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Abstract
The purpose of this article is to extend the work by Anantharaman and Cancés [1], and
prove the existence of minimizers for the spin-polarized Kohn-Sham model in the presence of
a magnetic field within the local spin density approximation. We show that for any magnetic
field that vanishes at infinity, the existence of minimizers is ensured for neutral or positively
charged systems. The proof relies on classical concentration-compactness techniques.

1 Introduction

The density functional theory (DFT) introduced in 1964 by Hohenberg and Kohn [2] is a very pop-
ular tool in modern quantum chemistry. This theory transforms the high-dimensional Schrédinger
problem into a low-dimensional one, hence computationally solvable. The price to pay is the in-
troduction of the so-called exchange-correlation (xc) energy term, which is unknown. Throughout
the literature, several different approximations of this energy can be found. The first successful
one, and still broadly used nowadays, was proposed by Kohn and Sham [3], and is called the
local density approximation (LDA). The mathematical properties resulting of the Kohn-Sham
LDA are still not fully understood. Proving the existence of minimizers is made difficult by the
non-convexity of the problem due to the LDA term. Using concentration-compactness techniques
introduced by Lions [4], it has been possible to prove the existence of minimizers in several cases.
Le Bris [5] proved that for a neutral or positively charged system, the Kohn-Sham problem with
LDA exchange-correlation energy admits a minimizer. A similar result was proved by Ananthara-
man and Canceés [1] for the so-called extended-Kohn-Sham model with LDA exchange-correlation
energy.

The purpose of the present article is to extend the result by Anantharaman and Cancés to
spin-polarized systems, the electrons of the molecular system into consideration being subjected
to the electric potential V' created by the nuclei, and to an arbitrary external magnetic field B
that vanishes at infinity. In order to take into account spin effects, we have to resort to spin
density functional theory (SDFT). In this theory, all magnetic contributions coming from orbital
magnetism (paramagnetic current, spin-orbit coupling,...) are neglected. Historically, while Kohn
and Sham briefly discussed the inclusion of spin effects in their model, the general theory was
pioneered by von Barth and Hedin [6] and is known as the local spin density approximation
(LSDA). These authors proposed the following ansatz to transform a spin-unpolarized exchange-
correlation energy to a spin-polarized version of it:

EISPA Gt pm) = o [BEPA @) + BEPA 7))
where ELPA is the spinless exchange-correlation energy, and pt/~ are the eigenvalues of the 2 x 2
spin density matrix (see Sec. 2 for details). There are two other major differences between spin-
polarized and spin-unpolarized models. First, the ground state of spin-unpolarized models is given



by a minimization problem onto the set of electronic densities, while in spin-polarized models, it
is given by a minimization problem onto the set of spin density matrices, consisting of 2 x 2
hermitian matrices. Second, the magnetic field adds a Zeeman-type term —x [ B-m to the energy
functional, where m is the spin angular momentum density.

Due to all those additional difficulties with respect to the spinless case, the fully polarized
SDFT has not been very popular until recently. Chemists generally prefer its collinear version
(collinear-SDFT), where all the spins are constrained to be orientated along a fixed direction on
the whole space. This allows one to work with two scalar fields (one for spin-up, and one for spin-
down), instead of fields of hermitian matrices. While this simplification provides very good results,
it misses some physical properties (spin dynamics [7], frustrated solids [8], ...). The implementation
of the unconstrained (fully polarizable) model appeared with the work of Sandratskii and Guletskii
[9], and Kiibler et al. [10, 11], and this model is becoming a standard tool nowadays. To the best
of our knowledge, no rigorous proof of the existence of solutions has yet been provided for this
case.

Our result is that, under the same hypotheses as in [1], plus some mild conditions on B, the
existence of minimizers is still ensured for neutral or positively charged systems. Whereas the main
tools of the proof are similar to those used in [1], namely concentration-compactness techniques,
some adaptations are necessary, in particular to handle the Zeeman term. The structure of the
article is as follows. We first recall how to derive the LSDA models, and formulate the main
theorem. Then, we break the proof of the theorem into several lemmas, that we prove at the end
of the paper.

2 Derivation of the local spin density approximation models
We recall how the extended Kohn-Sham models are derived in the spin setting. We start from

the Schrodinger-Pauli Hamiltonian for N-electrons in the Born-Oppenheimer approximation. In
atomic units, this operator reads

[\

N
HSP(V,A) = £ (—iV, + Ary)) ]IﬁZvrlnruzBrl R D —
=1

1<i<j<N |ri B rjl

where I, is the 2 x 2 identity matrix,

Z — (1)

is the electric potential generated by the M nuclei, A is the external magnetic vector potential,
and B := V x A is the external magnetic field. We denote by r; (resp. Ry) the positions of the
electrons (resp. nuclei). The charge of the k-th nucleus is z;, € N* and Z := 224:1 zy, is the total
nuclear charge. We can assume without loss of generality that Ry = 0. The constant p is the
Bohr magneton. Its value is 1/2 in atomic units, but we prefer to keep the notation y in the rest
of the paper. The term o; appearing in the Hamiltonian contains the Pauli matrices acting on the

i-th spin variable:
0 1 0 —i 1 0
g = (Uxiagyivazi) = 1 0/ \i o/ \o =1/ /)
K3 7 K3

Although the magnetic field B and magnetic vector potential A are linked by the relation
B =V x A, it is often preferable to consider them as two independent fields. Indeed, B acts on
the spin of the electrons, while A acts on the spatial component of the spin-orbitals. For instance,
would we be interested only in studying orbital effects (e.g. paramagnetic current), we would
neglect the spin effects. We would then take B = 0 and A # 0. Such an approximation leads
to the so-called current-density functional theory [12]. In this article, we are interested in spin



effects. We therefore set A = 0, which amounts to neglecting the paramagnetic currents, while
keeping B # 0. This approximation is commonly used to study phenomena such as spin dynamics
[7] or frustrated solids [8]. With this approximation, our Hamiltonian for N electrons reads

