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Abstract

The purpose of this article is to extend the work by Anantharaman and Cancès [1], and
prove the existence of minimizers for the spin-polarized Kohn-Sham model in the presence of
a magnetic field within the local spin density approximation. We show that for any magnetic
field that vanishes at infinity, the existence of minimizers is ensured for neutral or positively
charged systems. The proof relies on classical concentration-compactness techniques.

1 Introduction

The density functional theory (DFT) introduced in 1964 by Hohenberg and Kohn [2] is a very pop-
ular tool in modern quantum chemistry. This theory transforms the high-dimensional Schrödinger
problem into a low-dimensional one, hence computationally solvable. The price to pay is the in-
troduction of the so-called exchange-correlation (xc) energy term, which is unknown. Throughout
the literature, several different approximations of this energy can be found. The first successful
one, and still broadly used nowadays, was proposed by Kohn and Sham [3], and is called the
local density approximation (LDA). The mathematical properties resulting of the Kohn-Sham
LDA are still not fully understood. Proving the existence of minimizers is made difficult by the
non-convexity of the problem due to the LDA term. Using concentration-compactness techniques
introduced by Lions [4], it has been possible to prove the existence of minimizers in several cases.
Le Bris [5] proved that for a neutral or positively charged system, the Kohn-Sham problem with
LDA exchange-correlation energy admits a minimizer. A similar result was proved by Ananthara-
man and Cancès [1] for the so-called extended-Kohn-Sham model with LDA exchange-correlation
energy.

The purpose of the present article is to extend the result by Anantharaman and Cancès to
spin-polarized systems, the electrons of the molecular system into consideration being subjected
to the electric potential V created by the nuclei, and to an arbitrary external magnetic field B

that vanishes at infinity. In order to take into account spin effects, we have to resort to spin
density functional theory (SDFT). In this theory, all magnetic contributions coming from orbital
magnetism (paramagnetic current, spin-orbit coupling,...) are neglected. Historically, while Kohn
and Sham briefly discussed the inclusion of spin effects in their model, the general theory was
pioneered by von Barth and Hedin [6] and is known as the local spin density approximation
(LSDA). These authors proposed the following ansatz to transform a spin-unpolarized exchange-
correlation energy to a spin-polarized version of it:

ELSDA
xc (ρ+, ρ−) :=

1

2

[
ELDA

xc (2ρ+) + ELDA
xc (2ρ−)

]
,

where ELDA
xc is the spinless exchange-correlation energy, and ρ+/− are the eigenvalues of the 2× 2

spin density matrix (see Sec. 2 for details). There are two other major differences between spin-
polarized and spin-unpolarized models. First, the ground state of spin-unpolarized models is given
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by a minimization problem onto the set of electronic densities, while in spin-polarized models, it
is given by a minimization problem onto the set of spin density matrices, consisting of 2 × 2
hermitian matrices. Second, the magnetic field adds a Zeeman-type term −µ

´

B ·m to the energy
functional, where m is the spin angular momentum density.

Due to all those additional difficulties with respect to the spinless case, the fully polarized
SDFT has not been very popular until recently. Chemists generally prefer its collinear version
(collinear-SDFT), where all the spins are constrained to be orientated along a fixed direction on
the whole space. This allows one to work with two scalar fields (one for spin-up, and one for spin-
down), instead of fields of hermitian matrices. While this simplification provides very good results,
it misses some physical properties (spin dynamics [7], frustrated solids [8], ...). The implementation
of the unconstrained (fully polarizable) model appeared with the work of Sandratskii and Guletskii
[9], and Kübler et al. [10, 11], and this model is becoming a standard tool nowadays. To the best
of our knowledge, no rigorous proof of the existence of solutions has yet been provided for this
case.

Our result is that, under the same hypotheses as in [1], plus some mild conditions on B, the
existence of minimizers is still ensured for neutral or positively charged systems. Whereas the main
tools of the proof are similar to those used in [1], namely concentration-compactness techniques,
some adaptations are necessary, in particular to handle the Zeeman term. The structure of the
article is as follows. We first recall how to derive the LSDA models, and formulate the main
theorem. Then, we break the proof of the theorem into several lemmas, that we prove at the end
of the paper.

2 Derivation of the local spin density approximation models

We recall how the extended Kohn-Sham models are derived in the spin setting. We start from
the Schrödinger-Pauli Hamiltonian for N -electrons in the Born-Oppenheimer approximation. In
atomic units, this operator reads

HSP(V,A) =

N∑

i=1

1

2
(−i∇i +A(ri))

2
I2 +

N∑

i=1

V (ri)I2 − µ

N∑

i=1

B(ri) · σi +
∑

1≤i<j≤N

1

|ri − rj |
I2,

where I2 is the 2× 2 identity matrix,

V (r) = −
M∑

k=1

zk
|r−Rk|

(1)

is the electric potential generated by the M nuclei, A is the external magnetic vector potential,
and B := ∇×A is the external magnetic field. We denote by ri (resp. Rk) the positions of the

electrons (resp. nuclei). The charge of the k-th nucleus is zk ∈ N∗ and Z :=
∑M

k=1 zk is the total
nuclear charge. We can assume without loss of generality that R1 = 0. The constant µ is the
Bohr magneton. Its value is 1/2 in atomic units, but we prefer to keep the notation µ in the rest
of the paper. The term σi appearing in the Hamiltonian contains the Pauli matrices acting on the
i-th spin variable:

σi := (σxi, σyi, σzi) =

((
0 1
1 0

)

i

,

(
0 −i
i 0

)

i

,

(
1 0
0 −1

)

i

)
.

Although the magnetic field B and magnetic vector potential A are linked by the relation
B = ∇×A, it is often preferable to consider them as two independent fields. Indeed, B acts on
the spin of the electrons, while A acts on the spatial component of the spin-orbitals. For instance,
would we be interested only in studying orbital effects (e.g. paramagnetic current), we would
neglect the spin effects. We would then take B = 0 and A 6= 0. Such an approximation leads
to the so-called current-density functional theory [12]. In this article, we are interested in spin
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effects. We therefore set A = 0, which amounts to neglecting the paramagnetic currents, while
keeping B 6= 0. This approximation is commonly used to study phenomena such as spin dynamics
[7] or frustrated solids [8]. With this approximation, our Hamiltonian for N electrons reads

H(V,B) =




N∑

i=1

−1

2
∆i +

N∑

i=1

V (ri) +
∑

1≤i<j≤N

1

|ri − rj |


 I2 − µ

N∑

i=1

B(ri) · σi.

This Hamiltonian acts on the fermionic Hilbert space

N∧

i=1

L2(R3,C2) :=
{
Ψ(r1, s1, · · · , rN , sN ), ri ∈ R

3, si ∈ {↑, ↓},

∑

s1,···sN∈{↑,↓}N

ˆ

R3N

|Ψ(r1, s1, · · · )|2 d3r1 · · · d3rN <∞,

∀p ∈ SN , Ψ(rp(1), sp(1), · · · ) = ǫ(p)Ψ(r1, s1, · · · )
}
,

where ǫ(p) is the parity of the permutation p, endowed with the scalar product

〈Ψ1|Ψ2〉 =
∑

(s1,···sN )∈{↑,↓}N

ˆ

R3N

Ψ1(r1, s1, · · · )Ψ2(r1, s1, · · · ) d3r1 · · · d3rN .

Its form domain
∧N

i=1H
1(R3,C2) is defined similarly.

The ground state energy of the system is obtained by solving the minimization problem

E(V,B) := inf

{
〈Ψ|H(V,B)|Ψ〉, Ψ ∈

N∧

i=1

H1(R3,C2), ‖Ψ‖L2 = 1

}
.

In order to convexify the problem, we introduce, for a wave function Ψ ∈ ∧N
i=1H

1(R3,C2)
satisfying ‖Ψ‖ = 1, the N -body density matrix

ΓΨ := |Ψ〉 〈Ψ|.

