order to have

an optimal overall energy. This global power management

policy is certainly a more complex problem than the one

dedicated to a single node because, in essence, the WSN is

spatially distributed, usually with a clock frequency in each

node that is not (properly) synchronized with the other ones.

The present paper addresses DPM at the WSN level.

The objective is to provide for the WSN a given service

(hereafter named “mission”) while the lifespan is extended,

the power consumption within the network being minimized.

The mission is expressed as a set of constraints on the

different functioning modes of each SN.

Related work

Power management at the WSN level has already been

addressed in the literature in order to increase the node

lifespan, see for instance [5], [1]. This latter shows that trade-

off mechanisms that give the end-user the option of prolong-

ing the network lifetime at the cost of lower throughput or

higher transmission delay, can be implemented. The kinds

of mechanisms are not discussed in the present paper, but

they might be added to the proposed control. There, Model

Predictive Control (MPC) seems an appropriate technique, as

it is based on an optimal control policy applied by predicting

the behavior of the system over a receding horizon [6]. Due

to its characteristics, MPC can handle constraints [7] during

the design phase while being applied to linear Single-Input-

Single-Output (SISO) and Multiple-Input-Multiple-Output

(MIMO) systems [8], [9], nonlinear [10], [11] and hybrid

systems [12], [13]. This last class of systems can describe

continuous (and sampled) states (real-set variables), discrete

and state-machine states (integer-set variables) and logic

rules (binary-set variables) [14]. It is solved as a mixed

integer program (MIP).

A similar problem is considered in the literature using the

Fault-Tolerant Control (FTC) paradigm [15]. In this present

paper, MPC can handle FTC schemes by changing the

constraints or by considering different models in a switched

framework. Fault Detection and Isolation (FDI) can be used

in a receding horizon strategy, in order to identify parameters

and thus determine if the data obtained is consistent with

the established model. In this sense, FDI involves deciding

if the system works as expected, i.e. if all the components

(sensors, actuators, controllers) behave satisfactorily. This

decision is generally taken by processing input/output data,

and FDI strategies should be able to detect a fault and

eventually isolate it. Once the fault is detected, a control

reconfiguration can occur in order to guarantee stability and

avoid performance degradation.

Power control in a WSN using multiple-description coding

is addressed in [16] whose main contribution is to investigate

the role of dynamic power control and coding when state es-

timation is considered. The control objective is to counteract

the channel variability (i.e. ensure Quality of Service (QoS))

Fig. 2: Single-hop heterogeneous sensor network architecture

and achieve a compromise between the battery use and the

estimation accuracy. The controller is located in a gateway.

It decides upon the transmission power level and the coding

scheme to be used by each node. However, satisfying the

QoS does not guarantee that the “mission”, as defined here,

is satisfied.

The paper is organized as follows. Section II is first dedi-

cated to the system modeling. Then the control objectives are

provided. The control design is developed in section III. It

is based on Constrained Predictive Control techniques, with

bounded states, equality and inequality constraints and binary

control values. Section IV implements the proposed control

on a realistic benchmark. Conclusion and future work are

provided in section V.

II. SYSTEM MODELING AND CONTROL OBJECTIVES

Consider a WSN that contains n ∈ N nodes Si, i =
1, . . . , n, powered by batteries. The nodes are supposed

heterogeneous, i.e. their hardware can differ, some nodes

possibly embedding more computational capabilities than

other ones, leading to different roles in the network. More-

over, their battery characteristics can be different. The com-

munication is supposed to be single-hop clustered [17]: each

SN sends its data to a specific node called “sink” which

is responsible for the monitoring and control of the area

connected by the SNs and/or for interconnecting to a Wide

Area Network such as the Internet. This sink chooses the

working mode of the nodes thanks to a strategy presented

hereafter. The topology considered is depicted in Fig. 2.