H(V7B) = Z_§Ai+zv(ri)+ Z m H2_NZB(ri)'Ui~
i=1 i=1 i=1

1<i<j<N [t

This Hamiltonian acts on the fermionic Hilbert space

N
/\ L2(R37C2) f:{\I/(rl,Sl, e 7I'N,SN), r; Rgasi S {Ta*lf}v

=1

3 / [W(rr, 1, )2 dPry - dPey < oo,
R3N

317"'SN€{T7~L}N
Vp € 6N7 \P(rp(l)”gp(l)» o ) = €(p>\11(r1,81a T )}7

where €(p) is the parity of the permutation p, endowed with the scalar product

(U1]W,) = Z / Uy (ry, 51,0 ) Wa(ry, 51, ) d’ry - ey
(s1,sn)ef iy TR

Its form domain /\f\]:1 H'(R? C?) is defined similarly.
The ground state energy of the system is obtained by solving the minimization problem

N
E(V,B) = inf{(\I/H(V, B)[¥), we \H'RC?, |[¥|g = 1}.
i=1

In order to convexify the problem, we introduce, for a wave function ¥ € /\f\il HY(R3,C?)
satisfying || U] = 1, the N-body density matrix

The minimization problem can be recast as
E(V,B)=inf {Tr (H(V,B)I'), T'e Wy}

where Wy is the set of pure state N-body density matrices defined by

N
Wy = {F\I/, v e /\ Hl(R3aC2)7 H\IJHL2 = 1} .

=1

In this article, we study the extended-Kohn-Sham model based on mixed-state N-body density
matrices, for this problem has better properties mathematically speaking, and allows one to handle
more general physical situations as, for instance, positive temperatures. The set My of mixed
state N-body density matrices is defined as the convex hull of Wy. The minimization problem
for mixed states reads

BE(V,B) := inf {Tr (H(V,B)I'), T € My}.

Then, for I' € My, direct calculations lead to

V—uB.,  —pB, +ipB,\ (pf ptt
TrHV,BF:TrH0,0F—i—/tr [( ; v) (Pro Pri)l e
(V. B) =T (10000 + [ e [ F e ThE B (M 0] )



where, for a, 3 € {1,1}?,

pl‘fﬁ(r) =N Z / F(r,a,r27827~-~;r,ﬂ7r2,32,---)d3r2-~- dry.
(52, vsn)E{T, LN —1 TRIETY
where I'(ry, s1,---;1], 8], - ) denotes the kernel of T'. In the following, we write
U= V —uB, —pBg +iuBy and Re e pltT pltl
’ —uBy —ipBy V+uB, I pl{T pl{i :

This last 2 x 2 matrix is called the spin density matrix. Note that when B = 0, one recovers
the usual potential energy density Vpr appearing in spin-unpolarized DFT. Introducing the spin
angular momentum density mr = trcz [0 - Rr], and the total electronic density pr = pltT + pff, it
holds

tree [URr] = Vpr — uB - mr. (3)

We now apply the constrained search method introduced and studied by Levy [13], Valone [14]
and Lieb [15], and write the minimization problem (2) in terms of Rr:

E(V,B)inf{F(R)Jr/ trcz [UR], REJN}, (4)
R3
with
F(R) :=inf {Tr [H(0,0)T], T €My, Rr=R}.
The set Jy is defined as
In = {R € Maxs(L'(R%), 3r € My, Rr=R}, (5)

where My (LY (R?)) is the space of 2 x 2 matrices with entries in L!(R3). This is the set of mixed
state N-representable spin density matrices. We recently proved [16] the following characterization
for Jn:

jNZ{REngz(Ll(RB)), R*:R, R >0, /%31?1‘@2 [R]:N, \/RGMZXg (Hl(RB))}

As mentioned before, the functional F' cannot be straightforwardly evaluated. In order to make
this problem practical, we approximate F. It is standard since the work of Kohn and Sham [3] to
approximate this functional by studying a system of non-interacting electrons. For this purpose,
we introduce, for a mixed state I' € My, the 1-body density matrix

- <’hET ﬁ)
Wt
where
vgﬁ(r,r’) =N Z / D(r,a,ry, 59, -1, 8,19, 850,--- ) d®rg - d®ry.
(s2,83, {4}V -1 Ra(=D
The set of mixed-state 1-body density matrices is

Py :={w, TeMn}

and, identifying the kernel v(r,r’) with the corresponding operator of S(L?(R3,C?)), the space of
self-adjoint operators on L?(R3,C?), Coleman [17] proved that

Py ={y€SL*R?*C?), 0<y<1, Tr(y)=N, Tr(-Ay)<oo}.



Physically speaking, this is the set of one-body density matrices of systems with N-electrons
(Tr () = N), satisfying the Pauli principle (0 < v < 1), and with finite kinetic energy (Tr (—A~y) <
00). In a similar way, we can define, for A > 0,

Pri={yeS(L*(R*C?), 0<v<1, Tr(y)=A Tr(-Ay) <oo}. (6)

A more practical and equivalent formulation of the Coleman result is that, using the spectral
theory for compact self-adjoint operators, we can write the components Y*? of any « € P in the
form

00 0o T
) = S m o), 0 < me <1 Yom = A = () € PRLE), (@il =
k=1 k=1 k

Tr (—Ay) := anHVfI)kH%z =Tr (=A™ + Tr (—AyH) < o0 (7)
k=1

Notice that vp(r,r) = Rp(r), so that we will write R,(r) := 7(r,r) for v € Py. We finally
introduce, similarly as in (5),

In = {R € Maxo(L'(R?)), Fy€Pr, R=R,}.

The extended version of the Kohn-Sham approach consists then in splitting the unknown
functional F(R) into three parts:

F(R) = Tis(R) + J(pr) + Exe(R).

The first term Tkg represents the kinetic energy of a non-interacting electronic system. It reads,
in the one-body formalism,

1
VR e Ty, Tks(R):= inf{ZTT (-Ay), y€P\, R, = R} _

The second term is the Hartree term, defined by

1 PP 43, g3y
J(p)'72//Rsst 1] d’r d°r’.

Finally, the last term is the exchange-correlation functional defined by
E«(R):=F(R) — Tks(R) — J(R).

