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Existence of minimizers for Kohn-Sham within the Local Spin Density Approximation

The purpose of this article is to extend the work by Anantharaman and Cancès [1], and prove the existence of minimizers for the spin-polarized Kohn-Sham model in the presence of a magnetic field within the local spin density approximation. We show that for any magnetic field that vanishes at infinity, the existence of minimizers is ensured for neutral or positively charged systems. The proof relies on classical concentration-compactness techniques.

Introduction

The density functional theory (DFT) introduced in 1964 by Hohenberg and Kohn [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF] is a very popular tool in modern quantum chemistry. This theory transforms the high-dimensional Schrödinger problem into a low-dimensional one, hence computationally solvable. The price to pay is the introduction of the so-called exchange-correlation (xc) energy term, which is unknown. Throughout the literature, several different approximations of this energy can be found. The first successful one, and still broadly used nowadays, was proposed by Kohn and Sham [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF], and is called the local density approximation (LDA). The mathematical properties resulting of the Kohn-Sham LDA are still not fully understood. Proving the existence of minimizers is made difficult by the non-convexity of the problem due to the LDA term. Using concentration-compactness techniques introduced by Lions [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case, part 1[END_REF], it has been possible to prove the existence of minimizers in several cases. Le Bris [START_REF] Bris | Quelques problèmes mathématiques en chimie quantique moléculaire[END_REF] proved that for a neutral or positively charged system, the Kohn-Sham problem with LDA exchange-correlation energy admits a minimizer. A similar result was proved by Anantharaman and Cancès [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF] for the so-called extended-Kohn-Sham model with LDA exchange-correlation energy.

The purpose of the present article is to extend the result by Anantharaman and Cancès to spin-polarized systems, the electrons of the molecular system into consideration being subjected to the electric potential V created by the nuclei, and to an arbitrary external magnetic field B that vanishes at infinity. In order to take into account spin effects, we have to resort to spin density functional theory (SDFT). In this theory, all magnetic contributions coming from orbital magnetism (paramagnetic current, spin-orbit coupling,...) are neglected. Historically, while Kohn and Sham briefly discussed the inclusion of spin effects in their model, the general theory was pioneered by von Barth and Hedin [START_REF] Barth | A local exchange-correlation potential for the spin polarized case[END_REF] and is known as the local spin density approximation (LSDA). These authors proposed the following ansatz to transform a spin-unpolarized exchangecorrelation energy to a spin-polarized version of it:

E LSDA xc (ρ + , ρ -) := 1 2 E LDA xc (2ρ + ) + E LDA xc (2ρ -) ,
where E LDA xc is the spinless exchange-correlation energy, and ρ +/-are the eigenvalues of the 2 × 2 spin density matrix (see Sec. 2 for details). There are two other major differences between spinpolarized and spin-unpolarized models. First, the ground state of spin-unpolarized models is given by a minimization problem onto the set of electronic densities, while in spin-polarized models, it is given by a minimization problem onto the set of spin density matrices, consisting of 2 × 2 hermitian matrices. Second, the magnetic field adds a Zeeman-type term -µ ´B • m to the energy functional, where m is the spin angular momentum density.

Due to all those additional difficulties with respect to the spinless case, the fully polarized SDFT has not been very popular until recently. Chemists generally prefer its collinear version (collinear-SDFT), where all the spins are constrained to be orientated along a fixed direction on the whole space. This allows one to work with two scalar fields (one for spin-up, and one for spindown), instead of fields of hermitian matrices. While this simplification provides very good results, it misses some physical properties (spin dynamics [START_REF] Sharma | First-Principles Approach to Noncollinear Magnetism: Towards Spin Dynamics[END_REF], frustrated solids [START_REF] Bulik | Noncollinear density functional theory having proper invariance and local torque properties[END_REF], ...). The implementation of the unconstrained (fully polarizable) model appeared with the work of Sandratskii and Guletskii [START_REF] Sandratskii | Symmetrised method for the calculation of the band structure of noncollinear magnets[END_REF], and Kübler et al. [START_REF] Kübler | Density functional theory of non-collinear magnetism[END_REF][START_REF] Kübler | Local spin-density functional theory of noncollinear magnetism (invited)[END_REF], and this model is becoming a standard tool nowadays. To the best of our knowledge, no rigorous proof of the existence of solutions has yet been provided for this case.

Our result is that, under the same hypotheses as in [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF], plus some mild conditions on B, the existence of minimizers is still ensured for neutral or positively charged systems. Whereas the main tools of the proof are similar to those used in [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF], namely concentration-compactness techniques, some adaptations are necessary, in particular to handle the Zeeman term. The structure of the article is as follows. We first recall how to derive the LSDA models, and formulate the main theorem. Then, we break the proof of the theorem into several lemmas, that we prove at the end of the paper.

Derivation of the local spin density approximation models

We recall how the extended Kohn-Sham models are derived in the spin setting. We start from the Schrödinger-Pauli Hamiltonian for N -electrons in the Born-Oppenheimer approximation. In atomic units, this operator reads

H SP (V, A) = N i=1 1 2 (-i∇ i + A(r i )) 2 I 2 + N i=1 V (r i )I 2 -µ N i=1 B(r i ) • σ i + 1≤i<j≤N 1 |r i -r j | I 2 ,
where I 2 is the 2 × 2 identity matrix,

V (r) = - M k=1 z k |r -R k | (1) 
is the electric potential generated by the M nuclei, A is the external magnetic vector potential, and B := ∇ × A is the external magnetic field. We denote by r i (resp. R k ) the positions of the electrons (resp. nuclei). The charge of the k-th nucleus is z k ∈ N * and Z := M k=1 z k is the total nuclear charge. We can assume without loss of generality that R 1 = 0. The constant µ is the Bohr magneton. Its value is 1/2 in atomic units, but we prefer to keep the notation µ in the rest of the paper. The term σ i appearing in the Hamiltonian contains the Pauli matrices acting on the i-th spin variable:

σ i := (σ xi , σ yi , σ zi ) = 0 1 1 0 i , 0 -i i 0 i , 1 0 0 -1 i .
Although the magnetic field B and magnetic vector potential A are linked by the relation B = ∇ × A, it is often preferable to consider them as two independent fields. Indeed, B acts on the spin of the electrons, while A acts on the spatial component of the spin-orbitals. For instance, would we be interested only in studying orbital effects (e.g. paramagnetic current), we would neglect the spin effects. We would then take B = 0 and A = 0. Such an approximation leads to the so-called current-density functional theory [START_REF] Vignale | Current-and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields[END_REF]. In this article, we are interested in spin effects. We therefore set A = 0, which amounts to neglecting the paramagnetic currents, while keeping B = 0. This approximation is commonly used to study phenomena such as spin dynamics [START_REF] Sharma | First-Principles Approach to Noncollinear Magnetism: Towards Spin Dynamics[END_REF] or frustrated solids [START_REF] Bulik | Noncollinear density functional theory having proper invariance and local torque properties[END_REF]. With this approximation, our Hamiltonian for N electrons reads

H(V, B) =   N i=1 - 1 2 ∆ i + N i=1 V (r i ) + 1≤i<j≤N 1 |r i -r j |   I 2 -µ N i=1 B(r i ) • σ i .
This Hamiltonian acts on the fermionic Hilbert space

N i=1 L 2 (R 3 , C 2 ) := Ψ(r 1 , s 1 , • • • , r N , s N ), r i ∈ R 3 , s i ∈ {↑, ↓}, s1,•••s N ∈{↑,↓} N ˆR3N |Ψ(r 1 , s 1 , • • • )| 2 d 3 r 1 • • • d 3 r N < ∞, ∀p ∈ S N , Ψ(r p(1) , s p(1) , • • • ) = ǫ(p)Ψ(r 1 , s 1 , • • • ) ,
where ǫ(p) is the parity of the permutation p, endowed with the scalar product

Ψ 1 |Ψ 2 = (s1,•••s N )∈{↑,↓} N ˆR3N Ψ 1 (r 1 , s 1 , • • • )Ψ 2 (r 1 , s 1 , • • • ) d 3 r 1 • • • d 3 r N .
Its form domain

N i=1 H 1 (R 3 , C 2
) is defined similarly. The ground state energy of the system is obtained by solving the minimization problem

E(V, B) := inf Ψ|H(V, B)|Ψ , Ψ ∈ N i=1 H 1 (R 3 , C 2 ), Ψ L 2 = 1 .
In order to convexify the problem, we introduce, for a wave function

Ψ ∈ N i=1 H 1 (R 3 , C 2 ) satisfying Ψ = 1, the N -body density matrix Γ Ψ := |Ψ Ψ|.
The minimization problem can be recast as

