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A probabilistic distribution approach for the classification of urban
roads in complex environments

Giovani B. Vitor1,2, Alessandro C. Victorino1 and Janito V. Ferreira2

Abstract— Navigation in urban environments has been receiv-
ing considerable attention over the past few years, especially
for self-driving cars. Road detection for Autonomous Systems,
and also for ADAS (Advanced Driving Assistance Systems)
remains a major challenging in inner-city scenarios motivated
by the high complexity in scene layout with unmarked or
weakly marked roads and poor lightning conditions. This paper
introduces a novel method that creates a classifier based on a set
of probability distribution. The classifier, created using a Joint
Boosting algorithm, aims at detecting semantic information in
roads. This approach is composed of a set of parallel processes
to calculate the superpixel using the Watershed Transform
method and the construction of feature maps based on Textons
and Disptons. As a result, a set of probability distribution
is generated. It will be used as an input to model the week
classifier by our Joint Boosting algorithm. The experimental
results using the Urban-Kitty benchmark are comparable to
the state-of-the-art approaches and can largely improve the
effectiveness of the detection in several conditions.

Index Terms— Road Detection, Computer Vision, Joint
Boosting, Texton Map, Dispton Map, Watershed Transform.

I. INTRODUCTION

Autonomous Navigation for urban environments has been
receiving considerable attention from the robotic community
over the past few years, motivating researchers to propose
approaches towards the detection of roads in challenging
inner-city environments. The inner-city road detection usu-
ally helps an Intelligent Vehicle System to get a better
understanding of the environment improving interlinked or
dependent tasks such as path planning [1], road following [2],
and visual servoing [3].

Applications for road detection using camera sensors
must deal with a set of problems such as: (i) continuously
changing backgrounds in different environments (inner-city,
highway, off-road), (ii) different road types (shape and color),
(iii) the presence of different objects (signs, vehicles, pedes-
trian) and (iv) differences in imaging conditions (variation
of illumination and weather conditions).

Many researchers have addressed this problem using
monocular or stereo vision [4][5]. Approaches using monoc-
ular vision aim at detecting lane marking [6], appearance
cues [7] or the 3D aspect by using prior knowledge about
the environment as an extra source of information [8].
The detection methods using lane marking approaches may
fail in unmarked roads, and some approaches overcome
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Fig. 1. Solution block diagram.

this assumption discriminating the overall road area with
some appearance cues such as color feature [7][9][10], and
texture feature [11][12]. Outcomes from the color feature
may present poor results when there is high intra-class
variability presents in the dynamic nature of the scenes.
Texture is scale-dependent and is affected by the strong
perspective in road image. Detection using prior knowledge
of 3D aspect of the road may fail due to the car’s dynamic
and road’s imperfections. In the case of stereo vision, the 3D
information of the environment is typically used to estimate
free spaces and obstacles, with specific techniques like the
V-Disparity Map [13][14]. However , the detection of road
in urban environments must deal with different sources of
noise that makes it difficult to define the disparity map. Some
approaches propose improvements to the model by merging
color, texture and adding 3D information [15][16].

This work proposes a novel method for road detection in
inner-city, using a set of probabilistic distribution to model
the classifier of a Joint Boosting algorithm. Differently from
others works, this approach creates a different set of features
merging a technique called Diston, proposed by previous
works (3D information) with the Texton (2D texture and
color) to compute a set of probabilistic distribution for each
superpixel. The probabilistic distribution feature’s descriptor
is used to model the weak classifier used in the Joint
Boosting algorithm.

The rest of the paper is organized as follows: Section II
presents the Image Segmentation, Texton Mapping and Disp-
ton Mapping processes. Section III presents the formalism
to model a set of probabilistic distribution using a Joint
Boosting algorithm. Section IV presents the results of an
experiment using the KITTI benchmark. Finally, Section V
presents some conclusions about what we have learned from
the study and proposals for future work.



II. IMAGE PROCESSING

In this section is presented a description of three parallels
processes namely Image Segmentation, Texton Map and
Dispton Map. As can be seen in Figure 1, the resulting output
of these processes will be used as a source for generating
the set of probability distribution in a second step.

A. Image Segmentation

Among various approaches used to produce superpixels,
the most used nowadays in literature is the mean-shift
algorithm [17][18]. In this work however, it is explored
another methodology based on Watershed Transform that
since [19] has been applied to road detection. The combina-
tion of Watershed Transform with other filters has presented
encouraging results as shown in [20].

