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Abstract
One of the most studied behavioural equivalences is bisimilarity. Its
success is much due to the associated bisimulation proof method,
which can be further enhanced by means of ‘up-to bisimulation’
techniques such as ‘up-to context’.

A different proof method is discussed, based on unique solution
of special forms of inequations called contractions, and inspired
by Milner’s theorem on unique solution of equations. The method
is as powerful as the bisimulation proof method and its ‘up-to con-
text’ enhancements. The definition of contraction can be transferred
onto other behavioural equivalences, possibly contextual and non-
coinductive. This enables a coinductive reasoning style on such
equivalences, either by applying the method based on unique so-
lution of contractions, or by injecting appropriate contraction pre-
orders into the bisimulation game.

The techniques are illustrated on CCS-like languages; an exam-
ple dealing with higher-order languages is also shown.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ing of Programs]: Specifying and Verifying and Reasoning about
Programs—logics of programs; F.3.2 [Logics and Meaning of
Programs]: Semantics of Programming Languages—operational
semantics.

General Terms Theory

Keywords Bisimulation; Coinduction; Equations; Unique solu-
tion; Contraction

1. Introduction
Bisimilarity is employed to define behavioural equivalences and
reason about them. Originated in concurrency theory, bisimilarity
is now widely used also in other areas, as well as outside Computer
Science.

In this paper, behavioural equivalences, hence also bisimilarity,
are meant to be weak because they abstract from internal moves of
terms, as opposed to the strong ones, which make no distinctions
between the internal moves and the external ones (i.e., the inter-
actions with the environment). Weak equivalences are, practically,
the most relevant ones: e.g., two equal programs may produce the
same result with different numbers of evaluation steps.

[Copyright notice will appear here once ’preprint’ option is removed.]

In proofs of bisimilarity results, the bisimulation proof method
has become predominant, particularly with the enhancements of the
method provided by the so called ‘up-to techniques’ [26]. Among
these, one of the most powerful ones is ‘up-to expansion and con-
text’, whereby the derivatives of two terms can be rewritten us-
ing expansion and bisimilarity and then a common context can be
erased. Forms of ‘bisimulations up-to context’ have been shown to
be effective in various fields, including process calculi [24, 26, 34],
λ-calculi [14, 16, 17, 35], and automata [7, 30].

The landmark document for bisimilarity is Milner’s CCS book
[19]. In the book, Milner carefully explains that the bisimulation
proof method is not supposed to be the only method for reasoning
about bisimilarity. Indeed, various interesting examples in the book
are handled using other techniques, notably unique solution of
equations, whereby two tuples of processes are componentwise
bisimilar if they are solutions of the same system of equations. This
method is important in verification techniques and tools based on
algebraic reasoning [2, 28, 29].

Milner’s theorem that guarantees unique solutions [19] has how-
ever limitations: the equations must be ‘guarded and sequential’,
that is, the variables of the equations may only be used underneath
a visible prefix and preceded, in the syntax tree, only by the sum
and prefix operators. This limits the expressiveness of the tech-
nique (since occurrences of other operators above the variables,
such as parallel composition and restriction, in general cannot be
removed), and its transport onto other languages (e.g., languages
for distributed systems or higher-order languages, which usually
do not include the sum operator).

In this paper we propose a refinement of Milner’s technique in
which equations are replaced by special inequations called contrac-
tions. Intuitively, for a behavioural equivalence �, its contraction
�� is a preorder in which P �� Q holds if P � Q and, in
addition, Q has the possibility of being as efficient as P . That is, Q
is capable of simulating P by performing less internal work. It is
sufficient that Q has one ‘efficient’ path; Q could also have other
paths, that are slower than any path inP . Uniqueness of the solution
of a system of contractions is defined as with systems of equations:
any two solutions must be equivalent with respect to �. The dif-
ference with equations is in the meaning of solution: in the case of
contractions the solution is evaluated with respect to the preorder
��, rather than the equivalence �.

If a system of equations has a unique solution, then the corre-
sponding system of contractions, obtained by replacing the equa-
tion symbol with the contraction symbol, has a unique solution too.
The converse however is false: it may be that only the system of
contractions has a unique solution. More important, the condition
that guarantees a unique solution in Milner’s theorem about equa-
tions can be relaxed: ‘sequentiality’ is not required, and ‘guarded-
ness’ can be replaced by ‘weak guardedness’, that is, the variables
of the contractions can be underneath any prefix, including a prefix
representing internal work. (This is the same constraint in Milner’s
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‘unique solution of equations’ theorem for strong bisimilarity; the
constraint is unsound for equations on weak bisimilarity.)

We show that Milner’s theorem is not complete for pure equa-
tions (equations in which recursion is only expressible through the
variables of the equations, without using the recursion construct
of the process language): there are bisimilar processes that can-
not be solutions to the same system of guarded and sequential pure
equations. In contrast, completeness holds for weakly-guarded pure
contractions. The contraction technique is also computationally
complete: any bisimulation R can be transformed into an equiv-
alent system of weakly-guarded contractions that has the same size
of R (where the size of a relation is the number of its pairs, and
the size of a system of contractions is the number of its contrac-
tions). An analogous result also holds with respect to bisimulation
enhancements such as ‘bisimulation up-to expansion and context’.
The contraction technique is in fact computationally equivalent to
the ‘bisimulation up-to contraction and context’ technique — a re-
finement of ‘bisimulation up-to expansion and context’.

The contraction technique can be generalised to languages
whose syntax is the term algebra derived from some signature,
and whose semantics is given as an LTS. In this generalisation the
weak-guardedness condition for contractions becomes a require-
ment of autonomy, essentially saying that the processes that replace
the variables of a contraction do not contribute to the initial action
of the resulting expression. The technique can also be transported
onto other equivalences, including contextually-defined equiva-
lences such as barbed congruence, and non-coinductive equiva-
lences such as contextual equivalence (i.e., may testing) and trace
equivalence [9, 10, 22]. For each equivalence, one defines its con-
traction preorder by controlling the amount of internal work per-
formed.

Finally, we show that a contraction preorder can be injected
into the bisimulation game. That is, given an equivalence � and
its contraction preorder��, we can define the technique of ‘bisim-
ulation up-to �� and context’ whereby, in the bisimulation game,
the derivatives of the two processes can be manipulated with ��
and � (similarly to the manipulations that are possible in the stan-
dard ‘bisimulation up-to expansion and context’ using the expan-
sion relation and bisimilarity) and a common context can then be
erased. The resulting ‘bisimulation up-to�� and context’ is sound
for �. This technique allows us to derive results for � using the
(enhanced) bisimulation proof method.

The contraction technique cannot however be transported onto
all (weak) behavioural equivalences. For instance, it does not work
in the setting of infinitary trace equivalence (whereby two processes
are equal if they have the same finite and infinite traces), and must
testing [9]. A discussion on this point is deferred to the concluding
section.

We conclude the paper with an example of application of con-
tractions to a higher-order language, which exploits the autonomy
condition.

Structure of the paper All background material is reported in
Section 2. Contractions and their properties are introduced in Sec-
tion 3, for bisimilarity and the CCS language. The extension to lan-
guages defined from a generic signature is presented in Section 4.
The transport of contractions onto other behavioural equivalences
is discussed in Sections 5 (barbed congruence), 6 (contextual equiv-
alence), 7 (trace equivalence), and 8 (non-applicability to certain
equivalences). The injection of contractions into the bisimulation
game is described in Section 9. The example with higher-order lan-
guages is reported in Section 10.

2. Background
2.1 CCS
We assume an infinite set of names a, b, . . . and a set of constant
identifiers (or simply constants) for writing recursive processes.
The special symbol τ does not occur in the names and in the con-
stants. The class of the CCS processes is built from the operators of
parallel composition, guarded sum, restriction, and constants, and
the guard of a sum can be an input, an output, or a silent prefix:

P := P1 | P2 | Σi∈Iµi.Pi | νa P | K

µ := a | a | τ

where I is a countable indexing set. Sums are guarded so to ensure
that behavioural equivalences and preorders are substitutive. We
write 0 when I is empty, and P + Q for binary sums, with the
understanding that, to fit the above grammar, P and Q should be

sums of prefixed terms. Each constant K has a definition K
4
= P .