E(V, B) = inf {Tr (H(V, B)Γ) , Γ ∈ W N }
where W N is the set of pure state N -body density matrices defined by

W N := Γ Ψ , Ψ ∈ N i=1 H 1 (R 3 , C 2 ), Ψ L 2 = 1 .
In this article, we study the extended-Kohn-Sham model based on mixed-state N -body density matrices, for this problem has better properties mathematically speaking, and allows one to handle more general physical situations as, for instance, positive temperatures. The set M N of mixed state N -body density matrices is defined as the convex hull of W N . The minimization problem for mixed states reads

E(V, B) := inf {Tr (H(V, B)Γ) , Γ ∈ M N } .
Then, for Γ ∈ M N , direct calculations lead to

Tr (H(V, B)Γ) = Tr (H(0, 0)Γ) + ˆR3 tr C 2
where, for α, β ∈ {↑, ↓} 2 ,

ρ αβ Γ (r) := N (s2,••• ,s N )∈{↑,↓} N -1 ˆR3(N-1) Γ(r, α, r 2 , s 2 , • • • ; r, β, r 2 , s 2 , • • • ) d 3 r 2 • • • d 3 r N .
where

Γ(r 1 , s 1 , • • • ; r ′ 1 , s ′ 1 , • • • ) denotes the kernel of Γ.
In the following, we write

U := V -µB z -µB x + iµB y -µB x -iµB y V + µB z and R Γ := ρ ↑↑ Γ ρ ↑↓ Γ ρ ↓↑ Γ ρ ↓↓ Γ .
This last 2 × 2 matrix is called the spin density matrix. Note that when B = 0, one recovers the usual potential energy density V ρ Γ appearing in spin-unpolarized DFT. Introducing the spin angular momentum density

m Γ = tr C 2 [σ • R Γ ],
and the total electronic density

ρ Γ = ρ ↑↑ Γ + ρ ↓↓ Γ , it holds tr C 2 [U R Γ ] = V ρ Γ -µB • m Γ . (3) 
We now apply the constrained search method introduced and studied by Levy [START_REF] Levy | Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[END_REF], Valone [START_REF] Valone | Consequences of extending 1-matrix energy functionals from pure-state representable to all ensemble representable 1 matrices[END_REF] and Lieb [START_REF] Lieb | Density functionals for coulomb systems[END_REF], and write the minimization problem (2) in terms of R Γ :

E(V, B) = inf F (R) + ˆR3 tr C 2 [U R] , R ∈ J N , (4) 
with

F (R) := inf {Tr [H(0, 0)Γ] , Γ ∈ M N , R Γ = R} .
The set J N is defined as

J N := R ∈ M 2×2 (L 1 (R 3 )), ∃Γ ∈ M N , R Γ = R , (5) 
where M 2×2 (L 1 (R 3 )) is the space of 2 × 2 matrices with entries in L 1 (R 3 ). This is the set of mixed state N -representable spin density matrices. We recently proved [START_REF] Gontier | N-representability in noncollinear spin-polarized density-functional theory[END_REF] the following characterization for J N :

J N = R ∈ M 2×2 (L 1 (R 3 )), R * = R, R ≥ 0, ˆR3 tr C 2 [R] = N, √ R ∈ M 2×2 H 1 (R 3 ) . γ ↓↑ Γ γ ↓↓ Γ where γ αβ Γ (r, r ′ ) := N (s2,s3,••• )∈{↑,↓} N -1 ˆR3(N-1) Γ(r, α, r 2 , s 2 , • • • ; r ′ , β, r 2 , s 2 , • • • ) d 3 r 2 • • • d 3 r N .
The set of mixed-state 1-body density matrices is

P N := {γ Γ , Γ ∈ M N },
and, identifying the kernel γ(r, r ′ ) with the corresponding operator of S(L 2 (R 3 , C 2 )), the space of self-adjoint operators on L 2 (R 3 , C 2 ), Coleman [START_REF] Coleman | Structure of Fermion Density Matrices[END_REF] proved that

P N = γ ∈ S(L 2 (R 3 , C 2 )), 0 ≤ γ ≤ 1, Tr (γ) = N, Tr (-∆γ) < ∞ .
Physically speaking, this is the set of one-body density matrices of systems with N -electrons (Tr (γ) = N ), satisfying the Pauli principle (0 ≤ γ ≤ 1), and with finite kinetic energy (Tr (-∆γ) < ∞). In a similar way, we can define, for λ > 0,

P λ := γ ∈ S(L 2 (R 3 , C 2 )), 0 ≤ γ ≤ 1, Tr (γ) = λ, Tr (-∆γ) < ∞ . (6) 
A more practical and equivalent formulation of the Coleman result is that, using the spectral theory for compact self-adjoint operators, we can write the components γ αβ of any γ ∈ P λ in the form

γ αβ (r, r ′ ) = ∞ k=1 n k φ α k (r)φ β k (r ′ ), 0 ≤ n k ≤ 1, ∞ k=1 n k = λ, Φ k = φ ↑ k φ ↓ k ∈ L 2 (R 3 , C 2 ), Φ k |Φ l = δ kl , Tr (-∆γ) := ∞ k=1 n k ∇Φ k 2 L 2 = Tr (-∆γ ↑↑ ) + Tr (-∆γ ↓↓ ) < ∞. (7) 
Notice that γ Γ (r, r) = R Γ (r), so that we will write R γ (r) := γ(r, r) for γ ∈ P N . We finally introduce, similarly as in [START_REF] Bris | Quelques problèmes mathématiques en chimie quantique moléculaire[END_REF],

J λ := R ∈ M 2×2 (L 1 (R 3 )), ∃γ ∈ P λ , R = R γ .
The extended version of the Kohn-Sham approach consists then in splitting the unknown functional F (R) into three parts:

F (R) = T KS (R) + J(ρ R ) + E xc (R).
The first term T KS represents the kinetic energy of a non-interacting electronic system. It reads, in the one-body formalism,

∀R ∈ J λ , T KS (R) := inf 1 2 Tr (-∆γ) , γ ∈ P λ , R γ = R .
The second term is the Hartree term, defined by

J(ρ) := 1 2 ¨R3 ×R 3 ρ(r)ρ(r ′ ) |r -r ′ | d 3 r d 3 r ′ .
Finally, the last term is the exchange-correlation functional defined by

E xc (R) := F (R) -T KS (R) -J(R).
Notice that because F is a non-explicit functional, E xc is also a non-explicit functional. It is however possible to construct explicit approximations of E xc giving rise to accurate predictions of the ground state energies of most molecular systems [START_REF] Engel | Density Functional Theory: an advanced course[END_REF]. Note that the case E xc = 0 corresponds to the reduced Hartree-Fock model [START_REF] Ph | Proof of the ionization conjecture in a reduced Hartree-Fock model[END_REF].

The local-spin density approximation introduced by von Barth and Hedin [START_REF] Barth | A local exchange-correlation potential for the spin polarized case[END_REF] consists in writing

E xc (R) ≈ E LSDA xc (ρ + , ρ -) := 1 2 E LDA xc (2ρ + ) + E LDA xc (2ρ -) (8) 
where ρ +/-are the two eigenvalues of the 2 × 2 matrix R, and E LDA xc is the standard exchangecorrelation functional in the non-polarized case, that we can write under the form [3]

E LDA xc (ρ) = ˆR3 g(ρ(r)) d 3 r. (9) 
We emphasize that the polarization rule ( 8) is exact for the exchange part of the exchangecorrelation energy, and that von Barth and Hedin proposed to use the same formula for the correlation part. The fact that E LSDA xc only depends on R via its eigenvalues comes from the locality of the functional. Indeed, this energy functional must be invariant with respect to local spin rotations. Because R is hermitian at each point, we can always diagonalize R locally, so that a local energy can only depend on the two eigenvalues of R.