Each SN can be placed in different functioning modes

Mj , j = 1, . . . ,m, m ∈ N, which are related to the states

(on, sleep, off, etc.) of each SN subsystem, characterized

by a known average power consumption for a given period

of time. Here, the nodes are supposed to provide redundant

information. Therefore, in order to achieve a given service,

only a subset of the SNs is absolutely mandatory. Thus, if

one selects properly the mode of the nodes, power savings

can be achieved. In other words, most of the devices can be

placed in sleep mode, while the other ones are active (i.e.

sending and/or transmitting information).

In order to control energy savings in the WSN, the

remaining energy in the nodes is modeled with a discrete-

time linear time-invariant (LTI) state-space system:

xk+1 = Axk +Buk (1)

where xk ∈ R
n,+ is the remaining energy in the battery

of node Si, i = 1, . . . , n, at instant k. Buk represents the



TABLE I: Average energy consumption for each SN Si in

the different modes Mj over the certain time period TPW

Sensor node Mode M1 Mode M2 . . . Mode Mm

S1 b11 b12 . . . b1m = B1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Sn bn1 bn2 . . . bnm = Bn

averaged energy that will be used during the time interval

[TPW k, TPW (k+1)], where TPW is the decision period (i.e.

the time period when the power control is run). The battery

has a bounded capacity. Thus, for node Si:

0 6 xi
6 Xi

max (2)

The initial battery charge (i.e. at instant k = 0) for Si is

denoted Xi
0. The state matrix A ∈ R

n×n is equal to the

identity matrix In while uk = [uT
1 , · · · , u

T
n ]

T ∈ {0, 1}nm

is the control with ui{j} ∈ {0, 1}. Each sub-vector ui

represents the mode of Si.

The SN Si has a unique working mode at instant k.

Therefore, for i = 1, . . . , n, a set of constraints has to be

defined at each instant k:
m∑

j=1

ui{j} = 1 (3)

Matrix B = diag [−B1, . . . ,−Bn] ∈ R
n×nm in Eq.

(1) is interpreted as the control matrix. Each component

bij represents the amount of energy averaged over TPW

consumed by the SN Si, when it works in mode Mj during

the time interval [TPW k, TPW (k + 1)] (see Table I). Note

that a change from one mode to another has an extra energy

cost that is supposed to be integrated in bij in this paper.

In order to fulfill a “mission” while decreasing the power

consumption, a subset of dj ∈ N SNs is assigned to a given

mode Mj . Thus an extra set of constraints is defined:

n∑

i=1

ui{j} = dj (4)

Control objectives

A dynamic energy saving control policy has to be im-

plemented at the WSN level in order to increase its lifespan

while guaranteeing adequate performance levels expressed as

a mission. The capability to fulfill a mission is related to the

WSN QoS. However, it imposes extra functional constraints

to the WSN. As indicated above, the control variable uk

takes its values in {0, 1}. It fixes the functioning mode of

each node under constraints (3) (meaning that each mode is

in a unique mode) and (4) that are used to define the mission.

For instance, in a network of n SNs that deliver strongly

correlated information, the whole system power consumption

can be decreased if the nodes are properly managed in order

to provide just enough information for the application to be

performed “properly”. Broadly speaking, this means that the

application requires Non < N nodes that communicate while

N −Non nodes can be set in the Sleep mode that consumes

less energy than the On mode.

III. CONTROL DESIGN

The power consumption minimization of (1) can be pre-

sented as a Quadratic Programming (QP) problem. Con-

strained Predictive Control implies the resolution of this

problem via the minimization of a cost function using a fi-

nite number of finite-dimensional positive definite Quadratic

Problems. The constrained QP does not feature the unde-

sirable mismatch between the open-loop and closed-loop

nominal system trajectories, which is presented in the other

popular forms of MPC that can be implemented with a finite

QP algorithm.

Recently, the interest in using MPC for controlling systems

that involve a mix of real-valued dynamics and logical rules

has arisen [12], [14]. Unfortunately, when this problem is

formulated as an optimization one, the resulting description

is no longer a QP problem but a Mixed-Integer Quadratic

Programming (MIQP) problem. This latter involves opti-

mization variables that can be real values, but also integer

values or even binary values, which makes the problem

harder to solve than an ordinary QP problem.