We sometimes omit trailing 0, e.g., writing a | b for a.0 | b.0 .
We write µn.P for P preceded by n µ-prefixes. In a few examples

we write !µ.P as abbreviation for the constant Kµ.P
4
= µ. (P |

Kµ.P ). The operational semantics is given by means of an LTS,
and is reported in Figure 1 (the symmetric version of the two
rules for parallel composition has been omitted). The immediate
derivatives of a process P are the elements of the set {P ′ | P µ−→
P ′ for some µ }. We use ` to range over visible actions (i.e., inputs
or outputs, excluding τ ).

Some standard notations for transitions: =⇒ is the reflexive and
transitive closure of τ−→, and

µ
=⇒ is =⇒ µ−→=⇒ (the composition

of the three relations). Moreover, P
µ̂−→ P ′ holds if P

µ−→ P ′ or
(µ = τ and P = P ′); similarly P

µ̂
=⇒ P ′ holds if P

µ
=⇒ P ′ or

(µ = τ and P = P ′). We write P (
µ−→)nP ′ if P can become P ′

after performing n µ-transitions. Finally, P
µ−→ holds if there is P ′

with P
µ−→ P ′, and similarly for other forms of transitions.

Further notations LettersR,S range over relations. We use infix
notation for relations, e.g., P R Q means that (P,Q) ∈ R.
We use a tilde to denote a tuple, with countably many elements;
thus the tuple may also be infinite. All notations are extended to
tuples componentwise; e.g., P̃ R Q̃ means that Pi R Qi, for
each component i of the tuples P̃ and Q̃. And C[P̃ ] is the process
obtained by replacing each hole [·]i of the context C with Pi.
We write Rc for the closure of a relation under contexts. Thus
P Rc Q means that there are a context C and tuples P̃ , Q̃ with
P = C[P̃ ], Q = C[Q̃] and P̃ R Q̃. We use symbol def

= for

abbreviations. For instance, P def
= G, where G is some expression,

means that P stands for the expression G (in contrast, symbol
4
= is

used for the definition of constants, whereas = is used for syntactic
equality and for equations). If ≤ is a preorder, then ≥ is its inverse
(and conversely).

2.2 Bisimilarity and expansion
We focus on weak behavioural equivalences, which abstract from
the number of internal steps performed.

DEFINITION 2.1 (bisimilarity). A process relation R is a bisimu-
lation if, whenever P R Q, we have:

1. P
µ−→ P ′ implies that there is Q′ such that Q

µ̂
=⇒ Q′ and

P ′ R Q′;
2. the converse of (1) on the actions from Q.
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Σi∈Iµi.Pi
µi−−→ Pi

P
µ−→ P ′

P | Q µ−→ P ′ | Q
P

a−→ P ′ Q
a−→ Q′

P | Q τ−→ P ′ | Q′
P

µ−→ P ′

νa P
µ−→ νa P ′

µ 6= a, a
P

µ−→ P ′

K
µ−→ P ′

if K
4
= P

Figure 1. The LTS for CCS

P and Q are bisimilar, written P ≈ Q, if P R Q for some
bisimulationR. 2

We sometimes call bisimilarity weak bisimilarity, to distinguish
it from strong bisimilarity, ∼, obtained by replacing in the above
definition the weak answer Q

µ̂
=⇒ Q′ with the strong Q

µ−→ Q′.
The bisimulation proof method can be enhanced by means of

up-to techniques. One of the most useful auxiliary relations in up-to
techniques is the expansion relation�e [32]. This is an asymmetric
version of ≈ where P �e Q means that P ≈ Q, but also that Q
achieves the same as P with no more work, i.e. with no more τ
actions. Intuitively, if P �e Q, we can think of Q as being at least
as fast as P or, more generally, we can think that P uses at least as
many resources as Q.

DEFINITION 2.2 (expansion). A process relation R is an expan-
sion if, whenever P R Q,

1. P
µ−→ P ′ implies that there isQ′ withQ

µ̂−→ Q′ and P ′ R Q′;
2. Q

µ−→ Q′ implies that there is P ′ with P
µ

=⇒ P ′ and P ′ R Q′.

P expands Q, written P �e Q, if P R Q, for some expansionR.

Relation �e is studied – using a different terminology – by
Arun-Kumar and Hennessy [1]: they show that �e is a mathemati-
cally tractable preorder and has a complete proof system for finite
terms based on a modification of the standard τ laws for CCS. In
CCS, strong and weak bisimilarity are congruence relations, and
expansion is a precongruence. It holds that ∼ ⊆ �e and �e ⊆ ≈;
moreover each inclusion is strict. The inclusions are obvious. For
the strictness, we have that P 6∼ τ .P , P �e τ .P , and τ .P 6�e P ,
τ .P ≈ P .

A powerful up-to technique is ‘bisimulation up-to �e and con-
text’. It combines ‘up-to expansion’ (the possibility of rewriting the
derivatives of two related processes using �e and ≈), with ‘up-to
context’ (the possibility of removing a common context from the
derivatives). We recall thatRc is the context closure ofR.

DEFINITION 2.3 (bisimulation up-to �e and context). A process
relation R is a bisimulation up-to �e and context if, whenever
P R Q, we have:

1. P
µ−→ P ′ implies that there is Q′ with Q

µ̂
=⇒ Q′ and P ′ �e

Rc ≈ Q′;
2. the converse of (1) on the actions from Q.

The occurrence of �e on the left of Rc cannot be replaced by
≈, as this would break the soundness of the technique [26]. The
technique is sound [33]:

LEMMA 2.4 (soundness of bisimulation up-to �e and context). If
R is a bisimulation up-to �e and context, then R ⊆ ≈.

2.3 An example
In examples in the paper, we sometimes use a version of CCS with
value passing; this could be translated into pure CCS [19], but hav-
ing explicit value passing improves readability. In a value-passing
calculus, a(x).P is an input at a in which x is the placeholder for
the value received, whereas a〈n〉.P is an output at a of the value

n; and A〈n〉 is a parametrised constant. The following example il-
lustrates ‘bisimulation up-to�e and context’, and will then be used
for comparison with other techniques.

We wish to implement a server that, when interrogated by
clients at a channel c, starts a certain interaction protocol with
the client, after consulting an auxiliary server A at a. Here the aux-
iliary server A is deterministic: at every cycle it outputs an integer
value, which changes with the cycle (this change is represented by
the successor function, for simplicity).

We consider two implementations of the server. The difference
between them is that the first server, L, is lazy, and consults A only
after a request from a client has been received. In contrast, the other
server, E, consults A beforehand so to be then ready in answering
a client:

L
4
= c(z). a(x). (L | R〈c, x, z〉)

E
4
= a(x). c(z). (E | R〈c, x, z〉)

A〈n〉 4
= a〈n〉.A〈n+ 1〉

Here R〈c, x, z〉 represents the interaction protocol that is started
with a client, and can be any process. It may use the values x
and z (obtained from the client and the auxiliary server A); the
interactions produced may actually depend on the values x and z.
Process R〈c, x, z〉 may also use channel c, and therefore trigger
further interactions with the main server; in contrast, R〈c, x, z〉
may not use a (i.e., it may not interrogate the auxiliary server).

We use the ‘bisimulation up-to expansion and context’ tech-
nique to prove that the composition of the two servers withA yields
bisimilar lazy and eager systems:

LS〈n〉 def
= νa (A〈n〉 | L)

ES〈n〉 def
= νa (A〈n〉 | E)

Relation R def
= ∪n{(LS〈n〉, ES〈n〉)} is a bisimulation up-to ex-

pansion and context. Consider a pair (LS〈n〉, ES〈n〉). The two pro-
cesses have one initial transition; the most interesting case is the
challenge transition from ES〈n〉, and we only consider this one.
We have

ES〈n〉 τ−→ νa (A〈n+ 1〉 | c(z). (E | R〈c, n, z〉)) def
= E′

Process LS〈n〉 may not produce internal steps, hence its only pos-
sible answer is

LS〈n〉 =⇒ LS〈n〉
We can now perform some algebraic manipulations of E′: first,
we employ CCS expansion law to pull out the prefix at c, then a
structural law to resize the scope of the restriction at a in which we
exploit the property that R〈c, n, z〉 may not use a. (All these laws
are valid for strong bisimilarity, hence also for expansion.) We thus
obtain:

E′ �e c(z). (νa (A〈n+ 1〉 | E) | R〈c, n, z〉)
= c(z). (ES〈n+ 1〉 | R〈c, n, z〉) def

= E′′

We can act similarly on LS〈n〉, and in addition also employing the
law

νa (a(y).P | a〈v〉.Q) ≈ νa (P{v/y} | Q) (1)
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This gives us:

LS〈n〉 ≈ c(z). (νa (A〈n+ 1〉 | L) | R〈c, n, z〉)
= c(z). (LS〈n+ 1〉 | R〈c, n, z〉) def

= L′

We have thus obtained two processes, E′′ and L′, in the context
closure ofR, and we are done.