In this article, we will deal with exchange-correlation functionals of the form ( 8)- [START_REF] Sandratskii | Symmetrised method for the calculation of the band structure of noncollinear magnets[END_REF]. The most common choices for g are the ones derived from the homogeneous electron gas. Several choices exist (VWS [START_REF] Vosko | Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[END_REF], PZ81 [START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF], CP [START_REF] Cole | Calculated electron affinities of the elements[END_REF], PW92 [START_REF] Perdew | Accurate and simple analytic representation of the electron-gas correlation energy[END_REF], ...), and they all satisfy the same asymptotic conditions for low and high densities. Their mathematical properties are similar to the ones of the Xα-functional introduced by Slater [24]

E LDA,Xα xc (ρ) = -C X ˆR3 ρ 4/3 (r) d 3 r.
Altogether, by recasting problem (4) in terms of the one-body density matrices, we end up with a variational problem of the form

I λ := inf {E(γ), γ ∈ P λ } (10) 
where

E(γ) = 1 2 Tr -∆γ ↑↑ + 1 2 Tr -∆γ ↓↓ + J(ρ γ ) + ˆR3 tr C 2 [U R γ ] d 3 r + E LSDA xc (ρ + γ , ρ - γ )
and where P λ has been defined in [START_REF] Barth | A local exchange-correlation potential for the spin polarized case[END_REF]. The physical situation corresponds to λ = N ∈ N, but as usual in variational problems set on the whole space, it is useful to relax the constraint Tr (γ) = N to allow the particles to escape to infinity. We can recover some other common models by further constraining the minimization set. For instance, the collinear-SDFT consists in minimizing the functional E onto the set

P collinear λ := γ ∈ P λ , γ ↑↓ = γ ↓↑ = 0 .
In this case, the matrices γ and R are both diagonal. In particular, the two eigenvalues of R are {ρ + , ρ -} = {ρ ↑↑ , ρ ↓↓ }. In this model, it holds that

ˆR3 tr C 2 [U R] = ˆR3 V (ρ ↑↑ + ρ ↓↓ ) -µ ˆR3 B z (ρ ↑↑ -ρ ↓↓ ) = ˆR3 V ρ -µ ˆR3 B z ρ ζ.
where

ζ := ρ ↑↑ -ρ ↓↓ ρ ↑↑ + ρ ↓↓ ∈ [-1, 1]
is the relative spin-polarization. This model is therefore simpler than the non-collinear spinpolarized model, as we are not dealing with fields of matrices, but with two scalar fields. Physically, it corresponds to constraining the spin along a fixed direction on the whole space. This method provides results in good agreement with experiments whenever the energy accounting for the non-collinearity of the spins is negligible. Then, the unpolarized case consists in minimizing the functional E onto the set

P unpolarized λ := γ ∈ P λ , γ ↑↓ = γ ↓↑ = 0, γ ↑↑ = γ ↓↓ .
Equivalently, it corresponds to the collinear case with ζ ≡ 0. It then holds that

ˆR3 tr C 2 [U R] = ˆR3 V ρ,
so that the model is independent of the magnetic field B, and can be used whenever spin effects are negligible. We refer to [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF] for a mathematical introduction of this model.

An existence result for the Kohn-Sham LSDA model

The main result of this article is the following Theorem 1. Under the following assumptions 1/ the function g in ( 9) is of class C 1 (R + ) and satisfies:

                   g(0) = 0 g ′ ≤ 0 ∃ 0 < β -≤ β + < 2 3 , sup ρ∈R + |g ′ (ρ)| ρ β -+ ρ β + < ∞ ∃ 1 ≤ α < 3 2 , lim sup ρ→0 + g(ρ) ρ α < 0, (11) 
2/ all entries of U are in

L 3 2 +ǫ (R 3 ) + L ∞ (R 3
) and vanish at infinity, and V := tr C 2 (U ) has the form (1), the problem I λ defined in [START_REF] Kübler | Density functional theory of non-collinear magnetism[END_REF] has a minimizer whenever λ ≤ Z.

Remark 1. The assumptions [START_REF] Kübler | Local spin-density functional theory of noncollinear magnetism (invited)[END_REF] are the same as in [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF], and are satisfied for all common functionals. Theorem 1 extends [1, Theorem 1] to the case when the system is spin-polarized by an external magnetic field B. While the strategy of proof, based on concentration-compactness arguments, is similar to that in [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF], an additional technical tool is needed to handle the Zeeman term. This tool seems to be new to the best of the author's knowledge. We have called it the flip transformation (see Equation (12) below). Remark 2. This result does not make any assumption on the strength of the magnetic field B other than that it vanishes at infinity. If B becomes infinite at infinity, it is easy to see that the energy is not bounded below: we can orientate the spins of all electrons along the magnetic field and push them to infinity, so that the energy can be arbitrarily negative.

Proof of Theorem 1:

We use the concentration-compactness method introduced in [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The locally compact case, part 1[END_REF]. We therefore introduce the problem at infinity

I ∞ λ = inf {E ∞ (γ), γ ∈ P λ } , where E ∞ (γ) := 1 2 Tr -∆γ ↑↑ + 1 2 Tr -∆γ ↓↓ + J(ρ) + E LSDA xc (ρ + , ρ -).
We will need several lemmas, the proofs of which are postponed until the following section for the sake of clarity. We begin with some functional inequalities: Lemma 1. There exists a constant C such that for all λ > 0 and all γ ∈ P λ , it holds

∇R γ L 3/2 ≤ CTr (-∆γ) and ∇ρ +/- γ L 3/2 ≤ CTr (-∆γ).
In particular, for all 1 ≤ p ≤ 3, there exists C p such that, for all λ > 0 and all γ ∈ P λ ,

R γ L p ≤ C p λ 3-p 2p
Tr (-∆γ)

3(p-1) 2p

, and similarly for ρ

+/- γ .
We easily deduce from the above lemma that the energies I λ and I ∞ λ are bounded below: Lemma 2. For all λ > 0, we have I λ > -∞ and I ∞ λ > -∞. Moreover, all minimizing sequences (γ n ) for I λ or I ∞ λ are bounded in the Banach space B, where

B := {γ ∈ S(L 2 (R 3 , C 2 )), γ B := Tr (|γ|) + Tr (||∇|γ|∇||) < ∞}.
In the following, we consider sequences (γ n ) n∈N * ∈ B, and we will write R n := R γn and ρ n := ρ γn . Lemma 3. Let (γ n ) n∈N * be a bounded sequence of B. Then, there exists γ 0 ∈ B, such that, up to a subsequence, γ n converges to γ 0 for the weak- * topology of B, all components of R n converge to their respective components in R 0 strongly in L p loc (R 3 ) for 1 ≤ p < 3, weakly in L p (R 3 ) for 1 ≤ p ≤ 3, and almost everywhere. The eigenvalues of R n converge to the eigenvalues of R 0 strongly in L p loc (R 3 ) for 1 ≤ p < 3, weakly in L p (R 3 ) for 1 ≤ p ≤ 3 and almost everywhere. Moreover, if γ n ∈ P λ for all n, and γ 0 ∈ P λ , the convergences hold strongly in L p (R 3 ) for 1 ≤ p < 3, and

E(γ 0 ) ≤ lim inf E(γ n ).
It follows from Lemma 2 and Lemma 3 that one can extract from any minimizing sequence (γ n ) n∈N * of (10) a minimizing sequence, still denoted by (γ n ), converging to some γ 0 for the weak- * topology of B. In particular, 0 ≤ γ 0 ≤ 1 and Tr (-∆γ 0 ) < ∞. To prove that γ 0 is indeed a minimizer of [START_REF] Kübler | Density functional theory of non-collinear magnetism[END_REF], it remains to prove that Tr (γ 0 ) = λ. Let α = Tr (γ 0 ). It is easy to get α ≤ λ. If α < λ, then we have loss of compactness (some electrons leak away). Therefore, to prove that α = λ (at least when λ ≤ Z), we need to control the behavior at infinity of the minimizers, which is not as simple as in [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF] because of the Zeeman term -µ ´B • m. In order to control this term, we introduce the following flip transformation:

for Φ = φ ↑ φ ↓ , we define Φ := φ ↓ -φ ↑ , for γ = n k |Φ k Φ k |, we define γ := n k | Φ k Φ k |. (12) 
Note that if

γ = γ ↑↑ γ ↑↓ γ ↓↑ γ ↓↓ and R γ = R ↑↑ R ↑↓ R ↓↑ R ↓↓ , then γ(x, y) = γ ↓↓ -γ ↑↓ -γ ↓↑ γ ↑↑ (y, x) and R γ = R ↓↓ -R ↑↓ -R ↓↑ R ↑↑ ,
from which we deduce the following lemma, whose proof is straightforward.

Lemma 4. If γ ∈ P λ , then γ ∈ P λ . Moreover, it holds that Tr (-∆ γ n ) = Tr (-∆γ n ), ρ = ρ, and m = -m, where ρ and m have been defined in [START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF]. In particular, it holds that

tr C 2 [U R] + tr C 2 U R = 2 ˆR3 V ρ. (13) 
In other words, this transformation flips the spin-up and spin-down channels. This lemma allows to cancel the Zeeman term, and is an essential tool throughout the proof. We can first prove Lemma 5.