It is assumed throughout the rest of the paper that the
pair (A,B) of (1) is stabilizable. At each sampling time (i.e.
decision time as defined above), the current state (assumed
to be available) xk = xk|k can be used to find the optimal

control sequence u∗ =
[

uT
k|k, . . . , u

T
k+Np−1|k

]T

by means

of the following minimization problem:

u
∗
= arg min

u

Np−1
∑

i=0

x
T
k+i|kQxk+i|k +

Nu−1
∑

i=0

u
T
k+i|kRuk+i|k

subject to:


















xk+i+1|k = Axk+i|k +Buk+i|k, i = 1, . . . , Np − 1

uk+i|k = 0, i = Nu, Nu + 1, . . . , Np − 1

uk+i|k ∈ {0, 1}

Xmin 6 xk+i|k 6 Xmax, i = 1, . . . , Np − 1

(5)

where Q = QT > 0 and R = RT > 0 are weighting

matrices, Xmin and Xmax are the lower and upper bounds

on the state xk+i|k, and the pair (Q1/2, A) is detectable.

The prediction horizon Np, the control horizon Nu 6 Np

together with matrices Q and R are the degrees of freedom

of the control design methodology.

By compacting the states involved in the optimization

problem (5) as x =
[

xT
k+1|k, . . . , x

T
k+Np|k

]T

and denoting

xk|k = x, the cost function is rewritten in a matrix form as:

arg min
u

xT Q̄x + uT R̄u

subject to:







u ∈ {0, 1}

F̄inx
x 6 Ḡinx

F̄equu = Ḡequ

(6)

where Q̄ = diag [Q, . . . , Q], R̄ = diag [R, . . . , R]. The

inequality and equality constraints are fully described by

F̄inx
∈ R

s×n, Ḡinx
∈ R

s, F̄equ ∈ R
p×r and Ḡequ ∈ R

p,

p = (Np − Nu)nm, r = Npnm, s = Npq that express the

constraints (2), (3) and (4) on xk|k and uk|k ∀k, respectively.



System (1) can now be extended in a compact matrix form:

x = Φx+ Γu

Φ =











A

A2

...

ANp











, Γ =











B 0 · · · 0

AB B · · · 0

...
...

. . .
...

ANp−1 ANp−2 · · · ANp−Nu











(7)

Then (6) is given as a MIQP (see e.g. [9])

arg min
u

uTHu + 2uTFx

subject to:







u ∈ {0, 1}

F̄inx
Γu 6 Ḡinx

− F̄inx
Φx

F̄equu = Ḡequ

(8)

where

H = ΓT Q̄Γ + R̄, F = ΓQ̄Φ (9)

It is worth mentioning that the the control designer has to

choose of the weighting matrices Q and R and the prediction

Np and control Nu horizon.

IV. APPLICATION

To show the effectiveness of the proposed strategy, a

benchmark with n = 6 SNs Si and one sink is considered

in simulation1. At instant k, the SN Si, i = 1, . . . , 6, can be

in a unique mode among 3 possible ones Mj , j = 1, . . . , 3
(see Table II):

• M1 is the standard On mode. In this mode, the node

acquires measurements. It has transmission/reception

capabilities. It can also process data and it monitors its

battery. Fig. 3 shows the typical current consumption of

a SN working in M1 mode. The waveform corresponds

to a wireless SN application cycle: the node awakes

from the Sleep state. Then, it goes to Rx state, waiting

for a beacon. It collects data and prepares the data

packets to be transmitted. Then, the packet is sent to

the sink. On the figure, one can see the dependence

of the current consumption on the state of each node

subsystem. Channels number one and two correspond

to the transmission and reception current consumption

of the Communication SS, respectively. The fourth

channel representsthe MCU/Sensor(s) current consump-

tion (Processing and Sensing SSs). The third channel

corresponds to the total SN current consumption;

• M2 corresponds to a Sleep mode. In this mode, the SN

uses the internal oscillator for lower power consumption

(Real Time Clock). When the node awakes the clock

is switched to a high frequency oscillator for faster

operations but also with a higher power consumption;

• M3 corresponds to the SN in the total Switch off state.