In the proof, the ‘up-to’ techniques allow us to work with a
relation that has exactly one pair for each integer. Specifically, ’up-
to context’ avoids us considering processes in parallel with the lazy
and eager systems, whereas ‘up-to expansion’ allows us to reason
only on the ‘normal forms’ LS〈n〉 and ES〈n〉 for these systems.

2.4 Systems of equations
Uniqueness of solutions of equations [19] intuitively says that if a
contextC obeys certain conditions, then all processes P that satisfy
the equation P ≈ C[P ] are bisimilar with each other.

We need variables to write equations. We use capital letters
X,Y, Z for these variables and call them equation variables. The
body of an equation is a CCS expression possibly containing equa-
tion variables. Thus such expressions, ranged over by E, live in a
CCS grammar extended with equation variables.

DEFINITION 2.5. Assume that, for each i of a countable indexing
set I , we have variables Xi, and expressions Ei possibly contain-
ing such variables. Then

{Xi = Ei}i∈I
is a system of equations. (There is one equation for each variable
Xi.)

We writeE[P̃ ] for the expression resulting fromE by replacing
each variable Xi with the process Pi, assuming P̃ and X̃ have the
same length. (This is syntactic replacement, akin to the substitution
of the holes of a context with processes.) The components of P̃
need not be different from each other, as it must be for the variables
X̃ . If the system has infinitely many equations, the tuples P̃ and X̃
are infinite too.

DEFINITION 2.6. Suppose {Xi = Ei}i∈I is a system of equa-
tions:

• P̃ is a solution of the system of equations for ≈ if for each i it
holds that Pi ≈ Ei[P̃ ].

• the system has a unique solution for≈ if whenever P̃ and Q̃ are
both solutions for ≈, then P̃ ≈ Q̃.

Examples of systems with a unique solution for ≈ are:

1. X = a.X

2. X1 = a.X2, X2 = b.X1

The unique solution of the system (1), modulo≈, is the constant

K
4
= a.K: for any other solution P we have P ≈ K. The

unique solution of (2), modulo ≈, are the constants K1,K2 with

K1
4
= a.K2 andK2

4
= b.K1; again, for any other pair of solutions

P1, P2 we have K1 ≈ P1 and K2 ≈ P2. Examples of systems that
do not have unique solution are:

1. X = X

2. X = τ .X

3. X = a | X
All processes are solutions of (1) and (2); examples of solutions for

(3) are K and K | b, for K
4
= a.K.

DEFINITION 2.7. A system of equations {Xi = Ei}i∈I is

• guarded if, in eachEi, each occurrence of an equation variable
is underneath a visible prefix;

• sequential if, in each Ei, each occurrence of an equation vari-
able only appears underneath prefixes and sums.

In other words, if the system is sequential, then for every ex-
pression Ei, any subexpression of Ei in which Xj appears, apart
from Xj itself, is a sum (of prefixed terms). For instance,

• X = τ .X + µ.0 is sequential but not guarded, because the
guarding prefix for the variable is not visible.

• X = `.X | P is guarded but not sequential.

• X = `.X + τ .νa (a. b | a.0), as well as X = τ . (a.X +
τ . b.X + τ) are both guarded and sequential.

THEOREM 2.8 (unique solution of equations, [19]). A system of
guarded and sequential equations has a unique solution for ≈.

The proof exploits an invariance property on immediate transi-
tions for guarded and sequential expressions, and then extracts a
bisimulation (up-to bisimilarity) out of the solutions of the system.

To see the need of the sequentiality condition, consider the
equation (from [19])

X = νa (a.X | a)

whereX is guarded but not sequential. Any processes that does not
use a is a solution.

3. Contractions
In Theorem 2.8 the constraints on guardedness and, especially, on
sequentiality limit its applicability. Further, the same definitions
and examples discussed for bisimilarity (and hence also the same
limitations) apply to other behavioural equivalences; e.g., contex-
tual equivalence and trace-based equivalences.

One may wonder if the conditions of Theorem 2.8 can be
relaxed by simply requiring that each equation be sequentially
guarded, that is, of the form X = Σj`j .Ej (where `j is a visi-
ble action). Unfortunately, uniqueness still fails; a counterexample
is

X = a.νa (a | X) .

Any process P with P ≈ a.P ′, and P ′ unable to use a, is a
solution. Examples are a.0 and a. b.0.

An equation X = a.E need not have a unique solution even
if we confine ourselves to processes that may only perform a
transitions. An example is the equation

X = a.νb (νa (a. !a. b | X) | !b. a) .

Here the body of the equation produces an a, cancels the first a
from X and then reproduces all other a’s. Any process P with
P ≈ a.P ′ for some P ′, is a solution; for instance, a.0 or a. a.0
or even !a.0.

3.1 Contraction preorders
The constraints on the unique-solution Theorem 2.8 can be weak-
ened if we move from equations to certain inequations that we call
contractions.

Intuitively, for a behavioural equivalence �, its contraction ��
is a preorder in which P �� Q holds if P � Q and, in
addition, Q has the possibility of being at least as efficient as
P . That is, if P can do some work (i.e., some interactions with
its environment), then Q should be able to do the same work at
least as quickly as P (i.e., performing no more τ -steps then those
performed by P ). Process Q, however, may be nondeterministic
and may have other ways of doing the same work, and these could
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be slow (i.e., involving more τ -steps than those performed by P ).
We first explain the idea on the concrete case of bisimilarity.

DEFINITION 3.1 (bisimulation contraction). A process relationR
is a bisimulation contraction if, whenever P R Q,

1. P
µ−→ P ′ implies there isQ′ such thatQ

µ̂−→ Q′ and P ′ R Q′;

2. Q
µ−→ Q′ implies there is P ′ such that P

µ̂
=⇒ P ′ and P ′ ≈ Q′.

Bisimilarity contraction, written �bis, is the union of all bisimula-
tion contractions.

In the first clauseQ is required to matchP ’s challenge transition
with at most one transition. This makes sure that Q is capable of
mimicking P ’s work at least as efficiently as P . In contrast, the
second clause of Definition 3.1, on the challenges from Q, entirely
ignores efficiency: it is the same clause of weak bisimulation — the
final derivatives are even required to be related by≈, rather than by
R.

Bisimilarity contraction is coarser than the expansion relation
�e of Definition 2.2. Clause (1) is the same in the two definitions.
But in clause (2) expansion uses P

µ
=⇒ P ′, rather than P

µ̂
=⇒ P ′;

moreover with contraction the final derivatives are simply required
to be bisimilar. An expansion P �e Q tells us that Q is always
more efficient than P , whereas the contraction P �bis Q just says
that Q has the possibility of being more efficient than P .

EXAMPLE 3.2. We have a 6�bis τ . a. However, a + τ . a �bis a,
as well as its converse, a �bis a + τ . a. Indeed, if P ≈ Q then
P �bis P +Q. The last two relations do not hold with �e, which
explains the strictness of the inclusion �e ⊆ �bis. 2

As bisimilarity contraction follows expansion in one direction
and bisimilarity in the other, clearly separating the two, the precon-
gruence and congruence for such relations can be combined into a
precongruence proof for the contraction.

THEOREM 3.3. �bis is a precongruence in CCS.

3.2 Systems of contractions
A system of contractions is defined as a system of equations, except
that the contraction symbol � is used in the place of the equality
symbol =. Thus a system of contractions is a set {Xi � Ei}i∈I
where I is an indexing set and expressions Ei may contain the
contraction variables {Xi}i∈I .

DEFINITION 3.4. Given a behavioural equivalence � and its con-
traction ��, and a system of contractions {Xi � Ei}i∈I , we say
that:

• P̃ is a solution for �� of the system of contractions if P̃ ��
Ẽ[P̃ ];

• the system has a unique solution for� if whenever P̃ and Q̃ are
both solutions for �� then P̃ � Q̃.

When we reason about bisimilarity, the contraction symbol� is
interpreted as the bisimilarity contraction�bis, and the equivalence
� as the bisimilarity ≈. Thus P̃ solution for �bis of the system of
contractions {Xi � Ei}i∈I means that P̃ �bis Ẽ[P̃ ]; and the
system having a unique solution for ≈ means that whenever P̃ and
Q̃ are both solutions for �bis then P̃ ≈ Q̃.