(i) For all λ > 0, -∞ < I λ < I ∞ λ < 0. (ii) For all 0 < µ < λ, I λ ≤ I µ + I ∞ λ-µ . (iii)
The functions λ → I λ and λ → I ∞ λ are non increasing. We then have the important result Lemma 6. Let λ > 0 and (γ n ) n∈N * ∈ P λ be any minimizing sequence of I λ that converges to some γ 0 for the weak- * topology of B. Let α := Tr (γ 0 ). Then (i) α ≤ λ.

(ii) α = 0.

(iii) If 0 < α < λ, then γ 0 is a minimizer for the problem I α , there exists β > 0 with α + β ≤ λ such that I ∞ β has also a minimizer, and

I λ = I α + I ∞ β + I ∞ λ-α-β .
According to this lemma, if α < λ, γ 0 is a minimizer for I α . In this case, it satisfies the Euler-Lagrange equation

γ 0 = 1 (-∞,ǫ F ) (H γ0 ) + δ with δ ⊂ Ker(H γ0 -ǫ F )
for some ǫ F < 0 called the Fermi energy, and with H γ0 as defined in [START_REF] Hoffmann-Ostenhof | Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules[END_REF]. Here, 1 (-∞,ǫ F ) is the characteristic function of the interval (-∞, ǫ F ), and the spectral projection 1 (-∞,ǫ F ) (H γ0 ) is defined by the functional calculus. We then use the very general Lemma 7. It holds σ ess (H γ0 ) = [0, +∞[. Moreover, if 0 < λ < Z, then H γ0 has infinitely many negative eigenvalues, and every eigenvector corresponding to such an eigenvalue is exponentially decreasing.

From this lemma, we deduce the concentration-compactness result: Lemma 8. Let 0 < α, β be such that α + β ≤ Z. Suppose that I α and I ∞ β admit minimizers. Then

I α+β < I α + I ∞ β ( < I α ).
The end of the proof goes as follows. Let us suppose that λ ≤ Z, and α < λ. Then, according to Lemma 6, γ 0 is a minimizer for I α , and there exists β > 0 such that α + β ≤ λ ≤ Z so that I ∞ β has also a minimizer, and it holds

I λ = I α + I ∞ β + I ∞ λ-α-β .
Moreover, Lemma 8 holds, and

I α+β < I α + I ∞ β .
Finally, we get

I λ = I α + I ∞ β + I ∞ λ-α-β > I α+β + I ∞ λ-α-β ,
which contradicts the second point of Lemma 5. Therefore, it holds α = λ, and, according to Lemma 3, γ 0 is a minimizer for I λ , which concludes the proof.

Proofs of the lemmas

Proof of lemma 1. Let λ > 0 and γ ∈ P λ . We use the representation (7) of γ, and write

γ αβ (r, r ′ ) = ∞ k=1 n k φ α k (r)φ β k (r ′ ), 0 ≤ n k ≤ 1, ∞ k=1 n k = λ, Φ k = φ ↑ k φ ↓ k ∈ L 2 (R 3 , C 2 ), Φ k |Φ l = δ kl , Tr (-∆γ) := ∞ k=1 n k ∇Φ k 2 L 2 < ∞.
In particular, ρ αβ (r) = n k φ α k (r)φ β k (r). Differentiating this expression, and using the Cauchy-Schwarz inequality, it holds

|∇ρ αβ | 2 = ∞ k=1 n k ∇φ α k (r)φ β k (r) + φ α k (r)∇φ β k (r) 2 ≤ ∞ k=1 n k |∇φ α k | 2 + |∇φ β k | 2 1/2 |φ α k | 2 + |φ β k | 2 1/2 2 ≤ ∞ k=1 n k |∇φ α k | 2 + |∇φ β k | 2 ∞ k=1 n k |φ α k | 2 + |φ β k | 2 .
We let

τ α := ∞ k=1 n k |∇φ α k | 2 , so that τ α ∈ L 1 (R 3
) and ´R3 τ α = Tr (-∆γ αα ). The previous inequality leads to the point-wise estimate

|∇ρ αβ | ≤ τ α + τ β 1/2 ρ αα + ρ ββ 1/2 . ( 14 
)
In particular, if α = β, we recover the Hoffman-Ostenhof inequality [START_REF] Hoffmann-Ostenhof | Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules[END_REF] ∇ √ ρ αα 2 L 2 ≤ Tr (-∆γ αα ). With the homogeneous Sobolev embedding H 1 (R 3 ) ֒→ L 6 (R 3 ), we deduce

ρ αα L 3 ≤ C Tr (-∆γ αα ).
Then, using the fact that τ α + τ β 1/2 ∈ L 2 (R 3 ) and ρ αα + ρ ββ 1/2 ∈ L 6 (R 3 ) and the Hölder inequality, it follows from ( 14) that

∇ρ αβ L 3/2 ≤ (τ α + τ β ) 1/2 L 2 (ρ αα + ρ ββ ) 1/2 L 6 ≤ 4C Tr (-∆γ). (15) 
For ρ +/-, we use the exact expression of the eigenvalues of a 2 × 2 hermitian matrix:

ρ +/-= 1 2 ρ ± ρ 2 -4 det(R) = 1 2 ρ ± (ρ ↑↑ -ρ ↓↓ ) 2 + 4|ρ ↑↓ | 2 . ( 16 
)
Noticing that, if f and g are non negative,

|∇ f + g| = |∇f + ∇g| 2 √ f + g ≤ |∇f | 2 √ f + g + |∇g| 2 √ f + g ≤ |∇f | 2 √ f + |∇g| 2 √ g = |∇ f | + |∇ √ g|,
we differentiate ( 16) to get

|∇ρ +/-| ≤ 1 2 |∇ρ| + 1 2 ∇ (ρ ↑↑ -ρ ↓↓ ) 2 + 4|ρ ↑↓ | 2 ≤ 1 2 |∇ρ ↑↑ | + 1 2 |∇ρ ↓↓ | + 1 2 |∇ρ ↑↑ | + |∇ρ ↓↓ | + 2 ∇|ρ ↑↓ | .
All the terms on the right-hand side are in L 3/2 (R 3 ) and of norms bounded by CTr (-∆γ), hence the same holds for ∇ρ +/-. Moreover, γ is in P λ , so that Tr (γ) = ´R3 ρ = λ. We get from the inequality 2|ab| ≤ |a| 2 + |b| 2 that

|ρ αβ | = ∞ k=1 n k φ α k (r)φ β k (r) ≤ ∞ k=1 n k 2 |φ α k | 2 + |φ β k | 2 ≤ ∞ k=1 n k |φ ↑ k | 2 + |φ ↓ k | 2 = ρ. (17) 
Integrating on R 3 leads to ρ αβ L 1 ≤ λ. From the positiveness of R γ , it also holds that 0 ≤ ρ +/-≤ ρ so that ρ +/- L 1 ≤ λ. We conclude from [START_REF] Lieb | Density functionals for coulomb systems[END_REF], the homogeneous Sobolev embedding W 1,3/2 (R 3 ) ֒→ L 3 (R 3 ), and the Hölder inequality with 1 ≤ p ≤ 3, that

ρ αβ L p ≤ C p λ 3-p 2p
Tr (-∆γ)

3(p-1) 2p

and similarly for ρ +/-.

Proof of Lemma 2.

We prove that I λ > -∞. The proof is similar for I ∞ λ . Let λ > 0, and γ ∈ P λ . Under conditions [START_REF] Kübler | Local spin-density functional theory of noncollinear magnetism (invited)[END_REF], a straightforward calculation shows that

E LSDA xc (ρ + , ρ -) ≤ C ˆR3 (ρ + ) p -+ ˆR3 (ρ + ) p + + C ˆR3 (ρ -) p -+ ˆR3 (ρ -) p + ≤ 2C ˆR3 ρ p + + ˆR3 ρ p -,
where p +/-:= 1 + β +/-< 5/3. We used the fact that R γ is a positive hermitian matrix, so that 0 ≤ ρ +/-≤ ρ. Therefore, because J(ρ) ≥ 0, we have the estimate:

E(γ) ≥ 1 2 Tr (-∆γ) -C 1 U L 3 2 +ǫ +L ∞ R L 1 ∩L 3-ǫ ′ -C 2 ρ p + L p + + ρ p - L p -,
where ǫ ′ = 4ǫ/(1 + 2ǫ) > 0 is chosen such that L 3-ǫ ′ is the dual space of L 3 2 +ǫ . With Lemma 1, it follows

E(γ) ≥ 1 2 Tr (-∆γ) -C ′ 1 U L 3 2 +ǫ +L ∞ (1 + Tr (-∆γ) α1 ) -C 2 (Tr (-∆γ) α2 + Tr (-∆γ) α3 ) with 0 ≤ α 1 , α 2 , α 3 < 1. The function Y → 1 2 Y -C ′′ 1 (1 + Y α1 ) -C 2 Y α2 -C 2 Y α3 goes to +∞ when Y goes to +∞ for 0 ≤ α 1 , α 2 , α 3 < 1.
Hence, E(γ) ≥ -C for all γ ∈ P λ . It also follows from the above inequality that if (γ n ) is a minimizing sequence for I λ , then Tr (-∆γ n ) is uniformly bounded. In particular, (γ n ) is a bounded sequence of B.