The minimization problem can be recast as

E(V,B) = inf {Tr (H(V,B)Γ) , Γ ∈ WN}

where WN is the set of pure state N -body density matrices defined by

WN :=

{
ΓΨ, Ψ ∈

N∧

i=1

H1(R3,C2), ‖Ψ‖L2 = 1

}
.

In this article, we study the extended-Kohn-Sham model based on mixed-state N -body density
matrices, for this problem has better properties mathematically speaking, and allows one to handle
more general physical situations as, for instance, positive temperatures. The set MN of mixed
state N -body density matrices is defined as the convex hull of WN . The minimization problem
for mixed states reads

E(V,B) := inf {Tr (H(V,B)Γ) , Γ ∈ MN} .

Then, for Γ ∈ MN , direct calculations lead to

Tr (H(V,B)Γ) = Tr (H(0,0)Γ) +

ˆ

R3

tr C2

[(
V − µBz −µBx + iµBy

−µBx − iµBy V + µBz

)(
ρ↑↑Γ ρ↑↓Γ
ρ↓↑Γ ρ↓↓Γ

)]
, (2)

3



where, for α, β ∈ {↑, ↓}2,

ραβΓ (r) := N
∑

(s2,··· ,sN )∈{↑,↓}N−1

ˆ

R3(N−1)

Γ(r, α, r2, s2, · · · ; r, β, r2, s2, · · · ) d3r2 · · · d3rN .

where Γ(r1, s1, · · · ; r′1, s′1, · · · ) denotes the kernel of Γ. In the following, we write

U :=

(
V − µBz −µBx + iµBy

−µBx − iµBy V + µBz

)
and RΓ :=

(
ρ↑↑Γ ρ↑↓Γ
ρ↓↑Γ ρ↓↓Γ

)
.

This last 2 × 2 matrix is called the spin density matrix. Note that when B = 0, one recovers
the usual potential energy density V ρΓ appearing in spin-unpolarized DFT. Introducing the spin
angular momentum density mΓ = tr C2 [σ ·RΓ], and the total electronic density ρΓ = ρ↑↑Γ + ρ↓↓Γ , it
holds

tr C2 [URΓ] = V ρΓ − µB ·mΓ. (3)

We now apply the constrained search method introduced and studied by Levy [13], Valone [14]
and Lieb [15], and write the minimization problem (2) in terms of RΓ:

E(V,B) = inf

{
F (R) +

ˆ

R3

tr C2 [UR] , R ∈ JN

}
, (4)

with
F (R) := inf {Tr [H(0,0)Γ] , Γ ∈ MN , RΓ = R} .

The set JN is defined as

JN :=
{
R ∈ M2×2(L

1(R3)), ∃Γ ∈ MN , RΓ = R
}
, (5)

where M2×2(L
1(R3)) is the space of 2×2 matrices with entries in L1(R3). This is the set of mixed

state N -representable spin density matrices. We recently proved [16] the following characterization
for JN :

JN =

{
R ∈ M2×2(L

1(R3)), R∗ = R, R ≥ 0,

ˆ

R3

tr C2 [R] = N,
√
R ∈ M2×2

(
H1(R3)

)}
.

As mentioned before, the functional F cannot be straightforwardly evaluated. In order to make
this problem practical, we approximate F . It is standard since the work of Kohn and Sham [3] to
approximate this functional by studying a system of non-interacting electrons. For this purpose,
we introduce, for a mixed state Γ ∈ MN , the 1-body density matrix

γΓ :=

(
γ↑↑Γ γ↑↓Γ
γ↓↑Γ γ↓↓Γ

)

where

γαβΓ (r, r′) := N
∑

(s2,s3,··· )∈{↑,↓}N−1

ˆ

R3(N−1)

Γ(r, α, r2, s2, · · · ; r′, β, r2, s2, · · · ) d3r2 · · · d3rN .

The set of mixed-state 1-body density matrices is

PN := {γΓ, Γ ∈ MN},

and, identifying the kernel γ(r, r′) with the corresponding operator of S(L2(R3,C2)), the space of
self-adjoint operators on L2(R3,C2), Coleman [17] proved that

PN =
{
γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr (γ) = N, Tr (−∆γ) <∞

}
.
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Physically speaking, this is the set of one-body density matrices of systems with N -electrons
(Tr (γ) = N), satisfying the Pauli principle (0 ≤ γ ≤ 1), and with finite kinetic energy (Tr (−∆γ) <
∞). In a similar way, we can define, for λ > 0,

Pλ :=
{
γ ∈ S(L2(R3,C2)), 0 ≤ γ ≤ 1, Tr (γ) = λ, Tr (−∆γ) <∞

}
. (6)

A more practical and equivalent formulation of the Coleman result is that, using the spectral
theory for compact self-adjoint operators, we can write the components γαβ of any γ ∈ Pλ in the
form

γαβ(r, r′) =

∞∑

k=1

nkφ
α
k (r)φ

β
k(r

′), 0 ≤ nk ≤ 1,

∞∑

k=1

nk = λ, Φk =

(
φ↑k
φ↓k

)
∈ L2(R3,C2), 〈Φk|Φl〉 = δkl,

Tr (−∆γ) :=

∞∑

k=1

nk‖∇Φk‖2L2 = Tr (−∆γ↑↑) + Tr (−∆γ↓↓) <∞. (7)

Notice that γΓ(r, r) = RΓ(r), so that we will write Rγ(r) := γ(r, r) for γ ∈ PN . We finally
introduce, similarly as in (5),

Jλ :=
{
R ∈ M2×2(L

1(R3)), ∃γ ∈ Pλ, R = Rγ

}
.

The extended version of the Kohn-Sham approach consists then in splitting the unknown
functional F (R) into three parts:

F (R) = TKS(R) + J(ρR) + Exc(R).

The first term TKS represents the kinetic energy of a non-interacting electronic system. It reads,
in the one-body formalism,

∀R ∈ Jλ, TKS(R) := inf

{
1

2
Tr (−∆γ) , γ ∈ Pλ, Rγ = R

}
.

The second term is the Hartree term, defined by

J(ρ) :=
1

2

¨

R3×R3

ρ(r)ρ(r′)

|r− r′| d3r d3r′.

Finally, the last term is the exchange-correlation functional defined by

Exc(R) := F (R)− TKS(R)− J(R).

Notice that because F is a non-explicit functional, Exc is also a non-explicit functional. It is
however possible to construct explicit approximations of Exc giving rise to accurate predictions of
the ground state energies of most molecular systems [18]. Note that the case Exc = 0 corresponds
to the reduced Hartree-Fock model [19].

The local-spin density approximation introduced by von Barth and Hedin [6] consists in writing

Exc(R) ≈ ELSDA
xc (ρ+, ρ−) :=

1

2

[
ELDA

xc (2ρ+) + ELDA
xc (2ρ−)

]
(8)

where ρ+/− are the two eigenvalues of the 2 × 2 matrix R, and ELDA
xc is the standard exchange-

correlation functional in the non-polarized case, that we can write under the form [3]

ELDA
xc (ρ) =

ˆ

R3

g(ρ(r)) d3r. (9)

We emphasize that the polarization rule (8) is exact for the exchange part of the exchange-
correlation energy, and that von Barth and Hedin proposed to use the same formula for the
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correlation part. The fact that ELSDA
xc only depends on R via its eigenvalues comes from the

locality of the functional. Indeed, this energy functional must be invariant with respect to local
spin rotations. Because R is hermitian at each point, we can always diagonalize R locally, so that
a local energy can only depend on the two eigenvalues of R.

In this article, we will deal with exchange-correlation functionals of the form (8)-(9). The most
common choices for g are the ones derived from the homogeneous electron gas. Several choices
exist (VWS [20], PZ81 [21], CP [22], PW92 [23], ...), and they all satisfy the same asymptotic
conditions for low and high densities. Their mathematical properties are similar to the ones of the
Xα-functional introduced by Slater [24]

ELDA,Xα
xc (ρ) = −CX

ˆ

R3

ρ4/3(r) d3r.