LEMMA 3.5. If a system of equations {Xi = Ei}i∈I has a unique
solution for ≈, then also the corresponding system of contractions
{Xi � Ei}i∈I has a unique solution for ≈.

The lemma holds because any system of equations has at least
one solution for strong bisimilarity, obtained by interpreting the
equations as recursive process definitions. A solution for strong
bisimilarity is also a solution in the system of contractions. More-
over, any solution of the system of contractions is a solution of the
system of equations. (The converse, in contrast, is false: as we shall
see, systems of contractions more easily have a unique solution.)

3.3 Conditions for unique solution of contractions
DEFINITION 3.6. A system of contractions {Xi � Ei}i∈I is
weakly guarded if, in each Ei, each occurrence of a contraction
variable is underneath a prefix.

In proofs about weakly-guarded contractions we will often un-
fold the contractions, exploiting the substitutivity of the contraction
preorder, with the objective of placing processes that are solutions
of the contractions underneath a certain number of prefixes. Sup-
pose P̃ are solutions of a system of contractions {Xi � Ei}i∈I ,
and consider a context C[P̃ ]. Then the process obtained fromC[P̃ ]

by unfolding the contractions once is C[ Ẽ[P̃ ] ]; the process ob-
tained by unfolding the contractions twice is C[ Ẽ[Ẽ[P̃ ]] ]; and
similarly for the n-unfolding.

LEMMA 3.7. Suppose P̃ and Q̃ are solutions for ≈ of a system of
weakly-guarded contractions. For any context C, if C[P̃ ]

µ
=⇒ R,

then there is a context C′ such that R �bis C
′[P̃ ] and C[Q]

µ̂
=⇒≈

C′[Q̃].

Proof [Sketch] Let n be the length of the transition C[P̃ ]
µ

=⇒ R
(the number of ‘strong steps’ of which it is composed), and let
C′′[P̃ ] and C′′[Q̃] be the processes obtained from C[P̃ ] and C[Q̃]
by unfolding the definitions of the contractions n times. Thus inC′′

each hole is underneath at least n prefixes, and cannot contribute to
an action in the first n transitions.

We have C[P̃ ] �bis C′′[P̃ ], and C[Q̃] �bis C′′[Q̃], by the
precongruence properties of�bis. Moreover, since each hole of the
contextC′′ is underneath at least n prefixes, applying the definition
of �bis on the transition C[P̃ ]

µ
=⇒ R, we infer the existence of

C′ such that C′′[P̃ ]
µ̂

=⇒ C′[P̃ ] �bis R and C′′[Q̃]
µ̂

=⇒ C′[Q̃].

Finally, again applying the definition of�bis onC[Q̃] �bis C
′′[Q̃],

we derive C[Q̃]
µ̂

=⇒≈ C′[Q̃]. 2

THEOREM 3.8 (unique solution of contractions for ≈). A system
of weakly-guarded contractions has a unique solution for ≈.

Proof [Sketch] One shows that if P̃ and Q̃ are solutions for ≈ of a
system of weakly-guarded contractions, then the relation

R def
= {(R,S) | R ≈ C[P̃ ], S ≈ C[Q̃] for some context C} .

is a bisimulation, exploiting Lemma 3.7. 2

In comparison to Theorem 2.8 for equations, in Theorem 3.8
for contractions the ‘guardedness’ condition is weakened, allow-
ing variables that are underneath τ prefixes; most important, the
sequentiality condition is removed, allowing variables underneath
any process constructs.

EXAMPLE 3.9. The following contractions have a unique solution
for ≈:

1. X � τ .X
2. X � a.νa (a | X))

3. X � a.νb (νa (a. !a. b | X) | !b. a)
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We have seen in Section 2.4 and at the beginning of Section 3 that
the corresponding equations do not have a unique solution. The
solutions of the contraction (1) are all inactive processes, where a
process is inactive if it cannot perform visible actions (i.e., if P
is the process, then there is no P ′ and visible action ` such that
P =⇒ P ′

`−→). The contraction has a unique solution because all
inactive processes are bisimilar. It is easy to see that an inactive
process is solution. Conversely, suppose P is not inactive, and let
n be the least n ≥ 0 such that P (

τ−→)n
`−→ for some `; then P is

not a solution of P � τ .P because τ .P needs at least n + 1 τ -
steps before exhibiting any visible action, and therefore can never
be more efficient than P . Example of solutions for (2) and (3) are
a.P and τ . a.P , where P is inactive. Any solution of (2) and (3)
is bisimilar with a.0. 2

REMARK 3.10. Results such as Lemma 3.7 and Theorem 3.8 also
hold if the game played in clause (1) of Definition 3.1 of bisimula-
tion contraction is that of strong simulation (i.e., “P

µ−→ P ′ implies
there is Q′ such that Q

µ−→ Q′ and P ′ R Q′”). However, the re-
sulting relation would not be coarse enough to capture expansion –
a major goal for this paper is understanding existing ‘bisimilarity
up-to’ techniques, where expansion is important. 2

3.4 Completeness
An interesting class of contractions are those in which the body E
of each contraction X � E does not contain constants. In these
systems, all forms of infinity in the behaviour of processes are
captured by recursive calls through the contraction variables. We
call such systems pure. Similarly we call pure a system of equations
without constants. In this section we discuss the expressiveness of
pure systems of contractions and equations. (With constants the
question is vacuous, as the behaviour of any process P is captured
by the guarded and sequential equation X = P .) We show that the
technique of weakly-guarded contractions given by Theorem 3.8 is
complete, whereas that of guarded and sequential equations given
by Theorem 2.8 is not.

If R is a relation then we can also view R as an ordered
sequence of pairs (e.g., assuming some lexicographical ordering).
Then Ri indicates the tuple obtained by projecting the pairs in R
on the i-th component (i = 1, 2).

THEOREM 3.11 (completeness). Suppose R is a bisimulation.
Then there is a system of weakly-guarded pure contractions of
whichR1 andR2 are solutions for �bis.

Proof [Sketch] Suppose R is a bisimulation. We define a system
of contractions of whichR1 andR2 are solutions. The variables of
the contractions are of the form XP,Q for P R Q, and there is one
contraction for each pair inR.

We show how the contraction for a pair P R Q is built.
Consider an enumeration of all the transitions from P :

P
µr−−→ Pr

where r ranges over some countable set IP . Following the bisim-
ulation game, for each r there is Qr s.t. Q

µ̂r
==⇒ Qr and Pr R

Qr . Proceeding similarly on the challenge transitions from Q, i.e.
Q

µs−−→ Qs for s ∈ IQ, we find processes Ps with P
µ̂s

==⇒ Ps and
Ps R Qs. Then the contraction for the pair P,Q is:

XP,Q � Σrµr.XPr,Qr + Σsµs.XPs,Qs

2

The contractions in the proof of the theorem are sequential
and weakly guarded, but not necessarily guarded. The assertion

of Theorem 3.11 can actually be refined: the technique based on
weakly-guarded contractions is also computationally complete with
respect to the bisimulation proof method, in the sense that the size
of the structures needed and the subsequent amount of checks are
comparable. The size of a relation is the number of its pairs. The
size of a system of contractions is the number of contractions.
The proof of Theorem 3.11 shows that the system of contractions
derived from a bisimulation R has the same size as R; moreover,
the work needed to prove that R1 and R2 are solutions of the
system of contractions is precisely the work needed to check the
challenge/response diagrams of the bisimulation game forR.

In contrast, the method for equations resulting from Theo-
rem 2.8 is not complete. For instance, there is no system of guarded
and sequential pure equations in which one of the solutions is the
process K so defined:

K
4
= τ . (a | K) + τ .0 .

To see this, it is useful to express the behaviour of K via the
following constants:

H0
4
= τ .H1 + τ

Hi
4
= τ .Hi+1 + a.Hi−1 + τ . ai (i > 0)

We have ai | K ≈ Hi, for each i, as witnessed by the relation

R def
= ∪i≥0{(ai | K,Hi)} ,

which is a bisimulation up-to strong bisimilarity. Now, for each
n 6= m, we have Hn 6≈ Hm (because, assuming n < m, Hm
cannot match the transition Hn

τ−→ an); moreover, for each n
there is a transition Hn

τ−→ Hn+1. As a consequence, the infinite
sequence of transitions

H0
τ−→ H1

τ−→ · · ·Hn
τ−→ Hn+1

τ−→ · · · (2)

go through states that are pairwise non-bisimilar. An equation
of which K is solution should be able to express the same be-
haviour. This is impossible, however, if the equation is sequential
and guarded, because the equation variables must be underneath
a visible prefix, and can only be reached by performing a visible
action. Hence an infinite nesting of internal transitions as in (2)
cannot be derived.