Proof of Lemma 3. Let (γ n ) n∈N * be a bounded sequence in B. According to Lemma 1, the sequences (ρ αβ n ) for α, β ∈ {↑, ↓} 2 and (ρ

+/- n ) are bounded in W 1,3/2 (R 3
). In virtue of the Banach-Alaoglu theorem, up to a subsequence, the sequence (γ n ) converges to some γ 0 ∈ B for the weak- * topology of B, and (ρ αβ n ) and ρ +/n converge for the weak topology of W 1,3/2 (R 3 ). To identify the limits, we recall that, for any compact operator

K on L 2 (R 3 , C 2 ), Tr (γ n K) ----→ n→∞ Tr (γ 0 K) and Tr (|∇|γ n |∇|K) ----→ n→∞ Tr (|∇|γ 0 |∇|K). (18) 
Choose W ∈ C ∞ 0 (R 3 , R). The operator (1 + |∇|) -1 W (1 + |∇|) -1 is compact and in the Schatten class S p for p > 3 2 according to the Kato-Simon-Seiler inequality [START_REF] Simon | Trace ideals and their applications[END_REF]. Taking successively in ( 18)

K = W 0 0 0 , K = 0 0 0 W , K = 0 W W 0 and K = 0 iW -iW 0 ,
we obtain that, for the first choice of K,

ˆR3 ρ ↑↑ n W = Tr (γ n W ) = Tr (1 + |∇|)γ n (1 + |∇|) • (1 + |∇|) -1 W (1 + |∇|) -1 ----→ n→∞ Tr (1 + |∇|)γ 0 (1 + |∇|) • (1 + |∇|) -1 W (1 + |∇|) -1 = ˆR3 ρ ↑↑ 0 W (19) 
and similarly for ρ ↓↓ 0 , Re(ρ ↑↓ 0 ) and Im(ρ ↑↓ 0 ). We deduce that (ρ αβ n ) converges to ρ αβ 0 in D ′ (R 3 , C) for all α, β ∈ {↑, ↓} 2 . Identifying the limits, the convergences hold also weakly in W 1,3/2 (R 3 ), strongly in L p loc (R 3 ) for 1 ≤ p < 3, and almost everywhere, in virtue of the Sobolev embedding theorem. From formula [START_REF] Gontier | N-representability in noncollinear spin-polarized density-functional theory[END_REF] and the pointwise convergence of (ρ αβ n ) to ρ αβ 0 , we also deduce that (ρ

+/- n ) pointwise converges to ρ +/- 0
. Again, by identifying the limits, the convergence also holds weakly in W 1,3/2 (R 3 ) and strongly in L p loc (R 3 ) for 1 ≤ p < 3. [START_REF] Ph | Proof of the ionization conjecture in a reduced Hartree-Fock model[END_REF], and let A go to infinity to obtain that

Then, let χ ∈ C ∞ 0 (R) be a cut-off function such that χ(x) = 1 if |x| < 1 and χ(x) = 0 if x ≥ 2. We take W A = χ(x/A) in
ρ ↑↑ 0 ∈ L 1 (R 3 ) and ˆR3 ρ ↑↑ 0 ≤ lim inf n→∞ ˆR3 ρ ↑↑ n , (20) 
and similarly for ρ ↓↓ 0 . Now, if γ n ∈ P λ and γ 0 ∈ P λ , we get

λ = ˆR3 ρ 0 = ˆR3 ρ ↑↑ 0 + ρ ↓↓ 0 ≤ ˆR3 ρ ↑↑ n + ρ ↓↓ n = λ,
and the inequality ( 20) is an equality. Therefore, (ρ n ) converges to ρ 0 strongly in L 1 (R 3 ). We deduce from [START_REF] Coleman | Structure of Fermion Density Matrices[END_REF] and 0 ≤ ρ

+/- n ≤ ρ n that ρ ↑↓ n and ρ +/- n are bounded in L 1 (R 3 ).
A classical application of the dominated convergence theorem then leads to the fact that ρ αβ n converges to ρ αβ 0 strongly in L 1 (R 3 ) for α, β ∈ {↑, ↓} 2 , and that ρ +/n converges strongly to ρ +/-0 in L 1 (R 3 ). Finally, the strong convergence still holds in L p (R 3 ) for 1 ≤ p < 3 according to the Hölder inequality.

The proof for the energy is similar to the one in [1, Lemma 3]. We do not repeat it here, but notice that the strong convergence of (ρ

+/- n ) to ρ +/- 0 in L p (R 3
) for 1 ≤ p < 3 is needed for the convergence of the exchange-correlation functional.

Proof of Lemma 5.

(ii) Let us first prove that for 0 < µ < λ, it holds that

I λ ≤ I µ + I ∞ λ-µ . Let ε > 0, γ ∈ P µ and γ ′ ∈ P λ-µ be such that I µ ≤ E(γ) ≤ I µ + ε and I ∞ λ-µ ≤ E ∞ (γ ′ ) ≤ I ∞ λ-µ + ε.
By density of finite-rank one-body density matrices in B, and density of

C ∞ 0 (R 3 , C 2 ) in H 1 (R 3 , C 2 )
, we can assume that γ and γ ′ are both of the form

γ ( ′ ) = M i=1 n ( ′ ) k |Φ ( ′ ) k Φ ( ′ ) k | with Φ ( ′ ) k ∈ C ∞ 0 (R 3 , C 2 ).
We consider

γ n := γ + τ ne γ ′ τ -ne and γ ♯ n := γ + τ ne γ ′ τ -ne where τ x f (r) = f (r -x)
, and e is a non-null vector. We recall that γ ′ is the flipped transformation of γ ′ , as introduced in ( 12). For n 0 large enough, and for n ≥ n 0 , the supports of the Φ k 's and of the τ ne Φ ′ k 's are disjoint, so that γ n and γ ♯ n are in P λ for all n ≥ n 0 . Also, for n large enough, J(ρ n ) ≤ J(ρ) + J(ρ ′ ) + ε. Altogether, we get, for n large enough,

E(γ n ) + E(γ ♯ n ) = 2E(γ) + 2E ∞ (γ ′ ) + 2 ˆV ρ ′ (• -ne) + 2ε ≤ 2E(γ) + 2E ∞ (γ ′ ) + 2ε ≤ 2I µ + 2I ∞ λ-µ + 6ε. Hence, either E(γ n ) or E(γ ♯ n ) is smaller than I µ + I ∞ λ-µ + 3ε, and 
I λ ≤ I µ + I ∞ λ-µ .Similar arguments show that I ∞ λ ≤ I ∞ µ + I ∞ λ-µ .
(i) We first prove that there exists λ 0 small enough such that for all 0 < λ ≤ λ 0 , I ∞ λ < 0. We use a scaling argument. Let φ ∈ C ∞ 0 (R 3 , C) be such that φ L 2 = 1, and let φ σ = σ 3/2 φ(σ•) for σ > 0. Note that φ σ L 2 = 1. For λ ≤ 1, we introduce γ λσ (r, r ′ ) = λ φ σ (r)φ σ (r ′ ) 0 0 0 so that γ λσ ∈ P λ for all 0 < λ ≤ 1 and σ > 0. Using [START_REF] Kübler | Local spin-density functional theory of noncollinear magnetism (invited)[END_REF], there exists

1 ≤ α < 3/2 such that E LSDA xc (λ|φ σ | 2 , 0) ≤ -Cλ α σ 3(α-1) φ 2α L 2α . Direct calculations lead to E ∞ (γ λσ ) = λσ 2 2 ˆR3 |∇φ| 2 + λ 2 σJ(|φ| 2 ) + ˆR3 E LSDA xc (|φ λσ | 2 , 0) ≤ λσ 2 2 ˆR3 |∇φ| 2 + λ 2 σJ(|φ| 2 ) -Cλ α σ 3(α-1) φ 2α L 2α .
It is easy to check that under the condition α < 3/2, there exists λ 0 > 0 such that for all 0 < λ ≤ λ 0 , there exists σ such that E(γ λσ ) < 0. In particular, I ∞ λ ≤ E ∞ (γ λσ ) < 0. Together with (ii), we deduce that, for all λ > 0, I ∞ λ < 0 and I λ < 0.