In practice, this mode is equivalent to a faulty situation,

e.g. the node battery is completely drained, the sink

cannot reach the node, etc. Note that the node can exit

M3 for instance when it has enough energy to be placed

in M1, or when the sink can access it again.

TABLE II: Functioning modes for sensor node Si

Modes Processing SS Communication SS Sensing SS

M1 Active Tx / Rx On

M2 Sleep Off Off

M3 Off Off Off

Fig. 3: Excerpt of the waveforms of a typical cycle for a wire-

less sensor node working in mode M1 (current consumption)

In the present scenario, the mission is split in two phases

corresponding respectively to daytime and night period of

time. Therefore, the constraints that define the mission have

to be dynamically changed, depending on the time schedule

and two constraints (4) define the dynamic mission:

day (8am − 6pm) : d1 = 3 (3 nodes in M1)

night (6pm − 8am) : d1 = 1 (a unique node in M1)
(10)

The sampling period associated to the SNs is Ts = 60s.

Thus, data collected from sensors in M1 are every minute.

Note that the nodes in mode M1 perform the reception,

measurement, computing and transmission functionalities

every minute. The SNs that are not in mode M1 are placed

in M2. All the SNs in mode M2 have to wake up every hour.

This latter corresponds to the period Tmb = 1h associated

with the monitoring of the battery remaining capacity. The

remaining energy is sent to the sink. Note that this is in

fact a measurement phase with yk = xk. M3 corresponds

to a faulty situation is imposed when
Xi

0

Xi
max

≤ δ. This

corresponds to the situation when the node battery is nearly

fully drained.

Assume at k0, the node batteries have enough energy

so that any node Si can fulfill the mission (i.e. being in

M1). Therefore, during the day (resp. night) period, three

(resp. one) nodes are placed in mode M1 while the 3 (resp.

5) other nodes are placed in M2. As soon as the battery

capacity of a SN, say sensor Sf , is lower than δ, Sf falls

1Note the control approach has been developed for n ∈ N nodes, see the
previous section.



TABLE III: Average current consumption (mA ·h) of sensor

node Si in the functioning mode Mj over the period Tmb

Sensor node Mode M1 Mode M2 Mode M3

S1 6.56 0.92 0

S2 8.72 1.11 0

S3 7.75 1.08 0

S4 9.43 1.26 0

S5 7.54 1.29 0

S6 7.20 1.03 0

TABLE IV: Sensor node battery characteristics (each sensor

node embeds two AA batteries)

Sensor

node

Battery

Type

Nominal

Voltage

[V]

Battery capacity

Xi
max/2

[mA·h]

Initial battery

capacity
Xi

0

Xi
max

S1 NiCd 1.2 1100 1

S2 NiCd 1.2 1100 0.8

S3 NiMH 1.2 2500 1

S4 NiMH 1.2 2500 0.7

S5 Li-ion 3.7 740 0.9

S6 Li-ion 3.7 740 1

in mode M3. Then, the control law assigns a new mode to

the remaining nodes in order to meet the dynamic mission

while minimizing the energy consumption of the sensor

network. Actually, the set of constraints is modified because

uf (3) = 1. Hereafter, δ = 0.1 is chosen.

For the system (1), A = I6 while the components of matrix

B are calculated from the values given in Table III, multi-

plied by battery nominal voltage value of the corresponding

SN (see Table IV where the battery characteristics associated

to each node are provided). Note that the numerical values

are derived from [18]. Table IV also provides the initial

capacity of the batteries associated with each SN. These latter

numerical values are obtained from [19].