3.5 Relationship with up-to context
The completeness of the contraction technique given by Theo-
rem 3.11, including the computational completeness discussed af-
ter the theorem, remains also with respect to powerful enhance-
ments of the bisimulation proof method such as ‘up-to context’
techniques.

We show that the contraction technique is in fact computation-
ally equivalent to the ‘up-to �bis and context’ technique, a refine-
ment of the ‘up-to expansion and context’ of Definition 2.3 (the
former captures a larger set of relations because bisimilarity con-
traction is coarser than expansion).

DEFINITION 3.12 (bisimulation up-to �bis and context). A pro-
cess relation R is a bisimulation up-to �bis and context if, when-
ever P R Q, we have:

1. P
µ−→ P ′ implies there is Q′ such that Q

µ̂
=⇒ Q′ and P ′ �bis

Rc ≈ Q′
2. the converse of (1) on the actions from Q.

THEOREM 3.13. SupposeR is a bisimulation up-to�bis and con-
text. Then there is a system of weakly-guarded contractions, of the
same size asR, of whichR1 andR2 are solutions for �bis.
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Conversely, suppose P̃ and Q̃ are solutions for �bis to the
same system of weakly-guarded contractions. Then the relation
{(Pi, Qi)}i is a bisimulation up-to �bis and context.

The theorem is proved along the lines of Theorem 3.11.

REMARK 3.14. The definition of contraction was derived by at-
tempts at obtaining theorems such as 3.11 and 3.13. The construc-
tions in the theorems do not work with expansion in place of bisim-
ilarity contraction. 2

From Theorems 3.13 and 3.8 we derive:

COROLLARY 3.15. (soundness of ‘bisimulation up-to �bis and
context’). If R is a bisimulation up-to �bis and context, then
R ⊆ ≈.

Having shown that the techniques of weakly-guarded contrac-
tions and ‘bisimulation up-to �bis and context’ are equivalent, we
can derive the soundness of one from the soundness of the other
(in Corollary 3.15 we took the contraction technique as primitive).
The complexity of the soundness proofs of the two techniques is
similar. The main difference is that the expressions in the body of
the contractions are weakly guarded, whereas the contexts of the
‘up-to context’ bisimulation techniques are not. As a consequence,
in the proofs for the ‘up-to context’ techniques one has to reason
about all possible interactions between a context and the processes
plugged into it, proceeding by transition induction and a case anal-
ysis on the last rule used to derive a transition. With contractions
this is avoided, exploiting the weak-guardedness condition and the
unfolding of the contractions.

3.6 Example: the lazy and eager servers
We show a proof of the bisimilarity between the lazy and the ea-
ger systems of Section 2.3 using the technique of unique solution
of contractions. This serves both as an an illustration of the appli-
cation of the technique, and as a comparison with the technique
based on the bisimulation proof method employed in the proof of
Section 2.3.

The proof consists in showing that {LS〈n〉}n and {ES〈n〉}n
are solutions of the following system of contractions:

{Xn � c(z). (Xn+1 | R〈c, n, z〉)}n (3)

We establish that {ES〈n〉}n is a solution using the algebraic laws
in the proof in Section 2.3 (noticing that in (1) ≈ can be replaced
by �bis):

ES〈n〉 �bis νa (A〈n+ 1〉 | c(z). (E | R〈c, n, z〉))
∼ c(z). (νa (A〈n+ 1〉 | E) | R〈c, n, z〉)
= c(z). (ES〈n+ 1〉 | R〈c, n, z〉) .

We proceed similarly for LS〈n〉.
The contraction (3) is not sequential, hence contractions and

Theorem 3.8 cannot be replaced by equations and Theorem 2.8.

4. Language generalisation
We have shown the property of unique solution of weakly-guarded
contractions in CCS. We generalise here the theorem to an arbitrary
process language, using a more abstract condition. The generalisa-
tion serves both to better understand the validity of the theorem,
and for applicability to languages that, unlike CCS, do not have an
explicit prefixing construct.

For this generalisation we consider the case — standard in
process algebra — in which the syntax of the processes is the term
algebra generated by some signature, and the semantics is given as
an LTS. We call process language any such language. We use L to
denote a generic process language, and L(X ) for its extension with

the contraction variables in X . We say that L is ≈-safe if, in L, ≈
is a congruence relation, and its corresponding contraction �bis is
a precongruence.

In Theorem 3.8, the ‘weakly guarded’ hypothesis makes sure
that the body of a contraction alone determines the first interac-
tion. The body is thus autonomous: the interaction occurs without
contributions from the terms that replace the contraction variables.
Whenever the bodies of the contractions are autonomous in this
sense, the unique-solution property holds.

DEFINITION 4.1 (autonomous contractions). An expression E of
L(X ) is autonomous if for all processes P̃ of L we have:

• if E[P̃ ]
µ−→ R, then there is a context C such that R = C[P̃ ],

and for all Q̃, also E[Q̃]
µ−→ C[Q̃].

A system of contractions {Xi � Ei}i∈I is autonomous if each
expression Ei is autonomous.

THEOREM 4.2. In any ≈-safe process language L, a system of
autonomous contractions has a unique solution for ≈.

The proof of the theorem is similar to that of Theorem 3.8.
Checking the autonomy property is often straightforward. For in-
stance, in the case of the GSOS format [5], autonomy holds if, in
the body E of a contraction, all variables are underneath an ax-
iom operator, that is, an operator that, as CCS prefix, is defined by
means of SOS rules in which the set of hypothesis is empty.

In some cases, autonomy may be better than the weakly-
guarded hypothesis even if the calculus has a prefix operator:
we shall see an example in Section 10, with the Higher-Order π-
calculus, where autonomy allows us to capture occurrences of the
contraction variables within output prefixes.

5. Barbed congruence
We (briefly) consider the application of the idea of contraction to
barbed congruence [20], for various reasons. First, barbed congru-
ence is a contextually-defined form of behavioural equivalence, and
it paves the way to the treatment of other forms of contextual equiv-
alence. Second, we want to show that – sometimes – the contrac-
tion techniques make it possible to work directly with barbed con-
gruence, even though it is contextually defined (e.g., the example
with higher-order processes in Section 10). Third, the definition of
barbed congruence applies to any language with a reduction se-
mantics (i.e., a reduction relation and a barb, or observation, pred-
icate), as opposed to the LTS semantics of the languages in earlier
sections.

Thus the definitions and results in this section hold for any
algebraic calculus (the term algebra over a signature) equipped with
a reduction semantics, that is, a reduction relation −→ and a barb
predicate ↓. We use RL for referring to a generic such language,
and RL(X ) for its extension with the contraction variables in X .
(For CCS, −→ is τ−→ and P ↓ holds if P `−→, for some visible
action `.) As usual, =⇒ is the reflexive and transitive closure of
−→; and P ⇓ holds if there is P ′ with P =⇒ P ′ and P ′ ↓.

DEFINITION 5.1 (barbed bisimulation and congruence). A rela-
tionR on the processes ofRL is a barbed bisimulation if whenever
P R Q:

1. P −→ P ′ implies there is Q′ such that Q =⇒ Q′ and
P ′ R Q′;

2. P ↓ implies Q ⇓;
3. the converse of (1) and (2), on challenges from Q.

Barbed bisimilarity, written ≈bar, is the union of all barbed bisim-
ulations. Two processes P and Q are barbed congruent, written
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P ≈c
bar Q, if for each context C, it holds that C[P ] ≈bar C[Q].

2

REMARK 5.2. The definitions of barbed congruence in the litera-
ture often make use of a set of barb predicates; we use only one
barb here for mere simplicity of presentation. A variant of barbed
congruence is reduction-closed barbed congruence [11], in which
the closure under contexts is placed within the definition of bisimi-
larity. The difference between the two variants has no consequences
on the results in the paper. 2

In the ‘contraction version’ of barbed bisimilarity we write
Q
∧−→ Q′ if Q −→ Q′ or Q = Q′.