Altogether, by recasting problem (4) in terms of the one-body density matrices, we end up
with a variational problem of the form

Iλ := inf {E(γ), γ ∈ Pλ} (10)

where

E(γ) = 1

2
Tr
(
−∆γ↑↑

)
+

1

2
Tr
(
−∆γ↓↓

)
+ J(ργ) +

ˆ

R3

tr C2 [URγ ] d
3r+ ELSDA

xc (ρ+γ , ρ
−
γ )

and where Pλ has been defined in (6). The physical situation corresponds to λ = N ∈ N, but as
usual in variational problems set on the whole space, it is useful to relax the constraint Tr (γ) = N
to allow the particles to escape to infinity.

We can recover some other common models by further constraining the minimization set. For
instance, the collinear-SDFT consists in minimizing the functional E onto the set

Pcollinear
λ :=

{
γ ∈ Pλ, γ↑↓ = γ↓↑ = 0

}
.

In this case, the matrices γ and R are both diagonal. In particular, the two eigenvalues of R are
{ρ+, ρ−} = {ρ↑↑, ρ↓↓}. In this model, it holds that

ˆ

R3

tr C2 [UR] =

ˆ

R3

V (ρ↑↑ + ρ↓↓)− µ

ˆ

R3

Bz(ρ
↑↑ − ρ↓↓) =

ˆ

R3

V ρ− µ

ˆ

R3

Bzρ ζ.

where

ζ :=
ρ↑↑ − ρ↓↓

ρ↑↑ + ρ↓↓
∈ [−1, 1]

is the relative spin-polarization. This model is therefore simpler than the non-collinear spin-
polarized model, as we are not dealing with fields of matrices, but with two scalar fields. Physically,
it corresponds to constraining the spin along a fixed direction on the whole space. This method
provides results in good agreement with experiments whenever the energy accounting for the
non-collinearity of the spins is negligible.

Then, the unpolarized case consists in minimizing the functional E onto the set

Punpolarized
λ :=

{
γ ∈ Pλ, γ↑↓ = γ↓↑ = 0, γ↑↑ = γ↓↓

}
.

Equivalently, it corresponds to the collinear case with ζ ≡ 0. It then holds that

ˆ

R3

tr C2 [UR] =

ˆ

R3

V ρ,

so that the model is independent of the magnetic field B, and can be used whenever spin effects
are negligible. We refer to [1] for a mathematical introduction of this model.
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3 An existence result for the Kohn-Sham LSDA model

The main result of this article is the following

Theorem 1. Under the following assumptions

1/ the function g in (9) is of class C1(R+) and satisfies:





g(0) = 0

g′ ≤ 0

∃ 0 < β− ≤ β+ <
2

3
, sup

ρ∈R+

|g′(ρ)|
ρβ− + ρβ+ <∞

∃ 1 ≤ α <
3

2
, lim sup

ρ→0+

g(ρ)

ρα
< 0,

(11)

2/ all entries of U are in L
3
2+ǫ(R3)+L∞(R3) and vanish at infinity, and V := tr C2(U) has the

form (1),

the problem Iλ defined in (10) has a minimizer whenever λ ≤ Z.

Remark 1. The assumptions (11) are the same as in [1], and are satisfied for all common
functionals. Theorem 1 extends [1, Theorem 1] to the case when the system is spin-polarized by
an external magnetic field B. While the strategy of proof, based on concentration-compactness
arguments, is similar to that in [1], an additional technical tool is needed to handle the Zeeman
term. This tool seems to be new to the best of the author’s knowledge. We have called it the flip
transformation (see Equation (12) below).
Remark 2. This result does not make any assumption on the strength of the magnetic field B

other than that it vanishes at infinity. If B becomes infinite at infinity, it is easy to see that the
energy is not bounded below: we can orientate the spins of all electrons along the magnetic field
and push them to infinity, so that the energy can be arbitrarily negative.

Proof of Theorem 1:
We use the concentration-compactness method introduced in [4]. We therefore introduce the
problem at infinity

I∞λ = inf {E∞(γ), γ ∈ Pλ} ,
where

E∞(γ) :=
1

2
Tr
(
−∆γ↑↑

)
+

1

2
Tr
(
−∆γ↓↓

)
+ J(ρ) + ELSDA

xc (ρ+, ρ−).

We will need several lemmas, the proofs of which are postponed until the following section for
the sake of clarity. We begin with some functional inequalities:

Lemma 1. There exists a constant C such that for all λ > 0 and all γ ∈ Pλ, it holds

‖∇Rγ‖L3/2 ≤ CTr (−∆γ) and ‖∇ρ+/−
γ ‖L3/2 ≤ CTr (−∆γ).

In particular, for all 1 ≤ p ≤ 3, there exists Cp such that, for all λ > 0 and all γ ∈ Pλ,

‖Rγ‖Lp ≤ Cpλ
3−p
2p Tr (−∆γ)

3(p−1)
2p ,

and similarly for ρ
+/−
γ .

We easily deduce from the above lemma that the energies Iλ and I∞λ are bounded below:

Lemma 2. For all λ > 0, we have Iλ > −∞ and I∞λ > −∞. Moreover, all minimizing sequences
(γn) for Iλ or I∞λ are bounded in the Banach space B, where

B := {γ ∈ S(L2(R3,C2)), ‖γ‖B := Tr (|γ|) + Tr (||∇|γ|∇||) <∞}.
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In the following, we consider sequences (γn)n∈N∗ ∈ B, and we will write Rn := Rγn
and

ρn := ργn .

Lemma 3. Let (γn)n∈N∗ be a bounded sequence of B. Then, there exists γ0 ∈ B, such that, up
to a subsequence, γn converges to γ0 for the weak-∗ topology of B, all components of Rn converge
to their respective components in R0 strongly in Lp

loc(R
3) for 1 ≤ p < 3, weakly in Lp(R3) for

1 ≤ p ≤ 3, and almost everywhere. The eigenvalues of Rn converge to the eigenvalues of R0

strongly in Lp
loc(R

3) for 1 ≤ p < 3, weakly in Lp(R3) for 1 ≤ p ≤ 3 and almost everywhere.
Moreover, if γn ∈ Pλ for all n, and γ0 ∈ Pλ, the convergences hold strongly in Lp(R3) for

1 ≤ p < 3, and E(γ0) ≤ lim inf E(γn).

It follows from Lemma 2 and Lemma 3 that one can extract from any minimizing sequence
(γn)n∈N∗ of (10) a minimizing sequence, still denoted by (γn), converging to some γ0 for the weak-
∗ topology of B. In particular, 0 ≤ γ0 ≤ 1 and Tr (−∆γ0) < ∞. To prove that γ0 is indeed a
minimizer of (10), it remains to prove that Tr (γ0) = λ. Let α = Tr (γ0). It is easy to get α ≤ λ.
If α < λ, then we have loss of compactness (some electrons leak away). Therefore, to prove that
α = λ (at least when λ ≤ Z), we need to control the behavior at infinity of the minimizers, which
is not as simple as in [1] because of the Zeeman term −µ

´

B ·m. In order to control this term,
we introduce the following flip transformation:

for Φ =

(
φ↑

φ↓

)
, we define Φ̃ :=

(
φ↓

−φ↑

)
,

for γ =
∑

nk|Φk〉〈Φk|, we define γ̃ :=
∑

nk|Φ̃k〉 〈Φ̃k|. (12)

Note that if

γ =

(
γ↑↑ γ↑↓

γ↓↑ γ↓↓

)
and Rγ =

(
R↑↑ R↑↓

R↓↑ R↓↓

)
,

then

γ̃(x,y) =

(
γ↓↓ −γ↑↓
−γ↓↑ γ↑↑

)
(y,x) and Rγ̃ =

(
R↓↓ −R↑↓

−R↓↑ R↑↑

)
,

from which we deduce the following lemma, whose proof is straightforward.

Lemma 4. If γ ∈ Pλ, then γ̃ ∈ Pλ. Moreover, it holds that Tr (−∆γ̃n) = Tr (−∆γn), ρ̃ = ρ, and
m̃ = −m, where ρ and m have been defined in (3). In particular, it holds that

tr C2 [UR] + tr C2

[
UR̃
]
= 2

ˆ

R3

V ρ. (13)

In other words, this transformation flips the spin-up and spin-down channels. This lemma
allows to cancel the Zeeman term, and is an essential tool throughout the proof. We can first
prove

Lemma 5.