In order to obtain a reasonable flexibility to determine
the segmentation level, we have used the same approach
described in [20]. Three pre-filters were added: (i) the Mor-
phological Gradient Adjusted (MGadj), (ii) the AreaClose
and (iii) the Hmin. Filter (i) is applied to obtain the high
frequency image, where an adjustment is done to improve
the low-contrast of high frequency in shadow areas [21]. The
formal definiton can be seen in (1):

MGAdj =

{
c [(f ⊕ ge)− (f 	 gi)]γ , if {∀x|f(x) < ρ}
(f ⊕ ge)− (f 	 gi) , otherwise

(1)

In equation (1) f is the image function, ge and gi are
structuring elements centered at the origin, the operators
⊕ and 	 are respectively dilation and erosion. The non-
linear transformation at low-contrast of high frequency has
the factor γ setted to 0.45 and ρ is the threshold. The constant
of normalization c is defined by the equation (2).

c =
max((f ⊕ ge)− (f 	 gi))
max((f ⊕ ge)− (f 	 gi))γ

(2)

The goal of the filters (ii) and (iii) is to control the
segmentation level of the Watershed Transform by acting on
the regional minimum of GMAdj . The procedure is identical
to [20], where the parameter λ of AreaClose determines
the area of the regional minimum to be cut out, and the
parameter h of Hmin determines the height from the regional
minimum to be also cut out. The final outcome applied in a
sample image can be observed in Figure 2. Notice that the
classification’s procedure is performed making a probability
distribution for each super-pixel. Therefore, the analysis of
these parameters is done to understand their sensibility in the
final result of the segmentation.

B. Texton Map

In the last decade, Textons have been proven effective for
generic feature representation of object [18][22], where a
class demands different appearances to have a compact rep-
resentation maintaining their efficiency. Thereby, the method-
ology applied for this block is to learn a dictionary of Textons
using a textonization technique [23], which allows to perform
a dense-texture-based feature extraction for all pixels. The

(a)

(b)

(c)

Fig. 2. Example of an influence surface for the parameters λ and h on the
number of segments in an given image. In (a) λ1 = 5, h1 = 2 and 4090
segments; (b) λ2 = 30, h2 = 5 and 427 segments; (c) λ3 = 80, h3 = 15
and 73 segments.

process of textonization generates the Texton Map, having
the same size of the image. The Textons contained in the
dictionary have their value associated with all pixels in this
map. It can be seen as a pre-classification or a transformation
from feature’s space to the texton’s space. Thus, this process
is done by applying the K-Means algorithm on a feature’s
space. Denoting a dictionary as D, each texton’s element
xj ∈ D = {x1, x2, ..., xK} represents a cluster generated by
the algorithm, employing the Euclidian-distance as a metric.
Finally, it is obtained the Texton Map T ∈ N2 with the pixel
i having value xj ∈ D.

In this work, the textonization executed in various fea-
ture’s spaces, as it can be seen in [18]. The set includes
17-dimensional filter bank, 3-dimensional CIELAB color,
81-dimensional histograms of oriented gradient [24] and
2-dimensional normalized pixel location. All feature’s de-
scriptor are whitened (to give zero mean and unit covari-
ance) to learn the dictionaries of textons in which their
configuration were assigned to Db = 400 clusters, Dc =
128 clusters,Dg = 150 clusters and Dl = 144 clusters,
respectively. The output result for this module can be seen
in Figure 3.

C. Dispton Map

Based on the approach explained in section II-B, Texton
Maps are able to discriminate between class of similar
textures. However this technique lacks spacial information.
This section presents an approach to build two additional
dictionaries over 3D information from Stereo Vision. This
method is called Dispton Map and it aims at creating
meaningful clusters based on the Disparity Map, denoted
by I∆. Attempting to have the same functional advantage
provided by the usage of U-Disparity and V-Disparity algo-
rithm to filter and extract the navigable area and obstacles in
literature [13][25], this work addresses another way to embed
these information in a dictionary of Dispton, generating the
Dispton Maps from I∆.

Firstly, the technique consists in putting in evidence the
peaks of the U-V Disparity maps, which concentrates the
relevant information to start the process of Disptonization.
Defining U-Disparity as Iu∆ and V-Disparity as Iv∆, they
are obtained from a histogram for each column, Iu∆ =
{hist(I∆(:, u))|∀u ∈ {0..width − 1}} and for each row,



Fig. 3. The texton maps resulting from the textonization process using
different features.