DEFINITION 5.3. (barbed contraction, barbed congruence contrac-
tion). A relationR on the processes ofRL is a barbed contraction
if, whenever P R Q:

1. P −→ P ′ implies there is Q′ such that Q ∧−→ Q′ and
P ′ R Q′;

2. Q −→ Q′ implies there is P ′ such that P =⇒ P ′ and
P ′ ≈bar Q

′;
3. P ↓ implies Q ↓;
4. Q ↓ implies P ⇓.

Barbed contraction, written �bar, is the union of all barbed con-
tractions. Barbed congruence contraction, written�c

bar, relates two
processes P and Q if, for each context C, it holds that C[P ] �bar

C[Q].

We transport the concept of autonomy to reduction-based se-
mantics.

DEFINITION 5.4 (reduction-autonomous contractions). An expres-
sion E of RL(X ) is reduction-autonomous if for all processes P̃
and context C ofRL:

• if C[E[P̃ ]] −→ R, then there is a context C′ such that R =

C′[P̃ ] and, for all Q̃, also C[E[Q̃]] −→ C′[Q̃];
• if C[E[P̃ ]] ↓ then, for all Q̃, also C[E[Q̃]] ↓.

A system of contractions {Xi � Ei}i∈I is reduction-autonomous
is each expression Ei is reduction-autonomous.

Barbed congruence and its contraction are, by definition, fully
substitutive. Hence the safety requirement of Theorem 4.2 is not
needed. In the property of unique solution for barbed congruence,
the symbols � and �� of Definition 3.4 become ≈c

bar and �c
bar,

respectively.

THEOREM 5.5. In RL, any system of reduction-autonomous con-
tractions has a unique solution for ≈c

bar.

6. Uniqueness of solution of contractions for
non-coinductive equivalences

We consider now non-coinductive equivalences. We focus on con-
textual equivalence [22] (i.e., may testing [9]), because it is widely
studied. As the barbed congruence of Section 5, so contextual
equivalence is contextually defined. Thus the setting considered is
the same: an algebraic process language equipped with a reduction
semantics. We reuse notations and terminologies from Section 5.
Intuitively, two terms are contextually equivalent when they are
equally observable, in any context.

DEFINITION 6.1 (contextual equivalence). P ≈ctx Q holds when
C[P ] ⇓ iff C[Q] ⇓, for all C.

The definition of the contextual equivalence contraction uses the
predicate P ⇓n, indicating that a barb is reached in at most n steps,
i.e., P (

τ−→)mP ′ ↓, for some P ′, with 0 ≤ m ≤ n.

DEFINITION 6.2 (contextual equivalence contraction). P �ctx Q
if for all C:

1. C[P ] ⇓n implies C[Q] ⇓n, for any n;
2. C[Q] ⇓ implies C[P ] ⇓.

Thus, referring to contextual equivalence, the symbols � and
�� of Definition 3.4 become ≈ctx and �ctx.

THEOREM 6.3. A system of reduction-autonomous contractions
has a unique solution for ≈ctx.

Proof [Sketch] Suppose P̃ and Q̃ are solutions for �ctx, and
consider a context C. One shows that C[P̃ ] ⇓ implies C[Q̃] ⇓.
Suppose C[P̃ ] ⇓n. One proceeds by induction on n, exploiting the
properties of the unfolding of contractions. 2

COROLLARY 6.4. In CCS, a system of weakly-guarded contrac-
tions has a unique solution for ≈ctx.

6.1 Example: the lazy and eager servers, revisited
Contextual equivalence does not have the congruence problems of
bisimilarity for summation that motivated, in the presentation of
CCS in Section 2, the use of guarded sums. We can therefore admit
the full summation construct ΣiPi in the grammar for the CCS
processes. Such a flexibility will be useful in this example.

We revisit the lazy and eager servers in the example of Sec-
tion 2.3. We modify the auxiliary server A, which was consulted
by the main server before starting an interaction protocol with a
client. In Section 2.3, the server was deterministic; now it is non-
deterministic. Thus all definitions remain the same except that A
always returns an arbitrary integer:

A
4
= Σn∈N a〈n〉.A

The system with the lazy main server is now LS
def
= νa (A | L),

and the system with the eager main server is ES def
= νa (A | E),

whereL andE are as in Section 2.3. The timing difference between
LS and ES in consulting A is observable under bisimilarity. The
reason is that an interaction

ES −→ νa (A | c(z). (E | R〈c, n, z〉)) ,
in which n is received from A, is a commitment to using n in the
interaction with the next client. In contrast, LS is unable to make
such a commitment — its only initial transition is a visible one.

The difference is however not observable under contextual
equivalence. We prove LS ≈ctx ES using the technique of unique
solution of weakly-guarded contractions. The proof is similar to
that with the deterministic auxiliary server and the bisimilarity
contraction in Section 3.6, with a further simplification: a single
contraction is sufficient, namely

X � c(z). Σn(X | R〈c, n, z〉) (4)

To show that both LS and ES are solutions for �ctx of this con-
traction, we employ the same laws and algebraic reasoning of Sec-
tion 3.6 (which are sound because bisimilarity implies contextual
equivalence). An additional laws is required in the proof of ES:

Σiα.Ri �ctx α. ΣiRi (α is any prefix) (5)

(the law is actually valid for strong contextual equivalence, where
two equal processes are required to reach an observable in the same
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number of steps). This is one of the most distinguishing laws of
contextual equivalence. Using the laws we have:

ES = νa (A | E) �ctx Σnc(z).νa (A | E | R〈c, n, z〉)
�ctx c(z). Σn(νa (A | E) | R〈c, n, z〉)

= c(z). Σn(ES | R〈c, n, z〉)
which shows that ES is a solution of the contraction (4). The proof
that also LS is a solution is simpler.

The above proof is similar to the proofs with the servers in
Sections 2.3 and 3.6. All these proofs, explicitly or implicitly,
employ ‘up-to context’ reasoning; above the common context is
c(z). Σn([·] | R〈c, n, z〉).

A proof that follows the definition of contextual equivalence
would be hard due to the quantification on all contexts. In CCS,
contextual equivalence coincides with trace equivalence. The
equality in the example cannot be proved purely algebraically,
using standard axiom systems for trace equivalence, because the
systems compared are not finite or finite state (axiomatisations are
complete only on these systems). One could show that ES and LS
have the same traces proceeding by induction on the length of the
traces. The proof is tedious, for instance because R could be any
process.

REMARK 6.5. The proof of the equality between ES and LS re-
veals the essence of the technique based on unique solution of con-
tractions. One employs some simple algebraic laws to prove that
two tuples of terms are solutions of a certain system of contractions,
from which the equality between the two tuples is derived from the
unique-solution theorem. The algebraic laws may have been ob-
tained in various ways (e.g., an axiomatisation of the equality for
the finite terms). In our example we have used laws for bisimilar-
ity, because it implies contextual equivalence, plus law (5). Law
(5) is a well-known law in axiomatisations of trace equivalence;
the law can also be easily proved directly in terms of contextual
equivalence, reasoning by induction on the length on the number
of τ -steps needed to reach an observable. 2

7. Trace equivalence
In this section we briefly consider trace equivalence. In CCS and
most process algebras, trace equivalence is a direct characterisa-
tion of contextual equivalence, in the same way as bisimilarity is
for barbed congruence. Aside from this, we look at trace equiva-
lence because it is a behavioural equivalence non-contextual and
inductive. We use s to range over traces, i.e., non-empty sequences
of visible actions.

We assume to be in a generic process language L with an LTS
semantics, as in Section 4. We write P

µ
=⇒n P ′ if P

µ
=⇒ P ′

is derived using n strong transitions (i.e., we have P (
τ−→)m

µ−→
(
τ−→)m

′
P ′ and n = m + m′ + 1. If s = `1, . . . , `n, then we

write P s
=⇒ if P

`1==⇒ P1
`2==⇒ P2 . . . Pn−1

`n==⇒ Pn, for some
processes P1, . . . , Pn. Similarly we write P s

=⇒m if there are
P1, . . . , Pn with P

`1==⇒m1 P1
`2==⇒m2 P2 . . . Pn−1

`n==⇒mn Pn,
and m = Σimi.

DEFINITION 7.1. Two processes P,Q of L are trace equivalent,
written P ≈tr Q, if for each trace s we have P s

=⇒ iff Q s
=⇒.

Two processes P,Q are in the trace equivalence contraction,
written P �tr Q, if, for each trace s:

1. if P s
=⇒n then Q s

=⇒m for some m ≤ n;
2. if Q s

=⇒ then P s
=⇒.