Notice that because F is a non-explicit functional, Fy. is also a non-explicit functional. It is
however possible to construct explicit approximations of F,. giving rise to accurate predictions of
the ground state energies of most molecular systems [18]. Note that the case Fx. = 0 corresponds
to the reduced Hartree-Fock model [19].

The local-spin density approximation introduced by von Barth and Hedin [6] consists in writing

_ 1 _
Eye(R) m EZPN(p*,p7) = 5 (B0 (20") + B2 (207)] (8)

where pt/~ are the two eigenvalues of the 2 x 2 matrix R, and ELDPA is the standard exchange-
correlation functional in the non-polarized case, that we can write under the form [3]

BPNp) = [ atptw)) . )

We emphasize that the polarization rule (8) is exact for the exchange part of the exchange-
correlation energy, and that von Barth and Hedin proposed to use the same formula for the



correlation part. The fact that ELXSPA only depends on R via its eigenvalues comes from the
locality of the functional. Indeed, this energy functional must be invariant with respect to local
spin rotations. Because R is hermitian at each point, we can always diagonalize R locally, so that
a local energy can only depend on the two eigenvalues of R.

In this article, we will deal with exchange-correlation functionals of the form (8)-(9). The most
common choices for g are the ones derived from the homogeneous electron gas. Several choices
exist (VWS [20], PZ81 [21], CP [22], PW92 [23], ...), and they all satisfy the same asymptotic
conditions for low and high densities. Their mathematical properties are similar to the ones of the
X a-functional introduced by Slater [24]

BN () = ~Coc [ )

Altogether, by recasting problem (4) in terms of the one-body density matrices, we end up
with a variational problem of the form

I :=inf{E(y), 7€ Py} (10)

1 1 _
£ = 5T (=89™) + 3T (-a9™) +7(p,) + [ tres [UR,] dr + BP0 )

and where Py has been defined in (6). The physical situation corresponds to A = N € N, but as
usual in variational problems set on the whole space, it is useful to relax the constraint Tr (v) = N
to allow the particles to escape to infinity.

We can recover some other common models by further constraining the minimization set. For
instance, the collinear-SDFT consists in minimizing the functional £ onto the set

zpiollinear — {’Y c P)\, ’VTJ’ — ’)/J'T = O} .

In this case, the matrices 7 and R are both diagonal. In particular, the two eigenvalues of R are
{pT,p~} = {p'", p*}. In this model, it holds that

/ tre2 [UR] = | V(o™ +p*) —u/ B.(p"" = p*) =/ Vp—u/ B.p (.
R3 R3 R3 R3 R3

where

is the relative spin-polarization. This model is therefore simpler than the non-collinear spin-
polarized model, as we are not dealing with fields of matrices, but with two scalar fields. Physically,
it corresponds to constraining the spin along a fixed direction on the whole space. This method
provides results in good agreement with experiments whenever the energy accounting for the
non-collinearity of the spins is negligible.

Then, the unpolarized case consists in minimizing the functional £ onto the set

,P;npolarized — {7 c PA7 ,YNV — fle = O, fYTT — ryil} .

Equivalently, it corresponds to the collinear case with ( = 0. It then holds that

/ tr s [UR] = / Vo,
R3 R3

so that the model is independent of the magnetic field B, and can be used whenever spin effects
are negligible. We refer to [1] for a mathematical introduction of this model.



3 An existence result for the Kohn-Sham LSDA model

The main result of this article is the following

Theorem 1. Under the following assumptions

1/ the function g in (9) is of class C*(R™) and satisfies:

9(0) =0
g <0
_ 2 l9'(p)|
Jo<p <BT <, su - < 11
CREARS S (11)
J1<a< =, limsup g(g) <0,
p—0t P

2/ all entries of U are in L21¢(R3) 4+ L (R?) and vanish at infinity, and V := trc2(U) has the
form (1),

the problem Iy defined in (10) has a minimizer whenever A < Z.

Remark 1. The assumptions (11) are the same as in [1], and are satisfied for all common
functionals. Theorem 1 extends [1, Theorem 1] to the case when the system is spin-polarized by
an external magnetic field B. While the strategy of proof, based on concentration-compactness
arguments, is similar to that in [1], an additional technical tool is needed to handle the Zeeman
term. This tool seems to be new to the best of the author’s knowledge. We have called it the flip
transformation (see Equation (12) below).

Remark 2. This result does not make any assumption on the strength of the magnetic field B
other than that it vanishes at infinity. If B becomes infinite at infinity, it is easy to see that the
energy is not bounded below: we can orientate the spins of all electrons along the magnetic field
and push them to infinity, so that the energy can be arbitrarily negative.

Proof of Theorem 1:
We use the concentration-compactness method introduced in [4]. We therefore introduce the
problem at infinity
I =mf{E%(), v ePr},
where

1 1 _
£2(7) = 5 Tr (=A91) + ST (=A%) + J(p) + ELSPA(pT p7).

We will need several lemmas, the proofs of which are postponed until the following section for
the sake of clarity. We begin with some functional inequalities:

Lemma 1. There ezists a constant C such that for all A > 0 and all v € Py, it holds
IVR,|psr2 < CTr(=Ay) and  [[Vpi/~ ||z < CTr (=Ay).

In particular, for all 1 < p < 3, there exists Cp such that, for all A > 0 and all v € Py,

3(p—1)

IRy |Lr < CoAT Tr (~Ar) "=

and similarly for pﬂf/f.
We easily deduce from the above lemma that the energies Iy and I5° are bounded below:

Lemma 2. For all A > 0, we have I\ > —oo and I3° > —oo. Moreover, all minimizing sequences
(vn) for I or I° are bounded in the Banach space B, where

B:={y e S(L*R*,C?), |vls:=Tr(ly]) + T ([VIHIVI]) < oo}.



In the following, we consider sequences (Vn)nen+ € B, and we will write R, := R,, and
Pr = Py -

Lemma 3. Let (v )nen+ be a bounded sequence of B. Then, there exists vo € B, such that, up
to a subsequence, v, converges to o for the weak-x topology of B, all components of R,, converge
to their respective components in Ry strongly in LT (R3) for 1 < p < 3, weakly in LP(R3) for
1 < p < 3, and almost everywhere. The eigenvalues of R, converge to the eigenvalues of Ry
strongly in LY, (R®) for 1 <p < 3, weakly in LP(R®) for 1 < p <3 and almost everywhere.