The weighting matrices Q and R that appear in the

definitions of Q̄ and R̄ in (9) are chosen equal to:

Q = 06×6; R = BTB (11)

where 0 is the null matrix with appropriate dimension. The

choice Q = 06×6 roots in the fact that the state dynamics

should evolve as slowly as possible [20]. The choice of R

implies that the nodes with bigger energy consumption are

more penalized.

From (2), the inequality constraints become:

[
I6

−I6

]

︸ ︷︷ ︸

Finx






x1

...

x6




 ≤

[
X1

max · · · X6
max 0 · · · 0

]T

︸ ︷︷ ︸

Ginx

(12)

while the equality constraints (3) and (4) are defined as:






1 1 1 · · · 0
...

. . .
...

0 · · · 1 1 1






︸ ︷︷ ︸

F 1
equ






u1{j}
...

u6{j}




 =






1
...

1






︸︷︷︸

G1
equ

(13)
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Fig. 4: Functioning modes of sensor nodes vs. time with

DPM (simulation started at midnight)





1 0 0 1 0 0 · · · 1 0 0
0 1 0 0 1 0 · · · 0 1 0
0 0 1 0 0 1 · · · 0 0 1





︸ ︷︷ ︸

F 2
equ






u1{j}
...

u6{j}




 =





a

b

c





︸︷︷︸

G2
equ

(14)

where a and b correspond to the number of nodes in modes

M1 and M2, respectively. During daytime a = 3 and at

night a = 1 (see (10)). c corresponds to the number of nodes

fallen in mode M3 with c = n − a − b. The other matrices

are defined as follows: Fequ =
[
F 1
equ F 2

equ

]T
; Gequ =

[
G1

equ G2
equ

]T
; F̄equ = diag [Fequ , . . . , Fequ ], Ḡequ =

diag [Gequ , . . . , Gequ ], F̄inx
= diag [Finx

, . . . , Finx
],

Ḡinx
= diag [Ginx

, . . . , Ginx
]. The prediction horizon is

chosen Np = 5 and the control horizon is Nu = 1. As the

considered system presents slow dynamics, this horizon

seems sufficient enough. The decision period (i.e. the time

period when the power control is run) is TPW = Tmb = 1h.

Thus, the MIQP problem is solved on-line at each decision

time TPW k.

The power control of the SNs at network level is simulated

in the MATLAB environment. The MIQP problem is solved

with Yalmip [21]. Fig. 4 provides simulation results. One

can see the evolution of the number of SNs: it depends on

the daytime/night condition and on the battery conditions.

The battery energy state of the SNs is shown when the

control of the whole network is implemented in Fig. 5a.

Fig. 5b shows the energy in the battery nodes in the usual

situation, i.e. when all nodes are in the On state during the

whole period of simulation. Note that in the first situation

with “daytime/night” conditions, the mission can be extended

up to 691 hours. This lifespan is highly extended more than

2x because un-useful nodes are in sleep mode. In the case

the Dynamic Power Management at network level is not

implemented, the network lifespan is equal to 302 hours.

This means that, for this particular scenario, the proposed

management method doubles the lifespan. Fig. 5c compares

the total energy consumption in both situations (i.e. with and

without DPM).
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(a) Sensor node energy evolution with DPM
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(b) Sensor node energy evolution without DPM
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Fig. 5: Results of the system simulation

V. CONCLUSIONS AND FUTURE WORK

In this paper, dynamic power management of SNs at

network level via MPC has been proposed. The energy in the

SN batteries is modeled using a state-space representation.

The control is solved using a MIQP approach. The objectives

for the dynamic power control are expressed as a mission

that defines a minimum number of active SNs to attain

performance levels. In this way, only the sensors that are

mandatory to fulfill the mission are in On mode while the

other ones are placed in Sleep mode. In this way, the lifespan

of WSN is extended. Experiments in simulation for n = 6
SNs have been conducted. The results are promising and

can be extended to a larger number of SNs depending the

complexity of the MIQP problem to be solved. The DPM

method is currently under implementation on a test-bench in

order to evaluate in real-life conditions the capability of the

proposed control method at network level.
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