A process language is ≈tr-safe if ≈tr is a congruence and �tr

a precongruence.

THEOREM 7.2. In any ≈tr-safe process language L, a system of
autonomous contractions has a unique solution for ≈tr.

Refined forms of trace equivalence exist. For instance, ready
trace equivalence [3, 10] combines traces with barbs. The idea
of contraction and Theorem 7.2 can be adapted to ready traces
by combining the treatment of traces in Definition 7.1 with the
treatment of barbs in Definitions 5.3 and 6.2.

8. Non-applicability of the technique
The contraction technique may be applied to any equivalence
whose observables are finitary, in the sense that if an observable
holds then it can be reached in a finite number of transitions. Bisim-
ilarity is in this class: the observables are the weak transitions

µ
=⇒;

each use of
µ

=⇒ is finitary because obtained by composing a finite
number of strong transitions ( τ−→ and

µ−→). Different uses of
µ

=⇒
may have different lengths, but each length is finite. The same ar-
gument holds for ⇓, the observable of contextual equivalence. In
all these cases, the contraction preorder precisely arises by playing
with such finite measures.

There are behavioural equivalences, however, in which the ob-
servables are not finitary. For instance, an observable may be in-
herently coinductive, as for observables such as infinite traces and
non-termination. We illustrate the possible failure of the contrac-
tion techniques in these cases using infinitary trace equivalence,
whereby two processes are equated if they have the same traces,
including the infinite ones. It is unclear how the contraction of in-
finitary trace equivalence should be defined. In any case, however,
‘unique solution’ would fail, even for guarded and sequential con-
tractions. As an example, consider the processes P def

= Σna
n and

Q
def
= P + a. !a.0. These processes are not infinitary trace equiva-

lent. However, in an ‘infinitary trace’ semantics they both are solu-
tions to the (guarded and sequential) contraction

X � a+ a.X

The definition of the the contraction for infinitary trace equivalence
is irrelevant here, because the processes have no τ -transitions. Sim-
ilar problems arise for must equivalence, where non-termination is
observable — the same counterexample of infinitary trace equiva-
lence applies.

9. Injecting contractions into the bisimulation
game

An advantage of bisimilarity, with respect to other behavioural
equivalences, is the locality of the required checks: related states
only have to match each other’s immediate transitions. We can in-
ject some locality also in other equivalences by introducing the cor-
responding contraction into a ‘bisimulation up-to’ game. We illus-
trate this possibility with contextual equivalence, which is inductive
and contextual and therefore faraway from bisimilarity and its lo-
cal checks. Since we play the bisimulation game, we assume a pro-
cess language Lwith an LTS semantics, on top of which contextual
equivalence (and reduction semantics) is defined as in CCS.

DEFINITION 9.1 (bisimulation up-to �ctx). A relation R on the
process language L is a bisimulation up-to �ctx if, whenever
P R Q, we have:

1. P
µ−→ P ′ implies Q

µ̂
=⇒ Q′ and P ′ �ctx R ≈ctx Q

′

2. the converse of (1) on the actions from Q.

As in the case of ordinary bisimulation, so bisimulation up-to
�ctx may be enhanced by combination with further up-to tech-
niques. For instance, in the bisimulation up-to �ctx and context
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the requirement P ′ �ctx R ≈ctx Q
′ on the derivatives of Defini-

tion 2.3 becomes
P ′ �ctx Rc ≈ctx Q

′

It is sufficient to analyse the most powerful technique (‘up-to
�ctx and context’), and the results will also hold for the weaker
‘up-to �ctx’. We derive soundness from that of the corresponding
contraction technique.

LEMMA 9.2. In L, suppose R is a bisimulation up-to �ctx and
context. Then there is a system of reduction-autonomous contrac-
tions, of the same size asR, of whichR1 andR2 are solutions for
�ctx.

COROLLARY 9.3. (soundness of bisimulation up-to�ctx and con-
text). Suppose a relationR on the process language L is a bisimu-
lation up-to �ctx and context. ThenR ⊆ ≈ctx.

We have seen that, in the case of bisimilarity, the techniques of
‘unique solution of contractions for ≈’ and of ‘bisimulation up-to
contraction and context’ are equivalent. For contextual equivalence,
however, the former technique is more powerful. The reason is
that, in the ‘bisimulations up-to �ctx and context’ game, laws and
equalities for ≈ctx are applied only after the derivatives of the
processes in the pairs have been chosen. For instance, the lazy
and eager servers of Section 6.1, LS and ES, cannot be a pair of
a bisimulation up-to �ctx and context, for the same reason why
they are not bisimilar: the challenge transition

ES
τ−→ νa (A | c(z). (E | R〈c, n, z〉))

cannot be matched by LS.
In some cases, however, the obstacle can be bypassed. We show

this for the processes LS and ES of the server example. We relate
LS to a contraction ES′ of ES, obtained by abstracting the initial
private communication with the auxiliary server A:

ES �ctx Σnνa (A | c(z). (E | R〈c, n, z〉)) def
= ES′ (6)

Now, the singleton relation {(LS,ES′)} is a bisimulation up-to
�ctx and context. The processes in the pair initially may only
perform an input at c; if v is the value received in the input, then
the transitions are

ES′
c〈v〉−−−→ Σnνa (A | E | R〈c, n, v〉) def

= ES′1

and LS = νa (A | c(z). a(x). (L | R〈c, x, z〉))
c〈v〉−−−→ νa (A | a(x). (L | R〈c, x, v〉)) def

= LS1

Now we have, using algebraic reasoning similar to that in previous
examples with the servers and (6):

ES′1 ∼ Σn(νa (A | E) | R〈c, n, v〉)
�ctx Σn(ES′ | R〈c, n, v〉)

and LS1 �ctx Σn(νa (A | L) | R〈c, x, v〉)
= Σn(LS | R〈c, x, v〉)

This is sufficient, up-to �ctx and context. Finally, having proved
ES ≈ctx ES′ and ES′ ≈ctx LS, we derive ES ≈ctx LS by
transitivity.

Other behavioural equivalences and their contractions can be
injected into the ’bisimulation up to’ game, along the lines of what
done here for contextual equivalence.

10. Higher-order languages
The contraction technique may also be used in higher-order lan-
guages such as the λ-calculus and the Higher-Order π-calculus [34].
We refrain from attempting to produce a general theory of contrac-
tions for higher-order languages, comparable in power to the bisim-
ulation proof method for these languages. We leave this for future

work. Here we simply show that the transport to a higher-order set-
ting of the most basic contraction techniques — those involving a
reduction semantics and contextually-defined equivalences — can
still be useful. We illustrate this on the Higher-Order π-calculus.

We consider the Higher-Order π-calculus in its simplest form,
where only processes can be communicated. Below is the syntax;
see Figure 2 for the reduction semantics.

P ::= a〈P 〉.Q | a(x).P | x | νa P | P | Q | 0

We use a, b, c, . . . to range over names, and x, y, z, . . . to range
over variables; we call them language variables (to distinguish
them from the contraction or equation variables such as X,Y ).
An input a(x).P binds the free occurrences of variable x in P ;
similarly a restriction νa P binds the free occurrences of name a
in P . A term is open or closed depending on whether it may, or
may not, have free language variables (in any case, it may have
free names).

Systems of contractions in the Higher-Order π-calculus In
the definition of barbed congruence and its contraction, the only
technicality of higher-order languages that has to be taken into
account is the distinction between open and closed terms. This is
dealt with in the expected manner. All running terms are supposed
to be closed. Thus the definitions of equivalences and preorders
in earlier sections (e.g., barbed congruence and its contraction) are
meant to be on closed terms. The definitions are generalised to open
expressions by requiring instantiation of the language variables
with all closing substitutions, i.e., substitutions that make the terms
closed (using, in contextual definitions, closing contexts rather than
closing substitutions would yield the same relations).

An example The example is about two ways of modeling the
replication operator. We consider the equality (barbed congruence)
between the terms c〈A〉 and c〈B〉, where

A
def
= b(y).νa (M | a〈M〉) for M def

= a(x). (y | x | a〈x〉)
and

B
def
= b(y).νa (N | a〈y | N〉) for N def

= a(x). (x | a〈x〉).