(i) For all λ > 0, −∞ < Iλ < I∞λ < 0.

(ii) For all 0 < µ < λ, Iλ ≤ Iµ + I∞λ−µ.

(iii) The functions λ 7→ Iλ and λ 7→ I∞λ are non increasing.

We then have the important result

Lemma 6. Let λ > 0 and (γn)n∈N∗ ∈ Pλ be any minimizing sequence of Iλ that converges to
some γ0 for the weak-∗ topology of B. Let α := Tr (γ0). Then

(i) α ≤ λ.

8



(ii) α 6= 0.

(iii) If 0 < α < λ, then γ0 is a minimizer for the problem Iα, there exists β > 0 with α + β ≤ λ
such that I∞β has also a minimizer, and Iλ = Iα + I∞β + I∞λ−α−β.

According to this lemma, if α < λ, γ0 is a minimizer for Iα. In this case, it satisfies the
Euler-Lagrange equation

γ0 = 1(−∞,ǫF )(Hγ0) + δ with δ ⊂ Ker(Hγ0 − ǫF )

for some ǫF < 0 called the Fermi energy, and with Hγ0 as defined in (25). Here, 1(−∞,ǫF ) is
the characteristic function of the interval (−∞, ǫF ), and the spectral projection 1(−∞,ǫF )(Hγ0

) is
defined by the functional calculus. We then use the very general

Lemma 7. It holds σess(Hγ0
) = [0,+∞[. Moreover, if 0 < λ < Z, then Hγ0

has infinitely many
negative eigenvalues, and every eigenvector corresponding to such an eigenvalue is exponentially
decreasing.

From this lemma, we deduce the concentration-compactness result:

Lemma 8. Let 0 < α, β be such that α + β ≤ Z. Suppose that Iα and I∞β admit minimizers.
Then

Iα+β < Iα + I∞β ( < Iα).

The end of the proof goes as follows. Let us suppose that λ ≤ Z, and α < λ. Then, according
to Lemma 6, γ0 is a minimizer for Iα, and there exists β > 0 such that α + β ≤ λ ≤ Z so that
I∞β has also a minimizer, and it holds Iλ = Iα + I∞β + I∞λ−α−β . Moreover, Lemma 8 holds, and
Iα+β < Iα + I∞β . Finally, we get

Iλ = Iα + I∞β + I∞λ−α−β > Iα+β + I∞λ−α−β ,

which contradicts the second point of Lemma 5.
Therefore, it holds α = λ, and, according to Lemma 3, γ0 is a minimizer for Iλ, which concludes
the proof.

4 Proofs of the lemmas

Proof of lemma 1. Let λ > 0 and γ ∈ Pλ. We use the representation (7) of γ, and write

γαβ(r, r′) =
∞∑

k=1

nkφ
α
k (r)φ

β
k(r

′), 0 ≤ nk ≤ 1,

∞∑

k=1

nk = λ,

Φk =

(
φ↑k
φ↓k

)
∈ L2(R3,C2), 〈Φk|Φl〉 = δkl, Tr (−∆γ) :=

∞∑

k=1

nk‖∇Φk‖2L2 <∞.

In particular, ραβ(r) =
∑
nkφ

α
k (r)φ

β
k(r). Differentiating this expression, and using the Cauchy-

Schwarz inequality, it holds

|∇ραβ |2 =

∣∣∣∣∣

∞∑

k=1

nk

(
∇φαk (r)φβk(r) + φαk (r)∇φβk(r)

)∣∣∣∣∣

2

≤
∣∣∣∣∣

∞∑

k=1

nk

(
|∇φαk |2 + |∇φβk |2

)1/2 (
|φαk |2 + |φβk |2

)1/2
∣∣∣∣∣

2

≤
[

∞∑

k=1

nk

(
|∇φαk |2 + |∇φβk |2

)][ ∞∑

k=1

nk

(
|φαk |2 + |φβk |2

)]
.

9



We let τα :=
∑∞

k=1 nk|∇φαk |2, so that τα ∈ L1(R3) and
´

R3 τ
α = Tr (−∆γαα). The previous

inequality leads to the point-wise estimate

|∇ραβ | ≤
(
τα + τβ

)1/2 (
ραα + ρββ

)1/2
. (14)

In particular, if α = β, we recover the Hoffman-Ostenhof inequality [25]

‖∇
√
ραα‖2L2 ≤ Tr (−∆γαα).

With the homogeneous Sobolev embedding H1(R3) →֒ L6(R3), we deduce

‖ραα‖L3 ≤ C Tr (−∆γαα).

Then, using the fact that
(
τα + τβ

)1/2 ∈ L2(R3) and
(
ραα + ρββ

)1/2 ∈ L6(R3) and the Hölder
inequality, it follows from (14) that

‖∇ραβ‖L3/2 ≤ ‖(τα + τβ)1/2‖L2 ‖(ραα + ρββ)1/2‖L6 ≤ 4C Tr (−∆γ). (15)

For ρ+/−, we use the exact expression of the eigenvalues of a 2× 2 hermitian matrix:

ρ+/− =
1

2

(
ρ±

√
ρ2 − 4 det(R)

)
=

1

2

(
ρ±

√
(ρ↑↑ − ρ↓↓)2 + 4|ρ↑↓|2

)
. (16)

Noticing that, if f and g are non negative,

|∇
√
f + g| = |∇f +∇g|

2
√
f + g

≤ |∇f |
2
√
f + g

+
|∇g|

2
√
f + g

≤ |∇f |
2
√
f
+

|∇g|
2
√
g
= |∇

√
f |+ |∇√

g|,

we differentiate (16) to get

|∇ρ+/−| ≤ 1

2
|∇ρ|+ 1

2

∣∣∣∣∇
√
(ρ↑↑ − ρ↓↓)2 + 4|ρ↑↓|2

∣∣∣∣

≤ 1

2
|∇ρ↑↑|+ 1

2
|∇ρ↓↓|+ 1

2

(
|∇ρ↑↑|+ |∇ρ↓↓|+ 2

∣∣∇|ρ↑↓|
∣∣) .

All the terms on the right-hand side are in L3/2(R3) and of norms bounded by CTr (−∆γ), hence
the same holds for ∇ρ+/−.

Moreover, γ is in Pλ, so that Tr (γ) =
´

R3 ρ = λ. We get from the inequality 2|ab| ≤ |a|2 + |b|2
that

|ραβ | =
∣∣∣∣∣

∞∑

k=1

nkφ
α
k (r)φ

β
k(r)

∣∣∣∣∣ ≤
∞∑

k=1

nk

2

(
|φαk |2 + |φβk |2

)
≤

∞∑

k=1

nk

(
|φ↑k|2 + |φ↓k|2

)
= ρ. (17)

Integrating on R3 leads to ‖ραβ‖L1 ≤ λ. From the positiveness of Rγ , it also holds that 0 ≤
ρ+/− ≤ ρ so that ‖ρ+/−‖L1 ≤ λ. We conclude from (15), the homogeneous Sobolev embedding
W 1,3/2(R3) →֒ L3(R3), and the Hölder inequality with 1 ≤ p ≤ 3, that

‖ραβ‖Lp ≤ Cpλ
3−p
2p Tr (−∆γ)

3(p−1)
2p

and similarly for ρ+/−.