Iv∆ = {hist(I∆(v, :))|∀v ∈ {0..height − 1}}. Like Wa-
tershed Transform, they can be seen as surfaces to apply
the Hmin and filter the regional minimum (in this case
considered as noise) of these surfaces. The result maps,
denoted Ihu∆ and Ihv∆ are calculated by the binarization.
A Hough Transform is executed to detect line segments,
characterized by lu and lv .

After that, to build the dictionary of U-Dispton (Du) is
applied the clusterization where the points from each line
segment luj , supplies seeds to perform the clusterization
of dispton’s element j ∈ {1..NumberOfLines}. In equa-
tion (3), the clusterization process of a line segment luj ,
denoted by Λ(Ihu∆)(luj ), is given by:

Λ(Ihη∆)(lηj ) =

{
Cηj , if {x} ∈ Nx(Ihη∆) 6= 0

0 , otherwise
(3)

Where the cluster Cηj is defined in equation (4). Note that
the variable (η) can be either u or v.

Cηj = {j|x1W + x2 ∈ {lηj } ⊂ Nx(Ihη∆)} (4)

Here, W is the number of image columns, and x1 and x2

are the row and column coordinates respectively, and the
term Nx(.) represents the neighbors of the x element. There
are two additional clusters given by Cu1 = {Iu∆(v, :)|v ∈
{0, 1, .., τ}} and Cu2 = (Iu∆∩Cu1 )′, where (′) represents its
complement. Therefore, the Du is given by the union of all
clusters (5):

Du = {
⋃
∀j∈lu

Λ(Ihu∆)(luj ) ∪ Cu1 ∪ Cu2 } (5)

Finally, with the U-Dispton dictionary, it is possible to
obtain the U-Dispton map (Dmu) by the following equa-
tion (6):

Dmη = {Dη(I∆(x))|∀x; I∆(x) 6= 0} (6)

In order to build the V-Dispton dictionary (Dv), the clus-
ters are created separately. Following Hu and Uchimura [26],
a road is modeled as a plane so that it can be represented by
straight slope line segments in the V-disparity map. In this

sense, the goal of the first cluster is to curve fitting these line
segments to represent the surface of navigable area. From lv

set, a subset lvs is obtained filtering out the line segments
with a given vertical orientation (7):

lvs = {lvi |∀lvi ;Ang(lvi ) < 90°− ψ} (7)

The Ang(.) represents the angle of inclination with the
reference defined on the bottom-left image and ψ a param-
eter of input. Thus, the road surface can be formed by a
succession of plane’s parts, being projected as a piecewise
linear curve [27]. In order to connect the line segments
that represent the surface, the algorithm sorts the lvs set
based on the distance from the line segment to the reference.
Starting from the first line segment lvs0 to the last one lvsn ,
the constraints that define whether two line segments can be
connected, are given by the follow equation (8), which lvc

is the set of connected line segments.

lvc = min(dist(lvsi , l
vs
j ))

{
∀lvsj ∈ {lvs > lvsi } and
if lvsj ⊂ AreaSupport(l

s−
i , ls+i )

(8)

Where the function dist(.) between two line segments
is calculated considering the Euclidian distance from the
nearest points of the current line segments, limited by a
given maximum distance ε between them. The function
AreaSupport(.) delimits the search area by two line seg-
ments as seen in (9).

AreaSupport(ls1, ls2) =

{
1 , if right(l, ls1) and left(l, ls2)

0 , otherwise
(9)

This area is defined by a translation from lvsi given by
the σ parameter, then ls−i = lvsi − σ and ls+i = lvsi + σ. The
other two functions in this equation return true case when the
line segment is on right and left of the reference lines. As a
result, the cluster Cv1 is obtained applying the equation (3) on
the lvc set (Λ(Ihv∆)(lvcj )) with one more constraint, where
all pixels cannot cross out the line (llim1) formed by the
first and last points of lvc (added a small shift constraint). In
addiction, the second cluster is generated taking those pixels
which cross out the first one and is restricted to another
shifted line llim2 = llim1 + σ2, resulting the equation (10):

Cv2 = {Λ(Ihv∆)(lvcj )| if AreaSupport(llim1, llim2)} (10)

To finish the Disptonization, the last two clusters are
generated by Cv3 = {Iv∆(:, u)|∀u ∈ {1, .., τ}}, where τ
defines the max disparity to be considered as background or
infinity, and Cv4 = {(Iv∆∩(Cv1∪Cv2∪Cv3 ))′}. The V-Dispton
dictionary (Dv) is defined as:

Dv = {Cv1 ∪ Cv2 ∪ Cv3 ∪ Cv4} (11)

And the generation of V-Diston map is obtained by the
equation (6). Algorithm 1 summarizes the Disptonization
process.