Terms c〈A〉 and c〈B〉 send on c processes (A and B) that can
receive a process at b and then replicate this process. Indeed, if
P is the process so received, assuming a does not occur free in P ,
in one case we obtain the term

AP
def
= νa (M{P/y} | a〈M{P/y}〉)

and in the other case

BP
def
= νa (N | a〈P | N〉) ,

and then we have:

AP −→ P | AP −→ P | P | AP −→ · · ·

BP −→ P | BP −→ P | P | BP −→ · · ·
The internal structure of AP and BP is however different.

A system of contractions that proves c〈A〉 ≈c
bar c〈B〉 is the

following:
X � c〈Y 〉.0
Y � b(y).Z
Z � τ . (y | Z)

These contractions are reduction-autonomous, and therefore have a
unique solution for barbed congruence. Note that, in the first con-
traction, a contraction variable occurs within the initial output pre-
fix. Thus the contraction is not weakly guarded. Still, the contrac-
tion is reduction-autonomous because a process that replaces the
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Structural congruence the least congruence ≡ such that:

• P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R, P | 0 ≡ P ; νa 0 ≡ 0, νa νb P ≡ νb νaP ; (νaP ) | Q ≡ νa (P | Q), if a not free in Q

The reduction relation P −→ Q is the least relation such that:

a(x).R | a〈P 〉.Q −→ R{P/x} | Q P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

νa P −→ νa P ′
P ≡ P ′ −→ P ′′ ≡ P ′′′

P −→ P ′′′′

Figure 2. The reduction semantics for HOπ

variable (and that therefore represents the value emitted in the out-
put) does not contribute to the first action. Note also that the third
contraction is open — it has y as a free variable. Two solutions for
�c

bar (the barbed congruence contraction) to the above system of
three contractions are, respectively:

1. c〈A〉, A, and νa (M | a〈M〉);

2. c〈B〉, B, and νa (N | a〈y | N〉).

The third process of each solution has y free, as its corresponding
contraction. To prove that these are solutions, we need a few simple
algebraic laws.

Using the bisimulation proof method, the proof of the equality
between c〈A〉 and c〈B〉 is more cumbersome; with the bisimula-
tion techniques currently available, a proof requires an infinite rela-
tion. Even in the case of environmental bisimulation, where a form
of ‘up-to context’ is available, the relation used in [35] for the same
example is infinite because, intuitively, the values emitted, A and
B, have to be stored in an environment, and can then be played
back at any time, possibly several times. What makes the differ-
ence is that contractions here allow us to extract a common context
that incorporates the prefix for the initial action. In contrast, in ‘up-
to context’ techniques for bisimulation, contexts are only removed
from the derivatives, after firing an initial prefix.

11. Further related work
Milner’s theorem about unique solution of equations stems from
an axiomatisation of bisimulation on finite-state processes [21].
Indeed, in axiomatisations of behavioural equivalences [2, 19],
the corresponding rule plays a key role and is called fixed-point
rule, or recursive specification principle; see also [27], for trace
equivalence. The possible shapes of the solutions of systems of
equations, in connection with conditions on the guardedness of the
equations, is studied by Baeten and Luttik [4].

Unique solution of equations has been considered in various set-
tings, including languages, algebraic power series and pushdown
automata (see the surveys [15, 23]), as well as in coalgebras (e.g.,
[18]). These models, however, do not have the analogous of ‘inter-
nal step’, around which all the theory of contractions is built. In
functional languages, unique solution of equations is sometimes
called ‘unique fixed-point induction principle’. See for instance
[31], in which the conditions resembles Milner’s conditions of The-
orem 2.8, and [13], which studies equations on streams advocating
a condition based on the notion of ‘contractive function’ (the word
‘contraction’ here is unrelated to its use in our paper).

A tutorial on bisimulation enhancements is [26]. ‘Up-to con-
text’ techniques have been formalised in a coalgebraic setting, and
adapted to languages whose LTS semantics adheres to the GSOS
format [5]; see for instance [6], which uses lambda-bialgebras, a
generalisation of GSOS to the categorical framework.

The techniques in Section 9, transporting the bisimulation proof
method and some of its enhancements onto non-coinductive equiv-
alences, remind us of techniques for reducing non-coinductive
equivalences to bisimilarity. For instance, trace equivalence on
nondeterministic processes can be reduced to bisimilarity on de-

terministic processes, following the powerset construction for au-
tomata [12]; a similar reduction can be made for testing equiva-
lence [8]. These results rely on transformations of transitions sys-
tems, which modify the nondeterminism and the set of states, in
such a way that a given equivalence on the original systems cor-
responds to bisimilarity on the altered systems. In contrast, in the
techniques of Section 9 the transformation of processes is per-
formed dynamically, alongside the bisimulation game: two pro-
cesses are manipulated only when necessary, i.e., when their im-
mediate transitions would break the bisimulation game.

Some beautiful results have been obtained in CSP [28, 29] in
which systems of equations have unique solutions provided their
least fixed point (intuitively obtained by infinite unfolding of the
equations) does not contain divergent states. In CSP the semantics
has usually a denotational flavour and, most important, the refer-
ence behavioural equivalence, failure equivalence, is divergent sen-
sitive. As mentioned in Section 8, currently we do not know how
to handle divergence in the theory of contractions, as divergence
is not a finitary observable. We note however that (at least in the
equivalences considered in the paper) unique solution of contrac-
tions holds in cases where the infinite unfolding of the contractions
would introduce divergence: e.g., the contractions of Example 3.9,
as well as the contractions employed in the examples about the lazy
and eager servers (where divergence may appear if, in the interac-
tion protocol with a client, the main server is called back).

12. Conclusions and future work
In this paper we have presented operational techniques, based on
the idea of contraction, for proving weak behavioural equivalences,
that is, equivalences that abstract from internal moves. We have fo-
cused on concurrent languages but the techniques are not meant
to be specific to concurrency. We have illustrated the techniques
with bisimulation, the most natural ground of application, dis-
cussing also completeness. We have then shown that the technique
of unique solution of contractions can be transported onto other
equivalences, with finitary observables (e.g., contextual equiva-
lence, barbed congruence, trace equivalence). We have also seen
that the contraction preorders can be injected into the bisimula-
tion game. In the case of bisimulation, this leads to a (minor) im-
provement of an existing technique, namely ‘bisimulation up-to ex-
pansion and context’. The case of non-coinductive or contextual
equivalences such as contextual equivalence is more interesting: we
can use the bisimulation proof method (enhanced with up-to con-
text) for reasoning on these equivalences, combined with algebraic
laws for manipulating states whose immediate transitions would
break the bisimulation game. Such techniques allow us, implicitly,
to transfer ‘up-to context’ forms of reasoning, originally proposed
for labeled bisimilarities and their proof method, onto equivalences
that are contextual or non-coinductive.

As for the technique based on equations, so the technique based
on contractions is meant to be used in combination with algebraic
reasoning, on terms whose behaviour is not finite or finite-state:
the recursion on the contraction variables captures the infinite be-
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haviour of terms, and the proof that certain processes are solutions
is carried out with pure algebraic reasoning.

In comparison with equations, a drawback of unique solution
of contractions for an equivalence � is that the solutions are not
�-interchangeable: it may be that P is solution and Q is not, even
though P � Q.

The proof of completeness of the ‘unique solution of contrac-
tions’ method with respect to the bisimulation proof method uses
the sum operator to express the possible initial actions of a process.
We would like to see how completeness can be recovered in lan-
guages in which the sum operator is missing. One may consider the
introduction of an operator akin to sum, to be used only for writing
contractions. Also, we did not tackle completeness in equivalences
other than bisimilarity.

We have related the contraction technique to bisimulation en-
hancements such as ‘up-to expansion and context’. While power-
ful, these are not the only possible enhancements. It would be in-
teresting to see whether other enhancements can be captured using
contractions or similar notions.

We would like to understand on which behavioural equivalences
the technique of unique solution of contractions works. We men-
tioned in Section 8 that it seems to work if the observables of the
equivalence are finitary. More experimentation is needed to clarify
this point, and formalise appropriate conditions.

In the example with a higher-order language, we have applied
the most basic contraction techniques — those for contextually-
defined equivalences. The use of other contraction techniques re-
quires further investigation. Such study may shed light on the ap-
plicability of up-to context techniques to higher-order languages
[14, 16, 17, 24, 35].

Our original motivation for studying contractions was to better
understand ‘up-to context’ enhancements of the bisimulation proof
method and their soundness. More broadly, the goal of the line of
work reported is to improve our understanding of bisimilarity and
the proof techniques for it, including the possibility of exporting
the techniques onto other equivalences.
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