Moreover, if v, € Px for all n, and ~o € Py, the convergences hold strongly in LP(R3) for
1<p<3, and E(y) < liminf E(7y,).

It follows from Lemma 2 and Lemma 3 that one can extract from any minimizing sequence
(Yn)nen+ of (10) a minimizing sequence, still denoted by (7,,), converging to some 7, for the weak-
* topology of B. In particular, 0 < 79 < 1 and Tr (—A~vy) < oo. To prove that 7 is indeed a
minimizer of (10), it remains to prove that Tr (o) = A. Let o = Tr (7). It is easy to get a < A.
If @ < A, then we have loss of compactness (some electrons leak away). Therefore, to prove that
a = A (at least when A\ < Z), we need to control the behavior at infinity of the minimizers, which
is not as simple as in [1] because of the Zeeman term —u [ B -m. In order to control this term,
we introduce the following flip transformation:

for & = (21) , we define P = (ji;) ,

for v =Y ng|@p)(®x|, we define F ="y ng|®) (Dsl. (12)
" ™ R RN
_[7 0 _
V= (7w w“) and R, = ( Rt Ru) ;

A _~T NaS _pM
= Y 0 R R

Note that if

then

from which we deduce the following lemma, whose proof is straightforward.

Lemma 4. If v € Py, then 5 € Pyx. Moreover, it holds that Tr (—A7,,) = Tr (=A~v,), p = p, and

m = —m, where p and m have been defined in (3). In particular, it holds that
tr 2 [UR] + tr e [Uﬁ} = 2/ Vp. (13)
R3

In other words, this transformation flips the spin-up and spin-down channels. This lemma
allows to cancel the Zeeman term, and is an essential tool throughout the proof. We can first
prove

Lemma 5.
(i) For all x>0, —oo < Iy < I3° < 0.
(i) For all 0 <p <A, Ix<1I,+1I3° .
(tii) The functions X\ — I\ and A — I are non increasing.
We then have the important result

Lemma 6. Let A\ > 0 and (Yn)nen+ € Px be any minimizing sequence of I, that converges to
some o for the weak-x topology of B. Let a := Tr (yy). Then

(i) a <A



(ii) « 0.
(ii1) If 0 < o < A, then 7y is a minimizer for the problem I, there exists § > 0 with a+ 8 < A
such that I5° has also a minimizer, and Ix = Io +15° + I3, 5.

According to this lemma, if @ < A, 7 is a minimizer for I,. In this case, it satisfies the
Euler-Lagrange equation

Yo = 1(_0075F)(H70) 4+ with §C Ker(HAm — EF)

for some ep < 0 called the Fermi energy, and with H,, as defined in (25). Here, 1(_ ) is
the characteristic function of the interval (—oo, er), and the spectral projection 1 (_o .\ (H,,) is
defined by the functional calculus. We then use the very general

Lemma 7. It holds 0css(H~,) = [0,4+00[. Moreover, if 0 < A\ < Z, then H,, has infinitely many
negative eigenvalues, and every eigenvector corresponding to such an eigenvalue is exponentially
decreasing.

From this lemma, we deduce the concentration-compactness result:

Lemma 8. Let 0 < a,f be such that o + 8 < Z. Suppose that I, and Ig° admit minimizers.
Then
Iovp <Ia+157 (<o)

The end of the proof goes as follows. Let us suppose that A < Z, and a < A. Then, according
to Lemma 6, 7 is a minimizer for I,, and there exists 5 > 0 such that a« + § < A < Z so that
IZ° has also a minimizer, and it holds Iy = I, + I5° + I° 5. Moreover, Lemma 8 holds, and
Toyp < I+ I5°. Finally, we get

Iy=1,+ IEO +I§ia75 > Ioyp + I;.\iafﬂ’

which contradicts the second point of Lemma 5.
Therefore, it holds a = A, and, according to Lemma 3, 7o is a minimizer for I, which concludes
the proof.

4 Proofs of the lemmas

Proof of lemma 1. Let A > 0 and v € P,. We use the representation (7) of v, and write

B (e, 1) = an¢g(r)¢£(r’), 0<n,<1, an =\,
k=1 k=1

T . ©
Py = <i’f) € L*(R?,C?), (®x[®1) = 6k1, Tr(—An) := ZMHV‘I’k”%Z < 0.
K k=1

In particular, p?(r) = Y ngé$ (r)(bf (r). Differentiating this expression, and using the Cauchy-
Schwarz inequality, it holds

00 2

V522 = | e (Vo ()] (1) + 6 (1) Vo))
k=1
0o 2
<3 me (Vo + 1vap2) " (10 + ¢£|2)1/2’
k=1
< [ n (IV67 2 + |v¢£|2)] [an (1021 + |¢£2)] :
k=1 k=1



We let 7% := >0 | ng| Vo |?, so that 7@ € L'(R?) and [, 7* = Tr (—Ay*“). The previous
inequality leads to the point-wise estimate
IVp*P| < (7% + 7'/3)1/2 (P> + pﬁﬁ)l/g. (14)
In particular, if « = 3, we recover the Hoffman-Ostenhof inequality [25]
VY2 < T (—Ay°).
With the homogeneous Sobolev embedding H'(R3) < L°(R?), we deduce
1% < C Tr (—Aq™®).
Then, using the fact that (7% + Tﬁ)l/Q € L*(R3) and (p™ + /)55)1/2
inequality, it follows from (14) that

IVp* Nz < (477 2|2 (0% + p7P) 2|6 < AC Tr (—A). (15)

€ LS(R?) and the Hélder

For pt/~, we use the exact expression of the eigenvalues of a 2 x 2 hermitian matrix:

1 1
ot = 5 (ot VP Tan(m) = 5 (i1 = 2 ) (16)
Noticing that, if f and g are non negative,

_|Vf+Vy| V] Vgl IVfl | Vgl
VVItdl= S ey Savias T avrey S avp Tayg = VYV

we differentiate (16) to get

1 1
VoI < SIVel+ 5 ‘V\/(W — pH)? Al
<3 IV,OTT\ + fIVpul +5 (IW”I +1Vp + 2 V™)

All the terms on the right-hand side are in L?/?(R?) and of norms bounded by CTr (—A~), hence
the same holds for Vpt/—.