We now prove that I λ < I ∞ λ , for all λ > 0. Let (γ n ) be a minimizing sequence for I ∞ λ . We first suppose that

∀A > 0, lim n→∞ sup x∈R 3 ˆx+B A ρ n = 0,
where B A is the ball of radius A centered at the origin. Because (ρ n ) is bounded in W 1,3/2 according to Lemma 2 and 3, we deduce from [4, Lemma I.1] that (ρ n ) converges to 0 strongly in L p (R 3 ) for 1 < p < 3. Also, because of ( 17), the components of R n and its eigenvalues converge to 0 strongly in L p (R 3 ) for 1 < p < 3. Similarly to [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF], we deduce that

I ∞ λ = lim inf n→∞ E ∞ (γ n ) = lim inf n→∞ 1 2 Tr (-∆γ n ) + J(ρ n ) + E LSDA xc (ρ + n , ρ - n ) = lim inf n→∞ 1 2 Tr (-∆γ n ) ≥ 0 which contradicts the first point. Therefore ∃A, η > 0, ∀n ∈ N, ∃x n ∈ R 3 , ˆxn+BA ρ n ≥ η. (21) 
Up to translations of the γ n 's, we can assume without loss of generality that x n = 0.

We now introduce γ n , the flipped version of γ n introduced in (12). Using [START_REF] Levy | Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[END_REF] and the fact that V (r) ≤ -z 1 r , we get

E(γ n ) + E( γ n ) = Tr (-∆γ n ) + 2J(ρ n ) + 2E LSDA xc (ρ + n , ρ - n ) + 2 ˆR3 V ρ n = 2E ∞ (γ n ) + 2 ˆR3 V ρ n ≤ 2E ∞ (γ n ) -2 ˆBR z 1 |r| ρ n ≤ 2E ∞ (γ n ) -2 z 1 R η. Hence, either E(γ n ) or E( γ n ) is smaller than E ∞ (γ n )-z 1 R -1 η. Therefore, I λ ≤ I ∞ λ -z 1 R -1 η < I ∞ λ .
(iii) The fact that λ → I λ and λ → I ∞ λ are non increasing can be read from the other statements.

Proof of Lemma 6. Let λ > 0, and let (γ n ) n∈N * ∈ P λ be a minimizing sequence for I λ . According to Lemma 2, up to a subsequence, we can assume that (γ n ) converges to some γ 0 ∈ B for the weak- * topology of B.

(i) The fact that α ≤ λ can be directly deduced from [START_REF] Vosko | Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[END_REF].

(ii) Suppose that α = 0, so that γ = 0. Then, we have I λ = lim inf E(γ n ) = E(γ 0 ) = 0 (we used the continuity of E, which can be proved similarly to [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF]). This contradicts the first point of Lemma 5. Hence, α = 0.

(iii) Suppose that 0 < α < λ. Following [1, 27], we let χ, ξ ∈ C ∞ 0 (R 3 , R + ) be radial functions such that χ 2 + ξ 2 = 1, with χ(0) = 1, χ < 1 on R 3 \ {0}, χ(x) = 0 for |x| > 1, ∇χ L ∞ ≤ 2 and ∇ξ L ∞ ≤ 2. We introduce χ A (x) := χ(x/A) and ξ A (x) := ξ(x/A) and finally γ n,A := χ A γ n χ A . With those notations, A → Tr (γ n,A
) is a continuous and increasing function from 0 to λ. Therefore, there exists A n such that γ n,An is in P α .

The sequence (A n ) goes to infinity. Otherwise, we would have for A large enough and according to [START_REF] Vosko | Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis[END_REF],

ˆR3 ρ 0 χ 2 A = lim n→∞ ˆR3 ρ n χ 2 A ≥ lim n→∞ ˆR3 ρ n χ 2 An = α = ˆR3 ρ 0 which is impossible, for |χ 2 A | < 1 on R 3 .
We introduce γ 1,n := χ An γ n χ An and γ 2,n := ξ An γ n ξ An . Note that γ 1,n ∈ P α and γ 2,n ∈ P λ-α , and that ρ n = ρ 1,n + ρ 2,n . From the decomposition (7) of γ n :

γ n = ∞ k=1 n k,n |Φ k,n Φ k,n |, 0 ≤ n k,n ≤ 1, we deduce that Tr ( |∇|γ 1,n |∇| ) + Tr ( |∇|γ 2,n |∇| ) ≤ Tr ( |∇|γ n |∇| ) + 8 λ A 2 n .
Hence, (γ 1,n ) and (γ 2,n ) are bounded in B. Also, direct calculations lead to

Tr (-∆γ 1,n ) + Tr (-∆γ 2,n ) ≤ Tr (-∆γ n ) + 8 λ A 2 n . (22) 
According to Lemma 2, up to a subsequence, (γ 1,n ) converges for the weak- * topology of B. In this case, for

Φ = (φ ↑ , φ ↓ ) ∈ C ∞ 0 (R 3 , C 2 ), it holds that Tr (γ 1,n |Φ Φ|) = ˆR3 ρ ↑↑ 1,n |φ ↑ | 2 + ˆR3 ρ ↓↓ 1,n |φ ↓ | 2 = ˆR3 χ 2 An ρ ↑↑ n |φ ↑ | 2 + ˆR3 χ 2 An ρ ↓↓ n |φ ↓ | 2 .
For n large enough, the support of Φ is inside the support of χ An , and

Tr (γ 1,n |Φ Φ|) = Tr (γ n |χ An Φ Φχ An |) ----→ n→∞
Tr (γ|Φ Φ|).

We deduce that (γ 1,n ) converges to γ 0 for the weak- * topology of B. Finally, because γ 1,n ∈ P α and γ 0 ∈ P α , ρ 1,n converges strongly to ρ 0 in L p (R 3 ) for 1 ≤ p < 3, and E(γ 0 ) ≤ lim inf E(γ 1,n ) according to Lemma 3.

Let us look more closely to γ 2,n . Because (ρ 1,n ) converges to ρ 0 strongly in L p (R 3 ) and (ρ n ) converges to ρ 0 strongly in L p loc (R 3 ) for 1 ≤ p < 3, we obtain that ρ 2,n = ρ n -ρ 1,n (and thus all the components of R 2,n and its eigenvalues) converges strongly to 0 in L p loc (R 3 ) for 1 ≤ p < 3. Also, it holds that ρ

+/- 1,n +ρ +/- 2,n = ρ +/- n
. Using [START_REF] Cole | Calculated electron affinities of the elements[END_REF] and the fact that ˜ρ1,n (r)ρ 2,n (r

′ )|r-r ′ | -1 d 3 r d 3 r ′ ≥ 0, we obtain E(γ n ) = 1 2 Tr (-∆γ n ) + J(ρ n ) + ˆR3 tr C 2 [U R n ] + E LSDA xc (ρ + n , ρ - n ) ≥ 1 2 Tr (-∆γ 1,n ) + 1 2 Tr (-∆γ 2,n ) -4 λ A 2 n + J(ρ 1,n ) + J(ρ 2,n )+ + ˆR3 tr C 2 [U R 1,n ] + ˆR3 tr C 2 [U R 2,n ] + E LSDA xc (ρ + 1,n + ρ + 2,n , ρ - 1,n + ρ - 2,n ) ≥ E(γ 1,n ) + E ∞ (γ 2,n ) -4 λ A 2 n + ˆR3 tr C 2 [U R 2,n ] + + E LSDA xc (ρ + 1,n + ρ + 2,n , ρ - 1,n + ρ - 2,n ) -E LSDA xc (ρ + 1,n , ρ - 1,n ) -E LSDA xc (ρ + 2,n , ρ - 2,n ).
We first consider the term ´tr C 2 [U R 2,n ]. We have for A ≥ 0, (we use, for a matrix M , the notation |M | for the sum of the absolute values of the entries of M )

ˆR3 tr C 2 [U R 2,n ] = ˆBA tr C 2 [U R 2,n ] + ˆ(B A ) c tr C 2 [U R 2,n ] ≤ U L 3 2 +ǫ +L ∞ (B A ) R 2,n L 1 ∩L 3-ǫ ′ (B A ) + sup x∈(B A ) c |U (x)| ˆ(B A ) c |R 2,n | ≤ U L 3 2 +ǫ +L ∞ (R 3 ) R 2,n L 1 ∩L 3-ǫ ′ (B A ) + sup x∈(B A ) c |U (x)| ˆR3 |R 2,n |,
where ǫ ′ = 4ǫ/(1 + 2ǫ) > 0 is chosen such that L 3-ǫ ′ is the dual space of L 3 2 +ǫ . Using inequality [START_REF] Coleman | Structure of Fermion Density Matrices[END_REF], and the fact that ´ραβ 2,n ≤ λ, we get an inequality of the form

ˆR3 tr C 2 [U R 2,n ] ≤ C 1 R 2,n L 1 ∩L 3-ǫ ′ (B A ) + C 2 sup x∈(B A ) c |U (x)|
with C 1 and C 2 independent of A and n. Because all entries of U are vanishing at infinity, we can first choose A large enough to control the second term, and then use the convergence of R 2,n to 0 strongly in L p (B A ) for 1 ≤ p < 3, to establish the convergence of the right-hand-side to 0.