Proof of Lemma 2.
We prove that Iλ > −∞. The proof is similar for I∞λ . Let λ > 0, and γ ∈ Pλ. Under conditions
(11), a straightforward calculation shows that

∣∣ELSDA
xc (ρ+, ρ−)

∣∣ ≤ C

(
ˆ

R3

(ρ+)p
−

+

ˆ

R3

(ρ+)p
+

)
+ C

(
ˆ

R3

(ρ−)p
−

+

ˆ

R3

(ρ−)p
+

)

≤ 2C

(
ˆ

R3

ρp
+

+

ˆ

R3

ρp
−

)
,

10



where p+/− := 1 + β+/− < 5/3. We used the fact that Rγ is a positive hermitian matrix, so that
0 ≤ ρ+/− ≤ ρ. Therefore, because J(ρ) ≥ 0, we have the estimate:

E(γ) ≥ 1

2
Tr (−∆γ)− C1‖U‖

L
3
2
+ǫ+L∞

‖R‖L1∩L3−ǫ′ − C2

(
‖ρ‖p

+

Lp+
+ ‖ρ‖p

−

Lp−

)
,

where ǫ′ = 4ǫ/(1 + 2ǫ) > 0 is chosen such that L3−ǫ′ is the dual space of L
3
2+ǫ. With Lemma 1,

it follows

E(γ) ≥ 1

2
Tr (−∆γ)− C ′

1‖U‖
L

3
2
+ǫ+L∞

(1 + Tr (−∆γ)α1)− C2 (Tr (−∆γ)α2 +Tr (−∆γ)α3)

with 0 ≤ α1, α2, α3 < 1. The function Y 7→ 1
2Y − C ′′

1 (1 + Y α1) − C2Y
α2 − C2Y

α3 goes to +∞
when Y goes to +∞ for 0 ≤ α1, α2, α3 < 1. Hence, E(γ) ≥ −C for all γ ∈ Pλ. It also follows from
the above inequality that if (γn) is a minimizing sequence for Iλ, then Tr (−∆γn) is uniformly
bounded. In particular, (γn) is a bounded sequence of B.

Proof of Lemma 3.
Let (γn)n∈N∗ be a bounded sequence in B. According to Lemma 1, the sequences (ραβn ) for

α, β ∈ {↑, ↓}2 and (ρ
+/−
n ) are bounded in W 1,3/2(R3). In virtue of the Banach-Alaoglu theorem,

up to a subsequence, the sequence (γn) converges to some γ0 ∈ B for the weak-∗ topology of B,

and (ραβn ) and ρ
+/−
n converge for the weak topology of W 1,3/2(R3). To identify the limits, we

recall that, for any compact operator K on L2(R3,C2),

Tr (γnK) −−−−→
n→∞

Tr (γ0K) and Tr (|∇|γn|∇|K) −−−−→
n→∞

Tr (|∇|γ0|∇|K). (18)

Choose W ∈ C∞
0 (R3,R). The operator (1 + |∇|)−1W (1 + |∇|)−1 is compact and in the Schatten

class Sp for p > 3
2 according to the Kato-Simon-Seiler inequality [26]. Taking successively in (18)

K =

(
W 0
0 0

)
, K =

(
0 0
0 W

)
, K =

(
0 W
W 0

)
and K =

(
0 iW

−iW 0

)
,

we obtain that, for the first choice of K,
ˆ

R3

ρ↑↑n W = Tr (γnW ) = Tr
(
(1 + |∇|)γn(1 + |∇|) · (1 + |∇|)−1W (1 + |∇|)−1

)

−−−−→
n→∞

Tr
(
(1 + |∇|)γ0(1 + |∇|) · (1 + |∇|)−1W (1 + |∇|)−1

)
=

ˆ

R3

ρ↑↑0 W

(19)

and similarly for ρ↓↓0 , Re(ρ↑↓0 ) and Im(ρ↑↓0 ). We deduce that (ραβn ) converges to ραβ0 in D′(R3,C)
for all α, β ∈ {↑, ↓}2. Identifying the limits, the convergences hold also weakly in W 1,3/2(R3),
strongly in Lp

loc(R
3) for 1 ≤ p < 3, and almost everywhere, in virtue of the Sobolev embedding

theorem. From formula (16) and the pointwise convergence of (ραβn ) to ραβ0 , we also deduce that

(ρ
+/−
n ) pointwise converges to ρ

+/−
0 . Again, by identifying the limits, the convergence also holds

weakly in W 1,3/2(R3) and strongly in Lp
loc(R

3) for 1 ≤ p < 3.

Then, let χ ∈ C∞
0 (R) be a cut-off function such that χ(x) = 1 if |x| < 1 and χ(x) = 0 if x ≥ 2.

We take WA = χ(x/A) in (19), and let A go to infinity to obtain that

ρ↑↑0 ∈ L1(R3) and

ˆ

R3

ρ↑↑0 ≤ lim inf
n→∞

ˆ

R3

ρ↑↑n , (20)

and similarly for ρ↓↓0 . Now, if γn ∈ Pλ and γ0 ∈ Pλ, we get

λ =

ˆ

R3

ρ0 =

ˆ

R3

ρ↑↑0 + ρ↓↓0 ≤
ˆ

R3

ρ↑↑n + ρ↓↓n = λ,
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and the inequality (20) is an equality. Therefore, (ρn) converges to ρ0 strongly in L1(R3). We

deduce from (17) and 0 ≤ ρ
+/−
n ≤ ρn that ρ↑↓n and ρ

+/−
n are bounded in L1(R3). A classical

application of the dominated convergence theorem then leads to the fact that ραβn converges to

ραβ0 strongly in L1(R3) for α, β ∈ {↑, ↓}2, and that ρ
+/−
n converges strongly to ρ

+/−
0 in L1(R3).

Finally, the strong convergence still holds in Lp(R3) for 1 ≤ p < 3 according to the Hölder
inequality.

The proof for the energy is similar to the one in [1, Lemma 3]. We do not repeat it here, but

notice that the strong convergence of (ρ
+/−
n ) to ρ

+/−
0 in Lp(R3) for 1 ≤ p < 3 is needed for the

convergence of the exchange-correlation functional.

Proof of Lemma 5.
(ii) Let us first prove that for 0 < µ < λ, it holds that Iλ ≤ Iµ + I∞λ−µ. Let ε > 0, γ ∈ Pµ

and γ′ ∈ Pλ−µ be such that Iµ ≤ E(γ) ≤ Iµ + ε and I∞λ−µ ≤ E∞(γ′) ≤ I∞λ−µ + ε. By density

of finite-rank one-body density matrices in B, and density of C∞
0 (R3,C2) in H1(R3,C2), we can

assume that γ and γ′ are both of the form

γ(
′) =

M∑

i=1

n
(′)
k |Φ(′)

k 〉 〈Φ(′)
k | with Φ

(′)
k ∈ C∞

0 (R3,C2).

We consider γn := γ + τneγ
′τ−ne and γ♯n := γ + τneγ̃

′τ−ne where τxf(r) = f(r − x), and e is a
non-null vector. We recall that γ̃′ is the flipped transformation of γ′, as introduced in (12). For
n0 large enough, and for n ≥ n0, the supports of the Φk’s and of the τneΦ

′
k’s are disjoint, so that

γn and γ♯n are in Pλ for all n ≥ n0. Also, for n large enough, J(ρn) ≤ J(ρ)+J(ρ′)+ε. Altogether,
we get, for n large enough,

E(γn) + E(γ♯n) = 2E(γ) + 2E∞(γ′) + 2

ˆ

V ρ′(· − ne) + 2ε ≤ 2E(γ) + 2E∞(γ′) + 2ε

≤ 2Iµ + 2I∞λ−µ + 6ε.

Hence, either E(γn) or E(γ♯n) is smaller than Iµ+I
∞
λ−µ+3ε, and Iλ ≤ Iµ+I

∞
λ−µ.Similar arguments

show that I∞λ ≤ I∞µ + I∞λ−µ.

(i) We first prove that there exists λ0 small enough such that for all 0 < λ ≤ λ0, I
∞
λ < 0. We

use a scaling argument. Let φ ∈ C∞
0 (R3,C) be such that ‖φ‖L2 = 1, and let φσ = σ3/2φ(σ·) for

σ > 0. Note that ‖φσ‖L2 = 1. For λ ≤ 1, we introduce

γλσ(r, r
′) = λ

(
φσ(r)φσ(r

′) 0
0 0

)

so that γλσ ∈ Pλ for all 0 < λ ≤ 1 and σ > 0. Using (11), there exists 1 ≤ α < 3/2 such that
ELSDA

xc (λ|φσ|2, 0) ≤ −Cλασ3(α−1)‖φ‖2αL2α . Direct calculations lead to

E∞(γλσ) =
λσ2

2

ˆ

R3

|∇φ|2 + λ2σJ(|φ|2) +
ˆ

R3

ELSDA
xc (|φλσ|2, 0)

≤ λσ2

2

ˆ

R3

|∇φ|2 + λ2σJ(|φ|2)− Cλασ3(α−1)‖φ‖2αL2α .