Moreover, 7 is in Py, so that Tr (7) = [5s p = A. We get from the inequality 2|ab| < |a|? + |b|?
that

7] = EIEDS o (log2 +16712) < j£j7mk (I6kP +16k) = (7)

k=1

Integrating on R? leads to ||p®#||z: < A. From the positiveness of R, it also holds that 0 <
pt/= < pso that ||p*/~|z;1 < X\. We conclude from (15), the homogeneous Sobolev embedding
WH3/2(R3) — L3(R?), and the Holder inequality with 1 < p < 3, that

3(p—1)

16°% e < CoA T T (—Ay)~ 5

and similarly for p*/—. O

Proof of Lemma 2.
We prove that Iy > —oo. The proof is similar for I3°. Let A > 0, and € Py. Under conditions
(11), a straightforward calculation shows that

|E)ECSDA(p+7p—){ <C (/Rs(pﬂp +/Rs(p+)p+> +C (/Rg(p—)l’ +/R$(p‘)p+>
g?C(Agpp++A3pp_>,

10



where p*/~ := 14 %/~ < 5/3. We used the fact that R, is a positive hermitian matrix, so that
0 < pt/= < p. Therefore, because J(p) > 0, we have the estimate:

1 + -
E() 2 5Tr (=A9) = CollUN e Rl ziegae = Co (ol + 1ol )

where ¢ = 4¢/(1 4 2¢) > 0 is chosen such that L>~¢ is the dual space of L21¢. With Lemma 1,
it follows

E(7) Z 5T (A7) = CLU 5o ;o (T4 Tr (=A7)%) = Co (Tr (=A7)** + Tr (=A7)*)

1
2 Lo
with 0 < a1, a9,a3 < 1. The function Y + %Y — /(14 YY) = CY*2 — CyY s goes to +00
when Y goes to +oo for 0 < ag, as, a3 < 1. Hence, £(y) > —C for all v € Py. It also follows from
the above inequality that if (y,) is a minimizing sequence for Iy, then Tr(—A~,) is uniformly
bounded. In particular, (v,) is a bounded sequence of 5.

O

Proof of Lemma 3.
Let (Yn)nen+ be a bounded sequence in B. According to Lemma 1, the sequences (p®?) for

a,B € {1,112 and (p;t/ ") are bounded in W'3/2(R3). In virtue of the Banach-Alaoglu theorem,
up to a subsequence, the sequence (v,) converges to some g € B for the weak-x topology of B,

and (p2?) and pj[/_ converge for the weak topology of W13/2(R3). To identify the limits, we
recall that, for any compact operator K on L?(R? C?),

Tr(%K)mTr(yoK) and TT(|V|’Yn\V\K)HTY(\VWOW\K) (18)

Choose W € C°(R3,R). The operator (1 + |V|)71W (1 + |V|)~! is compact and in the Schatten
class &, for p > % according to the Kato-Simon-Seiler inequality [26]. Taking successively in (18)

W 0 0 0 0o w 0o iw
K(o 0)’ K(o W)’ K(W 0> and K(—iW 0)’
we obtain that, for the first choice of K,

L RTW = T (W) = T (14 V10,1 + V) - (14 V) W+ V)
(19)
o T (U VD001 £ (9 - (4 V) W+ (7)) = [l

and similarly for p$¢, Re(pgl’) and Im(pgi). We deduce that (p2?) converges to pgﬁ in D'(R3,C)
for all a, € {1,1}2. Identifying the limits, the convergences hold also weakly in W13/2(R3),
strongly in LI (R3) for 1 < p < 3, and almost everywhere, in virtue of the Sobolev embedding
theorem. From formula (16) and the pointwise convergence of (p%*) to pg‘ﬂ , we also deduce that

(pj{ / 7 ) pointwise converges to pg /= Again, by identifying the limits, the convergence also holds

weakly in W13/2(R3) and strongly in LY (R?) for 1 < p < 3.

loc

Then, let x € C3°(R) be a cut-off function such that x(x) =1 if |z| < 1 and x(z) =0 if x > 2.
We take W4 = x(z/A) in (19), and let A go to infinity to obtain that

pgT € L'(R®) and / pgT <lim inf/ ot (20)
R3 R3

n—oo

and similarly for péi. Now, if v, € Py and vy € P, we get
A= po=/ 03T+p$¢S/ phl+ ok = A,
R3 R3 R3

11



and the inequality (20) is an equality. Therefore, (p,) converges to pg strongly in L!'(R3). We
deduce from (17) and 0 < pi/~ < p, that pi+ and p,/~ are bounded in L'(R3). A classical
application of the dominated convergence theorem then leads to the fact that p®? converges to
pg'B strongly in L'(R3) for a, 8 € {1,1}?, and that pj{/_ converges strongly to pg'/_ in LY(R3).
Finally, the strong convergence still holds in LP(R3) for 1 < p < 3 according to the Holder
inequality.

The proof for the energy is similar to the one in [1, Lemma 3]. We do not repeat it here, but
notice that the strong convergence of (p;f/_) to pg/_ in LP(R3) for 1 < p < 3 is needed for the

convergence of the exchange-correlation functional.
O

Proof of Lemma 5.

(i) Let us first prove that for 0 < p < A, it holds that Iy < I, + If2 . Let e >0, v € Py
and 7' € Py_, be such that I, < &(y) < I, + ¢ and I, < E®() < I32 , +e. By density
of finite-rank one-body density matrices in B, and density of C§°(R?,C?) in H*(R3,C?), we can
assume that v and ' are both of the form

M
7O =308y (@] with @) e (R, C?).

i=1
We consider v, := ¥ + TmeV'Tone and 7% 1= 7 + Tne' T_ne Where 7 f(r) = f(r —x), and e is a
non-null vector. We recall that 7' is the flipped transformation of 4/, as introduced in (12). For
ng large enough, and for n > ng, the supports of the ®;’s and of the 7,,®}’s are disjoint, so that
Yn and 4f are in Py for all n > ng. Also, for n large enough, J(p,) < J(p) +.J(p') +¢. Altogether,
we get, for n large enough,

E0) + E0F) = 260) +26™(7) +2 [ V(- ne) + 2 < 26(0) +26™ () + 22
<2[,+2I3°, + 6e.
Hence, either £(7,,) or £(1f) is smaller than I, + 152, +3e,and Iy < I, +1I3°  .Similar arguments
show that I3° < Iﬁo + If\’iu.