For the last term, using [START_REF] Kübler | Local spin-density functional theory of noncollinear magnetism (invited)[END_REF], it holds (we write g 2 (ρ) = g(2ρ))

E LSDA xc (ρ + 1,n + ρ + 2,n , ρ - 1,n + ρ - 2,n ) -E LSDA xc (ρ + 1,n , ρ - 1,n ) -E LSDA xc (ρ + 2,n , ρ - 2,n ) = 1 2 ˆR3 g 2 (ρ + 1,n + ρ + 2,n ) -g 2 (ρ + 1,n ) -g 2 (ρ + 2,n ) + ˆR3 g 2 (ρ - 1,n + ρ - 2,n ) -g 2 (ρ - 1,n ) -g 2 (ρ - 2,n ) . (23) 
Then, we get (dropping the super-script +/-for the sake of clarity)

ˆR3 g 2 (ρ 1,n + ρ 2,n ) -g 2 (ρ 1,n ) -g 2 (ρ 2,n ) ≤ ˆBA |g 2 (ρ 1,n + ρ 2,n ) -g 2 (ρ 1,n )| + ˆBA |g 2 (ρ 2,n )|+ + ˆ(B A ) c |g 2 (ρ 1,n + ρ 2,n ) -g 2 (ρ 2,n )| + ˆ(B A ) c |g 2 (ρ 2,n )| ≤ C ˆBA ρ 2,n ρ p + n + ρ p - n + ˆBA (ρ 2,n ) p -+ (ρ 2,n ) p + + C ˆ(B A ) c ρ 1,n ρ p + n + ρ p - n + ˆ(B A ) c (ρ 1,n ) p -+ (ρ 1,n ) p + .
We recall that p +/-= 1 + β +/-< 5/3. Because (ρ 1,n ) and (ρ n ) are bounded in L p (R 3 ) for 1 ≤ p < 3, and because (ρ 2,n ) converges to 0 in L p loc (R 3 ) for 1 ≤ p < 3, we deduce that ( 23) goes to 0 when n goes to infinity (first take A large enough, then n large enough, as before). Altogether, for ǫ > 0, for n large enough,

E(γ n ) ≥ E(γ 1,n ) + E ∞ (γ 2,n ) -3ǫ ≥ I α + I ∞ λ-α -3ǫ.
Therefore, E(γ n ) ≥ I α + I ∞ λ-α , and I λ ≥ I α + I ∞ λ-α . The second point of Lemma 5 states that

I λ ≤ I α + I ∞ λ-α . Hence I λ = I α + I ∞ λ-α
, and (γ 2,n ) is a minimizing sequence for I ∞ λ-α . As in the proof of Lemma 5, it holds [START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF]:

∃A, η > 0, ∀n ∈ N, ∃x n ∈ R 3 , ˆxn+BA ρ 2,n ≥ η.
We let γ ′ 2,n = τ xn γ 2,n τ -xn . Then, (γ 2,n ) is bounded for the weak- * topology of B, and converges, up to a subsequence, to some γ ′ 0 satisfying Tr (γ ′ 0 ) ≥ η. Let β := Tr (γ ′ 0 ). We can repeat the same arguments as before and truncate γ ′ 2,n to ensure that Tr (χ An γ 2,n χ An ) = β. We deduce as before that γ ′ 0 is a minimizer for I ∞ β , and that

I λ = I α + I ∞ β + I ∞ λ-α-β . Proof of Lemma 7.
Let us first derive the expression of H γ0 . Suppose that γ 0 ∈ P λ is a minimizer for I λ . Then for γ ∈ P λ and 0 ≤ t ≤ 1, it holds E(tγ + (1 -t)γ 0 ) ≥ E(γ 0 ). In particular, one must have

∂E(tγ + (1 -t)γ 0 ) ∂t t=0 ≥ 0. (24) 
To perform the calculations, we use the explicit formula ( 16) for ρ +/-, and get

∂ (tρ + (1 -t)ρ 0 ) +/- ∂t t=0 = 1 2 tr C 2     1 0 0 1 ± 1 (ρ ↑↑ 0 -ρ ↓↓ 0 ) 2 + 4|ρ ↑↓ 0 | 2 ρ ↑↑ 0 -ρ ↓↓ 0 2ρ ↑↓ 0 2ρ ↓↑ 0 ρ ↓↓ 0 -ρ ↑↑ 0   (R -R 0 )   .
Similarly to [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF][START_REF] Cancès | A new approach to the modeling of local defects in crystals: the reduced Hartree-Fock case[END_REF], we conclude that

∂E(tγ + (1 -t)γ 0 ) ∂t t=0 = Tr (H γ0 (γ -γ 0 ))
with

H γ0 = - 1 2 ∆ + ρ 0 ⋆ | • | -1 I 2 + U + g ′ (ρ + 0 ) 2   1 0 0 1 + 1 (ρ ↑↑ 0 -ρ ↓↓ 0 ) 2 + 4|ρ ↑↓ 0 | 2 ρ ↑↑ 0 -ρ ↓↓ 0 2ρ ↑↓ 0 2ρ ↓↑ 0 ρ ↓↓ 0 -ρ ↑↑ 0   + g ′ (ρ - 0 ) 2   1 0 0 1 - 1 (ρ ↑↑ 0 -ρ ↓↓ 0 ) 2 + 4|ρ ↑↓ 0 | 2 ρ ↑↑ 0 -ρ ↓↓ 0 2ρ ↑↓ 0 2ρ ↓↑ 0 ρ ↓↓ 0 -ρ ↑↑ 0   . (25) 
Using ( 24), we deduce that γ 0 ∈ arginf{Tr (H γ0 γ), γ ∈ P λ }. Finally,

γ 0 = 1 (-∞,ǫ F ) (H γ0 ) + δ with δ ⊂ Ker(H γ0 -ǫ F ),
where ǫ F is the Fermi energy, determined by the condition Tr (γ 0 ) = λ.

Let us first calculate the essential spectrum of H γ0 . We recall that

H 0 = - 1 2 ∆I 2 has domain H 2 (R 3 , C 2 ) and that if u ∈ H 2 (R 3 , C)
, then u vanishes at infinity. We also recall that for all

V ∈ L 3/2 (R 3 , C 2 ) + L ∞ ǫ (R 3 , C 2 ), the set of functions V that can be written V = V 3/2 + V ∞ with V 3/2 ∈ L 3/2 (R 3 , C 2 ), V ∞ ∈ L ∞ (R 3
) and V ∞ L ∞ arbitrary small, V is a compact perturbation of H 0 . In our case, we can easily check that ρ

0 ⋆ | • | -1 = ρ 0 | • | -2 ∈ L 1 (R 3 ), so that ρ 0 ⋆ | • | -1 vanishes at infinity. Altogether, • ρ 0 ⋆ | • | -1 ∈ L 3/2 (R 3 ) + L ∞ ǫ (R 3 ) • U ∈ L 3/2 (R 3 , C 2 ) + L ∞ (R 3 , C 2
) and all entries of U vanishes at infinity

• |g ′ (ρ +/- 0 )| ≤ C(ρ β - 0 + ρ β + 0 ) hence g ′ (ρ +/- 0 ) ∈ L 3/2 (R 3 , C 2 ).
Therefore, according to the Weyl's theorem, the domain of

H γ0 is H 2 (R 3 , C 2 ), and σ ess (H γ0 ) = σ ess (H 0 ) = [0, +∞[.
Let us now prove that H γ0 has infinitely many negative eigenvalues whenever λ < Z. First notice that the matrix

1 (ρ ↑↑ 0 -ρ ↓↓ 0 ) 2 + 4|ρ ↑↓ 0 | 2 ρ ↑↑ 0 -ρ ↓↓ 0 2ρ ↑↓ 0 2ρ ↓↑ 0 ρ ↓↓ 0 -ρ ↑↑ 0
has two eigenvalues, respectively -1 and 1, so that the matrices appearing into the two pairs of brackets in (25) have 0 and 2 as eigenvalues, and therefore are hermitian positive. Also, recall that under the conditions (11) on g, it holds g