It is easy to check that under the condition α < 3/2, there exists λ0 > 0 such that for all
0 < λ ≤ λ0, there exists σ such that E(γλσ) < 0. In particular, I∞λ ≤ E∞(γλσ) < 0. Together
with (ii), we deduce that, for all λ > 0, I∞λ < 0 and Iλ < 0.

We now prove that Iλ < I∞λ , for all λ > 0. Let (γn) be a minimizing sequence for I∞λ .
We first suppose that

∀A > 0, lim
n→∞

sup
x∈R3

ˆ

x+BA

ρn = 0,

12



where BA is the ball of radius A centered at the origin. Because (ρn) is bounded in W 1,3/2

according to Lemma 2 and 3, we deduce from [4, Lemma I.1] that (ρn) converges to 0 strongly in
Lp(R3) for 1 < p < 3. Also, because of (17), the components of Rn and its eigenvalues converge
to 0 strongly in Lp(R3) for 1 < p < 3. Similarly to [1], we deduce that

I∞λ = lim inf
n→∞

E∞(γn) = lim inf
n→∞

{
1

2
Tr (−∆γn) + J(ρn) + ELSDA

xc (ρ+n , ρ
−
n )

}
= lim inf

n→∞

1

2
Tr (−∆γn) ≥ 0

which contradicts the first point. Therefore

∃A, η > 0, ∀n ∈ N, ∃xn ∈ R
3,

ˆ

xn+BA

ρn ≥ η. (21)

Up to translations of the γn’s, we can assume without loss of generality that xn = 0.
We now introduce γ̃n, the flipped version of γn introduced in (12). Using (13) and the fact

that V (r) ≤ −z1
r

, we get

E(γn) + E(γ̃n) = Tr (−∆γn) + 2J(ρn) + 2ELSDA
xc (ρ+n , ρ

−
n ) + 2

ˆ

R3

V ρn

= 2E∞(γn) + 2

ˆ

R3

V ρn ≤ 2E∞(γn)− 2

ˆ

BR

z1
|r|ρn ≤ 2E∞(γn)− 2

z1
R
η.

Hence, either E(γn) or E(γ̃n) is smaller than E∞(γn)−z1R−1η. Therefore, Iλ ≤ I∞λ −z1R−1η < I∞λ .

(iii) The fact that λ 7→ Iλ and λ 7→ I∞λ are non increasing can be read from the other state-
ments.

Proof of Lemma 6.
Let λ > 0, and let (γn)n∈N∗ ∈ Pλ be a minimizing sequence for Iλ. According to Lemma 2, up to
a subsequence, we can assume that (γn) converges to some γ0 ∈ B for the weak-∗ topology of B.

(i) The fact that α ≤ λ can be directly deduced from (20).

(ii) Suppose that α = 0, so that γ = 0. Then, we have Iλ = lim inf E(γn) = E(γ0) = 0 (we
used the continuity of E , which can be proved similarly to [1]). This contradicts the first point of
Lemma 5. Hence, α 6= 0.

(iii) Suppose that 0 < α < λ. Following [1, 27], we let χ, ξ ∈ C∞
0 (R3,R+) be radial functions

such that χ2 + ξ2 = 1, with χ(0) = 1, χ < 1 on R3 \ {0}, χ(x) = 0 for |x| > 1, ‖∇χ‖L∞ ≤ 2
and ‖∇ξ‖L∞ ≤ 2. We introduce χA(x) := χ(x/A) and ξA(x) := ξ(x/A) and finally γn,A :=
χAγnχA. With those notations, A 7→ Tr (γn,A) is a continuous and increasing function from 0 to
λ. Therefore, there exists An such that γn,An

is in Pα.
The sequence (An) goes to infinity. Otherwise, we would have for A large enough and according

to (20),
ˆ

R3

ρ0χ
2
A = lim

n→∞

ˆ

R3

ρnχ
2
A ≥ lim

n→∞

ˆ

R3

ρnχ
2
An

= α =

ˆ

R3

ρ0

which is impossible, for |χ2
A| < 1 on R3.

We introduce γ1,n := χAnγnχAn and γ2,n := ξAnγnξAn . Note that γ1,n ∈ Pα and γ2,n ∈ Pλ−α,
and that ρn = ρ1,n + ρ2,n. From the decomposition (7) of γn: γn =

∑∞
k=1 nk,n|Φk,n〉〈Φk,n|,

0 ≤ nk,n ≤ 1, we deduce that

Tr (
∣∣|∇|γ1,n|∇|

∣∣) + Tr (
∣∣|∇|γ2,n|∇|

∣∣) ≤ Tr (
∣∣|∇|γn|∇|

∣∣) + 8
λ

A2
n

.
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Hence, (γ1,n) and (γ2,n) are bounded in B. Also, direct calculations lead to

Tr (−∆γ1,n) + Tr (−∆γ2,n) ≤ Tr (−∆γn) + 8
λ

A2
n

. (22)

According to Lemma 2, up to a subsequence, (γ1,n) converges for the weak-∗ topology of B. In
this case, for Φ = (φ↑, φ↓) ∈ C∞

0 (R3,C2), it holds that

Tr (γ1,n|Φ〉〈Φ|) =
ˆ

R3

ρ↑↑1,n|φ↑|2 +
ˆ

R3

ρ↓↓1,n|φ↓|2 =

ˆ

R3

χ2
An
ρ↑↑n |φ↑|2 +

ˆ

R3

χ2
An
ρ↓↓n |φ↓|2.

For n large enough, the support of Φ is inside the support of χAn , and

Tr (γ1,n|Φ〉〈Φ|) = Tr (γn|χAn
Φ〉〈ΦχAn

|) −−−−→
n→∞

Tr (γ|Φ〉〈Φ|).

We deduce that (γ1,n) converges to γ0 for the weak-∗ topology of B. Finally, because γ1,n ∈ Pα

and γ0 ∈ Pα, ρ1,n converges strongly to ρ0 in Lp(R3) for 1 ≤ p < 3, and E(γ0) ≤ lim inf E(γ1,n)
according to Lemma 3.

Let us look more closely to γ2,n. Because (ρ1,n) converges to ρ0 strongly in Lp(R3) and (ρn)
converges to ρ0 strongly in Lp

loc(R
3) for 1 ≤ p < 3, we obtain that ρ2,n = ρn−ρ1,n (and thus all the

components of R2,n and its eigenvalues) converges strongly to 0 in Lp
loc(R

3) for 1 ≤ p < 3. Also, it

holds that ρ
+/−
1,n +ρ

+/−
2,n = ρ

+/−
n . Using (22) and the fact that

˜

ρ1,n(r)ρ2,n(r
′)|r−r′|−1 d3r d3r′ ≥

0, we obtain

E(γn) =
1

2
Tr (−∆γn) + J(ρn) +

ˆ

R3

tr C2 [URn] + ELSDA
xc (ρ+n , ρ

−
n )

≥ 1

2
Tr (−∆γ1,n) +

1

2
Tr (−∆γ2,n)− 4

λ

A2
n

+ J(ρ1,n) + J(ρ2,n)+

+

ˆ

R3

tr C2 [UR1,n] +

ˆ

R3

tr C2 [UR2,n] + ELSDA
xc (ρ+1,n + ρ+2,n, ρ

−
1,n + ρ−2,n)

≥ E(γ1,n) + E∞(γ2,n)− 4
λ

A2
n

+

ˆ

R3

tr C2 [UR2,n] +

+ ELSDA
xc (ρ+1,n + ρ+2,n, ρ

−
1,n + ρ−2,n)− ELSDA

xc (ρ+1,n, ρ
−
1,n)− ELSDA

xc (ρ+2,n, ρ
−
2,n).