(1) We first prove that there exists A\¢ small enough such that for all 0 < A < Xg, I3° < 0. We
use a scaling argument. Let ¢ € C5°(R3,C) be such that ||¢||z2 = 1, and let ¢, = 0°/2¢(0-) for
o > 0. Note that ||¢s ||z = 1. For A < 1, we introduce

Yro (T, 1) = A <¢a(r)g>a(r’) 8)

so that 7y, € Py for all 0 < A <1 and o > 0. Using (11), there exists 1 < a < 3/2 such that

ELSPA(X|¢s[2,0) < —CA%03(@~D[|¢]|24, . Direct calculations lead to

o2
&= (ne) = 5~ [ V6P + X206 + [ EEPM(onal,0)
R3 R3
Ao? 2 2 2y _ a_3(a—1) 2a
<27 [ 196 + N0 (16) — X" D 0|35,
R3

It is easy to check that under the condition o < 3/2, there exists A\g > 0 such that for all
0 < X < A, there exists o such that £(vxs) < 0. In particular, I3° < £%°(vxs) < 0. Together
with (i), we deduce that, for all A > 0, I3° < 0 and I < 0.

We now prove that Iy < I3°, for all A > 0. Let (7,,) be a minimizing sequence for I3°.
We first suppose that

VA >0, lim sup / pn =0,
x+Ba

n—oo zER3

12



where By is the ball of radius A centered at the origin. Because (p,) is bounded in W'3/2
according to Lemma 2 and 3, we deduce from [4, Lemma I.1] that (p,,) converges to 0 strongly in
LP(R3) for 1 < p < 3. Also, because of (17), the components of R,, and its eigenvalues converge
to 0 strongly in LP(R3) for 1 < p < 3. Similarly to [1], we deduce that

n—0o0 n—oo n— oo

1 1
I = liminf £%°(y,) = liminf {2Tr (—Avp) + J(pn) + EDI;CSDA(;),Lp;)} = lim inf §Tr (—Av,) >0
which contradicts the first point. Therefore
JA,p >0, VneN, 3z,ecR3 / Pn > 1. (21)
Tn+Ba

Up to translations of the ~,’s, we can assume without loss of generality that z,, = 0.
We now introduce 7, the flipped version of v, introduced in (12). Using (13) and the fact

that V(r) < —ﬁ, we get
r

5(771) + 5(ﬁn) =Tr (_A’Yn) + QJ(pn) + 2E>I;CSDA(IO$7 p;) + 2/ Vn
R3

= 2E%(7n) + 2/ Vpn < 28%(n) — 2/ L < 26% () — 2.
R3 Br |r\ R

Hence, either £(v,,) or £(7,,) is smaller than £°°(vy,,) —21 R~!n. Therefore, I, < I —z R™1n < I5°.

(11t) The fact that A — I and X — I are non increasing can be read from the other state-
ments.

O

Proof of Lemma 6.
Let A > 0, and let (75 )nen+ € Py be a minimizing sequence for ). According to Lemma 2, up to
a subsequence, we can assume that (v, ) converges to some 7 € B for the weak-* topology of .

(i) The fact that o < A can be directly deduced from (20).

(i1) Suppose that o = 0, so that v = 0. Then, we have I, = liminf E(v,) = E(7) = 0 (we
used the continuity of £, which can be proved similarly to [1]). This contradicts the first point of
Lemma 5. Hence, o # 0.

(i4i) Suppose that 0 < o < \. Following [1, 27], we let x,& € C5°(R3,RT) be radial functions
such that 2 + ¢2 = 1, with x(0) = 1, x < 1 on R3\ {0}, x(x) = 0 for |z| > 1, |[Vx|lre < 2
and ||V&|lL~ < 2. We introduce xa(z) := x(z/A) and &a(z) = £(x/A) and finally v, 4 :=
XAYnXA. With those notations, A — Tr (7, 4) is a continuous and increasing function from 0 to
A. Therefore, there exists A,, such that v, 4, is in P,.

The sequence (A,,) goes to infinity. Otherwise, we would have for A large enough and according
to (20),

/ poXh = lim/ pnxh > lim pnxin :a:/ Po
R3 n—0o0 Jp3 n—o0 Jp3 RS

which is impossible, for [y%] < 1 on R3.

We introduce 71 5, := XA, YnXA, and Yo, = §a,¥na, - Note that v1 , € Py and 72, € Pr—a,
and that p, = p1, + p2.n. From the decomposition (7) of Vn: Y = Do pey Mhen|Phen) (P nls
0 <ngyn <1, we deduce that

A
VI + Tr ([[V 2.l VI]) < Tr ([|[VInV]]) + 8-

TY(HV\%,n A2
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Hence, (71,,) and (72,,) are bounded in B. Also, direct calculations lead to

A
Tr (—Avip) + Tr (—Av2,) < Tr(—Av,) + SF (22)

According to Lemma 2, up to a subsequence, (71,,) converges for the weak-* topology of B. In
this case, for ® = (o', ¢*) € C5°(R?,C2), it holds that

Te(nal@)@) = [ olLloP+ [ ol = [ AaloE+ [ attie

For n large enough, the support of ® is inside the support of x4, , and

Tr (71,0 2)( @) = Tr (ynlxa, 2){(PxAa,

) ——> Te (1]B)(@]).

We deduce that (vy1,,) converges to 7y for the weak-* topology of B. Finally, because v1 , € Pq
and vy € Pa, p1,n converges strongly to pp in LP(R3) for 1 < p < 3, and E(y) < liminf E(y1,,)
according to Lemma 3.