′ ≤ 0. Altogether, for ψ ∈ C ∞ 0 (R 3 , C), Ψ = (ψ, ψ) T ∈ C ∞ 0 (R 3 , C 2 )
, and Ψ defined as in [START_REF] Vignale | Current-and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields[END_REF], it holds that

Ψ|H γ0 |Ψ + Ψ|H γ0 | Ψ ≤ Ψ - 1 2 ∆ + ρ 0 ⋆ | • | -1 I 2 + U Ψ + Ψ - 1 2 ∆ + ρ 0 ⋆ | • | -1 I 2 + U Ψ ≤ 4 ψ - 1 2 ∆ + ρ 0 ⋆ | • | -1 + V ψ = ψ|H 1 |ψ 1
where

H 1 := -1 2 ∆ + ρ 0 ⋆ | • | -1 + V acts on L 2 (R 3 , C)
, and V is defined in [START_REF] Anantharaman | Existence of minimizers for Kohn-Sham models in quantum chemistry[END_REF]. We used the subscript 1 to emphasize that •|• 1 is the scalar product on L 2 (R 3 , C), whereas •|• is the one on L 2 (R 3 , C 2 ). In virtue of [29, Lemma 2.1], the operator H 1 has infinitely many negative eigenvalues of finite multiplicity whenever λ < Z. So has H γ0 by the min-max principle. Eventually, ǫ F < 0, and

γ 0 = N1 i=1 |Φ i Φ i | + N2 i=N1+1 n i |Φ i Φ i | with Φ i |Φ j = δ ij and H γ0 Φ i = ǫ i Φ i . It holds ǫ i < ǫ F if i ≤ N 1 , and ǫ i = ǫ F if N 1 + 1 ≤ i ≤ N 2 .
In the following, we set n i := 1 for i ≤ N 1 .

Finally, we prove that all eigenvectors associated with negative eigenvalues are exponentially decreasing. Any function u satisfying H γ0 u = λu is in H 2 (R 3 , C 2 ), and each component of u vanishes at infinity. As a byproduct, we obtain that ρ 0 = N2 i=1 n i |Φ i | 2 also vanishes at infinity. Finally, all the components of

U γ0 := ρ 0 ⋆|•| -1 I 2 +U + δ=+/- g ′ (ρ δ 0 ) 2   1 0 0 1 + (-1) δ 1 (ρ ↑↑ 0 -ρ ↓↓ 0 ) 2 + 4|ρ ↑↓ 0 | 2 ρ ↑↑ 0 -ρ ↓↓ 0 2ρ ↑↓ 0 2ρ ↓↑ 0 ρ ↓↓ 0 -ρ ↑↑ 0   vanish at infinity. Recall that H γ0 Φ i = -1 2 ∆Φ i + U γ Φ i = ǫ i Φ i .
Multiplying this equation by Φ i and adding all the terms with prefactors n i , it holds that

N2 i=1 n i Φ T i - 1 2 ∆ Φ i + N2 i=1 n i Φ T i U γ Φ i = N2 i=1 ǫ i n i |Φ i | 2 . ( 26 
)
From the relation ρ 0 = N2 i=1 n i |Φ i | 2 , we get

∆ρ 0 = N2 i=1 2n i Φ T i (∆Φ i ) + |∇Φ i | 2
and (26) becomes

- ∆ 4 ρ 0 + N2 i=1 n i 2 |∇Φ i | 2 ≥0 + N2 i=1 n i Φ T i U γ Φ i + N2 i=1 (ǫ F -ǫ i )n i |Φ i | 2 ≥0 -ǫ F ρ 0 = 0.
Let A be large enough such that, for all r ∈ R 3 with |r| ≥ A, the eigenvalues of the matrix U γ (r) are between ǫ F 2λ andǫ F 2λ (recall that ǫ F < 0). In particular, for |r| ≥ A,

|Φ T i (r)U γ (r)Φ i (r)| ≤ - ǫ F 2λ |Φ i | 2 ,

and, on (B

A ) c , - ∆ 4 ρ 0 + ǫ F λ 2λ ρ 0 -ǫ F ρ 0 ≤ 0 or - ∆ 2 ρ 0 -ǫ F ρ 0 ≤ 0.
We easily deduce that ρ 0 decreases exponentially. Hence, the same holds true for all the Φ i 's with 1 ≤ i ≤ N 2 . A similar proof can be used for the remaining negative eigenvalues.

Proof of Lemma 8. Let γ 0 ∈ P α be a minimizer for I α , and γ ′ 0 ∈ P β be a minimizer for I ∞ β . According to the proof of Lemma 7, because α < λ, γ 0 has the form

γ 0 = N2 i=1 n i |Φ i Φ i | with H γ0 Φ i = ǫ i Φ i and ǫ i ≤ ǫ F < 0.
We can derive a similar expression for γ ′ 0 :

γ ′ 0 = ∞ i=1 n ′ i |Φ ′ i Φ ′ i | with H ∞ γ ′ 0 Φ ′ i = ǫ i Φ ′ i and ǫ ′ i ≤ ǫ ′ F ≤ 0, (27) 
where H ∞ γ ′ 0 has a similar expression as H γ ′ 0 in [START_REF] Hoffmann-Ostenhof | Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules[END_REF], without the U term. Note that in [START_REF] Frank | Müller's exchange-correlation energy in density-matrix-functional theory[END_REF], we do not know whether ǫ ′ F < 0 or ǫ ′ F = 0.

First assume that ǫ ′ F < 0, so that Φ i and Φ ′ i are exponentially decreasing, and the sum in ( 27) is finite. We introduce γ n := min{1, γ 0 + τ n γ ′ 0 τ -n -1 } (γ 0 + τ n γ ′ 0 τ -n ) and γ ♯ n := min{1, γ 0 + τ n γ ′ 0 τ -n -1 } (γ 0 + τ n γ ′ 0 τ -n ), where γ ′ 0 is the flipped transformation of γ ′ 0 , as defined in [START_REF] Vignale | Current-and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields[END_REF]. Note that Tr (γ n ) ≤ α + β and Tr (γ ♯ n ) ≤ α + β, so that I α+β ≤ E(γ n ) and I α+β ≤ E( γ) according to the third assertion of Lemma 5. A straightforward calculation leads to

E(γ n ) + E(γ ♯ n ) = 2E(γ 0 ) + 2E ∞ ( γ 0 ) - β(Z -α) n + O(e -δn ) = 2I α + 2I ∞ β - β(Z -α) n + O(e -δn ).
For n large enough, -β(Z -α)n -1 + O(e -δn ) becomes negative. Hence, either E(γ n ) or E(γ ♯ n ) is strictly less than I α + I ∞ β . Therefore, I α+β < I α + I ∞ β .

Let us now assume that ǫ ′ F = 0. Then, there exists 

Ψ ∈ H 2 (R 3 , C 2 ) such that Ψ L 2 = 1, H ∞
I α+β ≤ I α+η + I ∞ β-η ≤ E(γ η ) + E ∞ (γ ′ η ) ≤ I α + I ∞ β + 2ηǫ N2+1 + o(η).
Because ǫ N2+1 < 0, for η small enough, the left hand side is strictly less that I α + I ∞ β , which concludes the proof.

γ ′ 0 Ψ = 0

 00 and γ ′ 0 Ψ = µΨ with µ > 0. Then, for 0 < η < µ, we introduceγ η = γ 0 + η|Φ N2+1 Φ N2+1 | and γ ′ η = γ ′ 0 -η|Ψ Ψ|, so that γ η ∈ P α+η and γ ′ η ∈ P β-η . Moreover, E(γ η ) = E(γ 0 ) + 2ηǫ N2+1 + o(η) = I α + 2ηǫ N2+1 + o(η) and E ∞ (γ ′ η ) = E ∞ (γ ′ 0 ) + o(η) = I ∞ β + o(η).Using the facts that γ 0 + η|Φ N2+1 Φ N2+1 | ∈ P α+η and γ ′ 0 -η|Ψ Ψ| ∈ P β-η , it holds that

V -µB z -µB x + iµB y -µB x -iµB y V + µB z ρ ↑↑ Γ ρ ↑↓ Γ ρ ↓↑ Γ ρ ↓↓ Γ ,(2)

As mentioned before, the functional F cannot be straightforwardly evaluated. In order to make this problem practical, we approximate F . It is standard since the work of Kohn and Sham[START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF] to approximate this functional by studying a system of non-interacting electrons. For this purpose, we introduce, for a mixed state Γ ∈ M N , the 1-body density matrixγ Γ := γ ↑↑ Γ γ ↑↓ Γ
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