Algorithm 1 Disptonization algorithm:
1: Process Iu∆ and Iv∆ from I∆;
2: Apply the Hmin filter on Iu∆ and Iv∆;
3: Binarize and obtain the line segments by Hough Transf.

for lu and lv;
4: Determine the U-Dispton dictionary Du by eq. (5):

- Apply the clusterization on lu, eq. (3);
5: Determine the V-Dispton dictionary Dv by eq. (11):

- Filter out the vertical lines to take lvs, eq. (7);
- Find out the connected lines lvc, eq. (8);
- Define the clusterization to Cv1 , C

v
2 , C

v
3 , C

v
4 ;

6: Generate the UV-Dispton map by eq. (6)

Fig. 4. The Dispton maps obtained from the disptonization process using
the Disparity Map.

Note that the V-Dispton map has 4-dimensional clusters
and the U-Dispton map has N-dimensional clusters. Intu-
itively, they aim at storing important information such as
navigable area, sidewalk, obstacles and background. The N-
dimensional structure from U-Dispton map dynamically re-
trieve the representation of all possible different obstacles in
the scene, as can be seen in Figure 4. With the Texton maps
and Dispton maps, the next section explains how they are
combined with the superpixel to perform the classification.

III. ROAD RECOGNITION

This section presents an approach to represent and com-
pute the classification of the road class, as shown in previous
sections, where the road recognition can be executed using an
adapted version of the Joint Boosting algorithm [28]. In fact,
the algorithm is inspired by the TextonBoost approach [29],
which iteratively builds a strong classifier as a sum of week
classifiers, simultaneously selecting discriminative features.
We have improved the representation of weak classifiers
using a specific shape filter. Thus, the novelty is to build
a set of probability distribution of the Texton and Dispton
maps from the decomposition of the scene into a number of
semantically consistent regions, supplied by the segmentation
result shown in section II-A, to model the weak classifier.

The process could be formally explained taking into
account the maps {Mf : f ∈ {F}} where F =

{b, c, g, l, v, u} is the set of Textons and Disptons. Each
element i in the map Mf ∈ N2 belongs to exactly one
region, identified by its region-correspondence variable Sr ∈
{1, ..., NumSegments}. The r-th region is then simply the
set of elements ir whose region-correspondence variable
equals r, i.e., ir = {i : Mf

i = r}. We use Xf
i =

{Xf
1 , X

f
2 , ..., X

f
N} to denote the set of random variables

corresponding to the f -th value of i-th element into Mf . Any
possible assignment to the random variables Xf

i = xfj takes
values from j ∈ Df , which Df is defined by the constructed
dictionary for each f ∈ F generated in the sections II-B
and II-C, .

The probability of the Xf
i if given by P (Xf

i = xfj ), and
the associated set of probability distribution under the Sr is
denoted by P (Xr), as can be seen in the equation (12):

P (Xr) = {
⋃
f∈F

{
1

Z

∑
ir

P (xfj )

}
|∀j ∈ Df} (12)

In Equation (12), Z is a normalization factor for each prob-
ability distribution set. Using the probability representation
of Textons and Disptons, the weak classifiers are modeled
as comparisons of this probability distribution to a decision
stump based on a threshold, where each weak classifier is
shared between a set of classes, allowing a single probability
to help classify several classes at once. They are defined
by wc containing 2-tuples [xrand, P (xrandom)], where the
first component represents a random possible assignment
{xrand : xfj ∈ Df} and its value of probability randomly
defined. To express how well the probability distribution
of P (Xr) at a given xfj matches the weak classifier, a
comparison response is given by equation (13):

d(wc, Sr) = 1−
√

[P (xrand)− P (Xr = xfj )]2 (13)