We first consider the term
´

tr C2 [UR2,n]. We have for A ≥ 0, (we use, for a matrix M , the
notation |M | for the sum of the absolute values of the entries of M)

∣∣∣∣
ˆ

R3

tr C2 [UR2,n]

∣∣∣∣ =
∣∣∣∣
ˆ

BA

tr C2 [UR2,n]

∣∣∣∣+
∣∣∣∣∣

ˆ

(BA)c
tr C2 [UR2,n]

∣∣∣∣∣

≤ ‖U‖
L

3
2
+ǫ+L∞(BA)

‖R2,n‖L1∩L3−ǫ′ (BA) + sup
x∈(BA)c

|U(x)|
ˆ

(BA)c
|R2,n|

≤ ‖U‖
L

3
2
+ǫ+L∞(R3)

‖R2,n‖L1∩L3−ǫ′ (BA) + sup
x∈(BA)c

|U(x)|
ˆ

R3

|R2,n|,

where ǫ′ = 4ǫ/(1 + 2ǫ) > 0 is chosen such that L3−ǫ′ is the dual space of L
3
2+ǫ. Using inequality

(17), and the fact that
´

ραβ2,n ≤ λ, we get an inequality of the form

∣∣∣∣
ˆ

R3

tr C2 [UR2,n]

∣∣∣∣ ≤ C1‖R2,n‖L1∩L3−ǫ′ (BA) + C2 sup
x∈(BA)c

|U(x)|

with C1 and C2 independent of A and n. Because all entries of U are vanishing at infinity, we can
first choose A large enough to control the second term, and then use the convergence of R2,n to 0
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strongly in Lp(BA) for 1 ≤ p < 3, to establish the convergence of the right-hand-side to 0.
For the last term, using (11), it holds (we write g2(ρ) = g(2ρ))

ELSDA
xc (ρ+1,n + ρ+2,n, ρ

−
1,n + ρ−2,n)− ELSDA

xc (ρ+1,n, ρ
−
1,n)− ELSDA

xc (ρ+2,n, ρ
−
2,n) =

1

2

[
ˆ

R3

(
g2(ρ

+
1,n + ρ+2,n)− g2(ρ

+
1,n)− g2(ρ

+
2,n)
)
+

ˆ

R3

g2(ρ
−
1,n + ρ−2,n)− g2(ρ

−
1,n)− g2(ρ

−
2,n)

]
.

(23)
Then, we get (dropping the super-script +/− for the sake of clarity)

∣∣∣∣
ˆ

R3

g2(ρ1,n + ρ2,n)− g2(ρ1,n)− g2(ρ2,n)

∣∣∣∣

≤
ˆ

BA

|g2(ρ1,n + ρ2,n)− g2(ρ1,n)|+
ˆ

BA

|g2(ρ2,n)|+

+

ˆ

(BA)c
|g2(ρ1,n + ρ2,n)− g2(ρ2,n)|+

ˆ

(BA)c
|g2(ρ2,n)|

≤ C

(
ˆ

BA

ρ2,n

(
ρp

+

n + ρp
−

n

)
+

ˆ

BA

(
(ρ2,n)

p−

+ (ρ2,n)
p+
))

+ C

(
ˆ

(BA)c
ρ1,n

(
ρp

+

n + ρp
−

n

)
+

ˆ

(BA)c

(
(ρ1,n)

p−

+ (ρ1,n)
p+
))

.

We recall that p+/− = 1 + β+/− < 5/3. Because (ρ1,n) and (ρn) are bounded in Lp(R3) for
1 ≤ p < 3, and because (ρ2,n) converges to 0 in Lp

loc(R
3) for 1 ≤ p < 3, we deduce that (23) goes

to 0 when n goes to infinity (first take A large enough, then n large enough, as before).
Altogether, for ǫ > 0, for n large enough,

E(γn) ≥ E(γ1,n) + E∞(γ2,n)− 3ǫ ≥ Iα + I∞λ−α − 3ǫ.

Therefore, E(γn) ≥ Iα + I∞λ−α, and Iλ ≥ Iα + I∞λ−α. The second point of Lemma 5 states that
Iλ ≤ Iα + I∞λ−α. Hence Iλ = Iα + I∞λ−α, and (γ2,n) is a minimizing sequence for I∞λ−α.

As in the proof of Lemma 5, it holds (21):

∃A, η > 0, ∀n ∈ N, ∃xn ∈ R
3,

ˆ

xn+BA

ρ2,n ≥ η.

We let γ′2,n = τxnγ2,nτ−xn . Then, (γ2,n) is bounded for the weak-∗ topology of B, and converges,
up to a subsequence, to some γ′0 satisfying Tr (γ′0) ≥ η. Let β := Tr (γ′0). We can repeat the same
arguments as before and truncate γ′2,n to ensure that Tr (χAn

γ2,nχAn
) = β. We deduce as before

that γ′0 is a minimizer for I∞β , and that Iλ = Iα + I∞β + I∞λ−α−β .

Proof of Lemma 7.
Let us first derive the expression of Hγ0 . Suppose that γ0 ∈ Pλ is a minimizer for Iλ. Then for
γ ∈ Pλ and 0 ≤ t ≤ 1, it holds E(tγ + (1− t)γ0) ≥ E(γ0). In particular, one must have

∂E(tγ + (1− t)γ0)

∂t

∣∣∣
t=0

≥ 0. (24)

To perform the calculations, we use the explicit formula (16) for ρ+/−, and get

∂ (tρ+ (1− t)ρ0)
+/−

∂t

∣∣∣
t=0

=

1

2
tr C2





(
1 0
0 1

)
± 1√

(ρ↑↑0 − ρ↓↓0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ↓↓0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ↑↑0

)
 (R−R0)


 .
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Similarly to [1, 28], we conclude that

∂E(tγ + (1− t)γ0)

∂t

∣∣∣
t=0

= Tr (Hγ0
(γ − γ0))

with

Hγ0
=

(
−1

2
∆ + ρ0 ⋆ | · |−1

)
I2 + U

+
g′(ρ+0 )

2



(
1 0
0 1

)
+

1√
(ρ↑↑0 − ρ↓↓0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ↓↓0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ↑↑0

)


+
g′(ρ−0 )

2



(
1 0
0 1

)
− 1√

(ρ↑↑0 − ρ↓↓0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ↓↓0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ↑↑0

)
 .

(25)

Using (24), we deduce that γ0 ∈ arginf{Tr (Hγ0
γ), γ ∈ Pλ}. Finally,

γ0 = 1(−∞,ǫF )(Hγ0
) + δ with δ ⊂ Ker(Hγ0

− ǫF ),

where ǫF is the Fermi energy, determined by the condition Tr (γ0) = λ.

Let us first calculate the essential spectrum of Hγ0
. We recall that H0 = −1

2
∆I2 has domain

H2(R3,C2) and that if u ∈ H2(R3,C), then u vanishes at infinity. We also recall that for all
V ∈ L3/2(R3,C2) + L∞

ǫ (R3,C2), the set of functions V that can be written V = V3/2 + V∞ with

V3/2 ∈ L3/2(R3,C2), V∞ ∈ L∞(R3) and ‖V∞‖L∞ arbitrary small, V is a compact perturbation

of H0. In our case, we can easily check that ̂ρ0 ⋆ | · |−1 = ρ̂0| · |−2 ∈ L1(R3), so that ρ0 ⋆ | · |−1

vanishes at infinity. Altogether,

• ρ0 ⋆ | · |−1 ∈ L3/2(R3) + L∞
ǫ (R3)

• U ∈ L3/2(R3,C2) + L∞(R3,C2) and all entries of U vanishes at infinity

• |g′(ρ+/−
0 )| ≤ C(ρβ

−

0 + ρβ
+

0 ) hence g′(ρ
+/−
0 ) ∈ L3/2(R3,C2).

Therefore, according to the Weyl’s theorem, the domain of Hγ0
is H2(R3,C2), and σess(Hγ0

) =
σess(H0) = [0,+∞[.