Let us look more closely to 7a,,. Because (p1.,) converges to po strongly in LP(R?) and (p,,)
converges to po strongly in LY (R?) for 1 < p < 3, we obtain that ps,, = p,, —p1,, (and thus all the
components of Ry, and its eigenvalues) converges strongly to 0 in L1OC (R3) for 1 < p < 3. Also, it
holds that p{ fl +p+/ = pi/ ™. Using (22) and the fact that I p1.n(®)p2n(x)r—2/| 7t dPr d®r’ >
0, we obtain

1 _
Em) = 3T (A7) + T(p) + [ tres DR+ BEPA o py)
1 A
> STk (A1) + 5 T (~Aga) = Ay + (i) + J(2.)+
+ /]R3 trcz [URy ] /R3 tr ez [URsn] + B (0 4 03,00 P1n + o)

A
> E(m) +EF(2m) — 45 +/ trez [URsn] +
An R3
+ ELSPAoF o+ 03 P+ Pom) — BeSPM(0F s p1n) — B2 (0300 Pom)-

We first consider the term [ trcz [URs,,]. We have for A > 0, (we use, for a matrix M, the
notation | M| for the sum of the absolute values of the entries of M)

/ tr ez [URQ,,J / tr 2 [URQJL] + / tr 2 [URQ,n]
R3 Ba (BA)C

UVl g PRl = s U@ [ |Ra
€(Ba)© (Ba)©
SOl oy Banllanssomy + st 0 U@ [ 1Rzl

where € = 4¢/(1 + 2¢) > 0 is chosen such that L3 is the dual space of Late, Using inequality
(17), and the fact that [ pgi < A, we get an inequality of the form

/ tr 2 [URQ n}
]Rd

with C; and Cs independent of A and n. Because all entries of U are vanishing at infinity, we can
first choose A large enough to control the second term, and then use the convergence of Rs ,, to 0

< CillRemllpinpe-o(p,) + C2 sup  |U(z)]
z€(Ba)°
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strongly in LP(B4) for 1 < p < 3, to establish the convergence of the right-hand-side to 0.
For the last term, using (11), it holds (we write g2(p) = g(2p))

LSDA — — LSDA — LSDA —
Exc (p-li_,n + p;_,n’ pl,n + p2,n) - Exc (pin’ pl,n) - Exc (p;n’ p2,n) =

1 L ~ B
5 U (920 + £3.0) — 92(0T) — 92(p3.,.)) +/Rs 92(PT.0 + o) — 92(1) — 92(p2.,)

R3
(23)
Then, we get (dropping the super-script +/— for the sake of clarity)

‘/3 g2(p1,n + p2,n) — 92(P1,n) — 92(p2,n)
R

s/ m@m+mw—wwmﬂ+/IWWMH
BA BA

+/ |mmm+mm—wmmﬂ+/ 1g2(p2.0)]
(Ba)© B

a)°

<[ (o)« [ (0o + )
(o8 20 (7 i)

We recall that p*/~ = 1+ 87/~ < 5/3. Because (p1,,) and (p,) are bounded in LP(R?) for
1 < p < 3, and because (p2,,) converges to 0 in L (R?) for 1 < p < 3, we deduce that (23) goes
to 0 when n goes to infinity (first take A large enough, then n large enough, as before).
Altogether, for € > 0, for n large enough,

E(m) = Ein) +E(v2m) — 3 > In + 132, — 3e.

Therefore, £(v,) > In + 12, and Iy > I + I3° . The second point of Lemma 5 states that
I <I,+1I . Hence Iy =1, +I3° , and (72,,) is a minimizing sequence for I3° .
As in the proof of Lemma 5, it holds (21):

JA,n >0, VneN, 3Tz, cR3 / P2.n =M.
Tn+Ba

We let 75 ,, = Tz, ¥2,nT—x,- Then, (72,) is bounded for the weak-* topology of B, and converges,
up to a subsequence, to some ~y satisfying Tr (7)) > n. Let 8 := Tr (7). We can repeat the same
arguments as before and truncate 73, to ensure that Tr (x4, 72,nX4,) = 8. We deduce as before
that +{ is a minimizer for Igo, and that I, = I, + IEO + Ij'\iafﬁ. O

Proof of Lemma 7.
Let us first derive the expression of H, . Suppose that vy € P, is a minimizer for Iy. Then for
v € Pyand 0 <t <1,it holds E(ty + (1 —t)vy) > E(y0). In particular, one must have

OE(ty + (1= t)0)
ot =0 =0 24)

To perform the calculations, we use the explicit formula (16) for p*/~, and get

d(tp+ (1L —t)po) /™ ‘
ot t=0

ltl" 10 + 1 pgT - pf& 2Pg$ (R—R )
2 0 1 1 1l 205" gt — e ’
\/(po =57 )2 +4lpo 2 0 0o
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Similarly to [1, 28], we conclude that

9E(ty + (1 = t)y0)
ot

=Tr (Hy, (v = 0))

t=0

with

1
H"/O = <2A+po*| . 1)]I2+U
(1 0> + : <pgT s o h & TT)
2 0 1 2 _
\/(pgT _ pgi)z + 4|pgi|2 Po Po Po

(25)

9'(py) (1 0) B 1 (pgT - o ifﬂﬁi )
T _
01 \/(pgT _ péi)2 + 4\,03%2 2pg Po Po

Using (24), we deduce that vy € arginf{Tr (H,,7),y € Px}. Finally,
Yo = Il(foo,eF)(H'yO) 4+ with 6 C Ker(HW — GF),

where e is the Fermi energy, determined by the condition Tr (vp) = A.

1
Let us first calculate the essential spectrum of H.,. We recall that Hy = 7§A]I2 has domain
H?(R3,C?) and that if u € H?(R3,C), then u vanishes at infinity. We also recall that for all
V € L¥?(R3,C?) 4+ L2°(R3, C?), the set of functions V' that can be written V = V35 + Vi with
Ve € L3/3(R3,C?), Vo € L>(R3) and ||Vao||1~ arbitrary small, V is a compact perturbation
of Hy. In our case, we can easily check that pojﬁ*1 = po| - |72 € LY(R?), so that po |- |7t
vanishes at infinity. Altogether,

o pox| |7t e LR34+ L=(R?)
o Ue L*?R3C% + L>(R3 C?) and all entries of U vanishes at infinity
_ - + _
o 1g'(ps’ IS Clof +ph ) hence g'(py/7) € LY2(R?,C).
Therefore, according to the Weyl’s theorem, the domain of H,, is H*(R?,C?), and oess(H,,) =
Uess(HO) = [Oa +OO[

Let us now prove that H,  has infinitely many negative eigenvalues whenever A < Z. First
notice that the matrix

= (pgT o v i A’ TT)
Vbt = o2 +alpftp \ 20 A0 o

has two eigenvalues, respectively —1 and 1, so that the matrices appearing into the two pairs
of brackets in (25) have 0 and 2 as eigenvalues, and therefore are hermitian positive. Also,
recall that under the conditions (11) on g, it holds ¢’ < 0. Altogether, for ¢ € C5°(R?,C),
U = (¢,9)T € C5°(R3,C?), and U defined as in (12), it holds that

(01 ) + (#11, 8) < (0] (=384 el 1) B4 0 ) |0)

(Lt )5 0) )

<4l = gAtmxl |+ V]G ) = (Wl
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where Hy := —3A + pg x| -|7' + V acts on L*(R? C), and V is defined in (1). We used the
subscript 1 to emphasize that (-|-); is the scalar product on L?*(R3,C), whereas (-|-) is the one on
L?(R3,C?). In virtue of [29, Lemma 2.1], the operator H; has infinitely many negative eigenvalues
of finite multiplicity whenever A < Z. So has H,, by the min-max principle. Eventually, er < 0,

and
N1 N2
Yo = Z |(I)z><q)z| + Z ’I’Ll|q)l><q)z| with <‘bz|q)J> = 6” and H’Yo(bi = Gi(bi-
i=1 i=Ni+1

It holds ¢; < ep if i < Ny, and ¢; = ep if Ny +1 < i < N,. In the following, we set n; := 1 for
7 < Nj.

Finally, we prove that all eigenvectors associated with negative eigenvalues are exponentially
decreasing. Any function u satisfying H,ju = Au is in H 2(R3,C?), and each component of u

vanishes at infinity. As a byproduct, we obtain that pg = vajl n;|®;|? also vanishes at infinity.
Finally, all the components of

_ g’(p5) 1 0 1 pTT _ pii 2pTi
Uso = poxl [T T4 U+ 3, 02 (g ) + (' —— — |yt
o=1/- Vb = o2 +alphtz N 2P0 P o

vanish at infinity. Recall that H, ®; = f%Aq)i + U,®; = €;®;. Multiplying this equation by ®;
and adding all the terms with prefactors n;, it holds that

No

an@T ( ) ®; + ancpTU Dy =Y emi| [ (26)

=1 =1

From the relation pg = ivjl n;|®;|%, we get

N2
i=1
and (26) becomes

N
A ng
——po—l—z [V, |2+ZnZ<I>TU D, —I—Z er — €)ni|®;|* —eppo = 0.

i=1 i=1

>0 >0

Let A be large enough such that, for all r € R? with |r| > A, the eigenvalues of the matrix U, (r)

are between ﬁ and —ﬁ (recall that ex < 0). In particular, for |r| > A, |®T(r)U, (r)®;(r)| <

—§|@1|27 and, on (BA)Cv

A FA

A
Pt )\PO*GFP0<0 or  — Zpo—€rpo=0.

We easily deduce that pg decreases exponentially. Hence, the same holds true for all the ®;’s with
1 <i < N,. A similar proof can be used for the remaining negative eigenvalues.
O

Proof of Lemma 8.
Let 79 € P, be a minimizer for I,, and v, € P be a minimizer for Ig°. According to the proof
of Lemma 7, because o < A, 79 has the form

= an‘@ﬁ <(I)1| with H"/O(I)i =¢®P; and ¢ <ep <O.
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We can derive a similar expression for ~j:

<éep <0, (27)

K2

Y=Y nj|®}) (B} with HP®,=e® and ¢
=1

where H has a similar expression as H,; in (25), without the U term. Note that in (27), we do
not know whether ¢ < 0 or €= = 0.

First assume that ¢}z < 0, so that ®; and ®} are exponentially decreasing, and the sum in (27)
is finite. We introduce v, := min{1, |70 + Tu¥7—nll "1} (Yo + Tu¥h7—n) and A% := min{1, ||y0 +
T YoT—nl 71} (Y0 + T Yo T—n), where 7} is the flipped transformation of ~}, as defined in (12). Note
that Tr (7,) < a+ B and Tr (%) < a+ B, so that I,y 5 < E(y,) and Iny 5 < E(F) according to
the third assertion of Lemma 5. A straightforward calculation leads to

)+ £G8) = 26 (o) +26% o) - ZE=2)

_ + O(e—én)
B(Z —a)

=2I, +2I5° — + 0(e™°).

For n large enough, —3(Z — a)n~! + O(e™°") becomes negative. Hence, either £(7,) or £(7) is
strictly less than I, + Ig. Therefore, Io15 < Iy + Ig.

Let us now assume that €, = 0. Then, there exists ¥ € H?(R3 C?) such that | V]2 =
1, ny’(,‘)’\ll = 0 and V¥ = p¥ with g > 0. Then, for 0 < n < p, we introduce v, = 7y +
N®n,+1) (Pn,+1| and v, = v — n|¥) (¥, so that 7, € Payy and v, € Ps_,. Moreover,

E(m) = E(o) + 2nenz 41+ 0(n) = Lo + 2nen,+1 + o(n)
and
E= () = E% (1) +o(n) = I + o(n).
Using the facts that vo + 7|®n,4+1) (Pny+1| € Paty and vy — n|¥) (Y] € Ps_y, it holds that
Totp < Tosn + 152, < E(y) +E7(7y) < Lo+ IF + 2nen, 11 + o(n).

Because en,4+1 < 0, for n small enough, the left hand side is strictly less that I, + I3°, which
concludes the proof.
O
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