Let us now prove that Hγ0
has infinitely many negative eigenvalues whenever λ < Z. First

notice that the matrix

1√
(ρ↑↑0 − ρ↓↓0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ↓↓0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ↑↑0

)

has two eigenvalues, respectively −1 and 1, so that the matrices appearing into the two pairs
of brackets in (25) have 0 and 2 as eigenvalues, and therefore are hermitian positive. Also,
recall that under the conditions (11) on g, it holds g′ ≤ 0. Altogether, for ψ ∈ C∞

0 (R3,C),

Ψ = (ψ,ψ)T ∈ C∞
0 (R3,C2), and Ψ̃ defined as in (12), it holds that

〈Ψ|Hγ0 |Ψ〉+ 〈Ψ̃|Hγ0 |Ψ̃〉 ≤
〈
Ψ
∣∣
((

−1

2
∆ + ρ0 ⋆ | · |−1

)
I2 + U

) ∣∣Ψ
〉

+

〈
Ψ̃
∣∣
((

−1

2
∆ + ρ0 ⋆ | · |−1

)
I2 + U

) ∣∣Ψ̃
〉

≤ 4

〈
ψ
∣∣− 1

2
∆ + ρ0 ⋆ | · |−1 + V

∣∣ψ
〉

= 〈ψ|H1|ψ〉1
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where H1 := − 1
2∆ + ρ0 ⋆ | · |−1 + V acts on L2(R3,C), and V is defined in (1). We used the

subscript 1 to emphasize that 〈·|·〉1 is the scalar product on L2(R3,C), whereas 〈·|·〉 is the one on
L2(R3,C2). In virtue of [29, Lemma 2.1], the operator H1 has infinitely many negative eigenvalues
of finite multiplicity whenever λ < Z. So has Hγ0

by the min-max principle. Eventually, ǫF < 0,
and

γ0 =

N1∑

i=1

|Φi〉〈Φi|+
N2∑

i=N1+1

ni|Φi〉〈Φi| with 〈Φi|Φj〉 = δij and Hγ0Φi = ǫiΦi.

It holds ǫi < ǫF if i ≤ N1, and ǫi = ǫF if N1 + 1 ≤ i ≤ N2. In the following, we set ni := 1 for
i ≤ N1.

Finally, we prove that all eigenvectors associated with negative eigenvalues are exponentially
decreasing. Any function u satisfying Hγ0u = λu is in H2(R3,C2), and each component of u

vanishes at infinity. As a byproduct, we obtain that ρ0 =
∑N2

i=1 ni|Φi|2 also vanishes at infinity.
Finally, all the components of

Uγ0
:= ρ0⋆|·|−1

I2+U+
∑

δ=+/−

g′(ρδ0)

2



(
1 0
0 1

)
+ (−1)δ

1√
(ρ↑↑0 − ρ↓↓0 )2 + 4|ρ↑↓0 |2

(
ρ↑↑0 − ρ↓↓0 2ρ↑↓0

2ρ↓↑0 ρ↓↓0 − ρ↑↑0

)


vanish at infinity. Recall that Hγ0
Φi = − 1

2∆Φi + UγΦi = ǫiΦi. Multiplying this equation by Φi

and adding all the terms with prefactors ni, it holds that

N2∑

i=1

niΦ
T
i

(
−1

2
∆

)
Φi +

N2∑

i=1

niΦ
T
i UγΦi =

N2∑

i=1

ǫini|Φi|2. (26)

From the relation ρ0 =
∑N2

i=1 ni|Φi|2, we get

∆ρ0 =

N2∑

i=1

2ni

(
ΦT

i (∆Φi) + |∇Φi|2
)

and (26) becomes

−∆

4
ρ0 +

N2∑

i=1

ni

2
|∇Φi|2

︸ ︷︷ ︸
≥0

+

N2∑

i=1

niΦ
T
i UγΦi +

N2∑

i=1

(ǫF − ǫi)ni|Φi|2

︸ ︷︷ ︸
≥0

−ǫF ρ0 = 0.

Let A be large enough such that, for all r ∈ R3 with |r| ≥ A, the eigenvalues of the matrix Uγ(r)

are between
ǫF
2λ

and − ǫF
2λ

(recall that ǫF < 0). In particular, for |r| ≥ A, |ΦT
i (r)Uγ(r)Φi(r)| ≤

− ǫF
2λ

|Φi|2, and, on (BA)
c,

−∆

4
ρ0 +

ǫFλ

2λ
ρ0 − ǫF ρ0 ≤ 0 or − ∆

2
ρ0 − ǫF ρ0 ≤ 0.

We easily deduce that ρ0 decreases exponentially. Hence, the same holds true for all the Φi’s with
1 ≤ i ≤ N2. A similar proof can be used for the remaining negative eigenvalues.

Proof of Lemma 8.
Let γ0 ∈ Pα be a minimizer for Iα, and γ′0 ∈ Pβ be a minimizer for I∞β . According to the proof
of Lemma 7, because α < λ, γ0 has the form

γ0 =

N2∑

i=1

ni|Φi〉 〈Φi| with Hγ0Φi = ǫiΦi and ǫi ≤ ǫF < 0.
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We can derive a similar expression for γ′0:

γ′0 =

∞∑

i=1

n′
i|Φ′

i〉 〈Φ′
i| with H∞

γ′

0
Φ′

i = ǫiΦ
′
i and ǫ′i ≤ ǫ′F ≤ 0, (27)

where H∞
γ′

0
has a similar expression as Hγ′

0
in (25), without the U term. Note that in (27), we do

not know whether ǫ′F < 0 or ǫ′F = 0.

First assume that ǫ′F < 0, so that Φi and Φ′
i are exponentially decreasing, and the sum in (27)

is finite. We introduce γn := min{1, ‖γ0 + τnγ
′
0τ−n‖−1} (γ0 + τnγ

′
0τ−n) and γ♯n := min{1, ‖γ0 +

τnγ̃
′
0τ−n‖−1} (γ0 + τnγ̃

′
0τ−n), where γ̃′0 is the flipped transformation of γ′0, as defined in (12). Note

that Tr (γn) ≤ α + β and Tr (γ♯n) ≤ α + β, so that Iα+β ≤ E(γn) and Iα+β ≤ E(γ̃) according to
the third assertion of Lemma 5. A straightforward calculation leads to

E(γn) + E(γ♯n) = 2E(γ0) + 2E∞(γ̃0)−
β(Z − α)

n
+O(e−δn)

= 2Iα + 2I∞β − β(Z − α)

n
+O(e−δn).

For n large enough, −β(Z − α)n−1 +O(e−δn) becomes negative. Hence, either E(γn) or E(γ♯n) is
strictly less than Iα + I∞β . Therefore, Iα+β < Iα + I∞β .

Let us now assume that ǫ′F = 0. Then, there exists Ψ ∈ H2(R3,C2) such that ‖Ψ‖L2 =
1, H∞

γ′

0
Ψ = 0 and γ′0Ψ = µΨ with µ > 0. Then, for 0 < η < µ, we introduce γη = γ0 +

η|ΦN2+1〉 〈ΦN2+1| and γ′η = γ′0 − η|Ψ〉 〈Ψ|, so that γη ∈ Pα+η and γ′η ∈ Pβ−η. Moreover,

E(γη) = E(γ0) + 2ηǫN2+1 + o(η) = Iα + 2ηǫN2+1 + o(η)

and
E∞(γ′η) = E∞(γ′0) + o(η) = I∞β + o(η).

Using the facts that γ0 + η|ΦN2+1〉 〈ΦN2+1| ∈ Pα+η and γ′0 − η|Ψ〉 〈Ψ| ∈ Pβ−η, it holds that

Iα+β ≤ Iα+η + I∞β−η ≤ E(γη) + E∞(γ′η) ≤ Iα + I∞β + 2ηǫN2+1 + o(η).

Because ǫN2+1 < 0, for η small enough, the left hand side is strictly less that Iα + I∞β , which
concludes the proof.
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