Thereby, the Joint Boosting algorithm is an additive
model of the form H(cl) =

∑M
m=1 hm(cl), that sum the

classification confidence of M joint weak classifiers. In
this case, H(cl) represents the strong learned classifier and
the weak classifiers are extended to discriminate the share
between classes. Therefore, each weak-learner is modeled
as a decision stump of the form:

h(cl) =

{
aδ(d(wc, Sr) > θ) + b , if {cl ∈ L}
κcl , otherwise

(14)

Where δ(.) is a 0-1 indicator function. The share is given
by those classes (cl ∈ L), where the weak learner gives
h(cl) ∈ {a+b, b} depending on the comparison of d(wc, Sr)
to a threshold θ. The constant kcl ensures asymmetrical sets
of positive and negative training examples for those classes
that do not share the feature (cl /∈ L). Thus, the resulting
classification output is defined by the probability conversion
given by(15):

P =
1

Z
exp−H(cl) (15)



Here, the Z represents the normalization factor into the
classes cl ∈ L.

IV. EXPERIMENTAL RESULTS

In this subsection we present the results of our experiments
using real driving situations. It is used the Urban Kitti-road
dataset1, which consists of ' 600 frames (375x1242 px)
recording from five different days and containing relatively
low traffic density [30]. The data are categorized in three
sets having each one a subset of training and test images,
representing a typical road scene in inner-city. The first set
called the UU is formed by images taken from an urban
unmarked area and has 98 images for training and 100
images for testing. The second set called the UM is formed
by images taken from an urban marked two-way road and
has 95 images for training and 96 images for testing. Finally,
the final set called UMM is formed by images taken from an
urban marked multi-lane road and has 96 images for training
and 94 images for testing. The experiments in this work use
the training set in the perspective space to learn the classifier
and the metric space to calculate the complete evaluation of
this approach. The evaluation process is done on the metric
space in order to capture the fact that vehicle control happens
in the 2D environment. Further, the evaluation in perspective
space is biased by the fact that the pixel’s value in near range
is more homogenous and covers a larger area of the evaluated
perspective pixels [30].

The learning process were executed separately for each
category. Thus, a sample set was built for each one, extract-
ing ' 12.8E + 4 samples from the UU image training set,
' 12.6E + 4 samples from the UM image training set and
' 11.7E + 4 samples from the UMM image training set.
Table I shows the results of the quantitative evaluation of our
approach applied in the test set. For comparison purposes,
it also presents the baseline provided as a lower bound,
by averaging all ground truth road maps from the present
testing set, and also the results of the proposed road detection
using Artificial Neural Network (ANN) [20]. As can be seen
for the UU category, our approach reached an improvement
of 26.12% if compared to ANN and 10.80% to Baseline,
using the testing set on the metric space. With respect to the
UM category, our approach reached a level of correctness of
87.60%, reaching a gain of 24.96% compared to ANN and
overcoming the baseline approach in 5.07%. Using the UMM
category, which is less complex if compared to others, we can
highlight our approach, overcoming the ANN approach with
9.03% and 13.95% compared to the baseline. The qualitative
result for this challenging dataset can be seen in Figure 5,
presenting a classified image using the perspective space. The
same images using the metric space can be seen in Figure 6.

To conclude the evaluation process, Table II presents the
final results merging all categories. Our approach presents
87.21% of correctness for challenging urban Kitti-road
benchmark. According to our experiments we believe that

1http://www.cvlibs.net/datasets/kitti/eval_road.
php

TABLE I
RESULTS [%] OF PIXEL-BASED FOR THE ALL CATEGORIES ON THE

METRIC SPACE EVALUATION.

Urban Unmarked (UU)
Fmax AP Prec. Recall FPR FNR

Baseline [30] 69.49 73.84 65.73 73.70 12.78 26.30
ANN [20] 54.17 36.86 39.50 86.19 43.92 13.81
Our 80.29 69.05 85.58 75.61 4.24 24.39

Urban Marked (UM)
Fmax AP Prec. Recall FPR FNR

Baseline [30] 82.53 85.59 79.24 86.11 10.41 13.89
ANN [20] 62.64 46.80 50.18 83.34 38.21 16.66
Our 87.60 76.04 85.92 89.36 6.76 10.64

Urban Marked Multi-Lane (UMM)
Fmax AP Prec. Recall FPR FNR

Baseline [30] 76.17 78.42 65.02 91.95 57.89 8.05
ANN [20] 81.09 68.93 70.43 95.56 46.94 4.44
Our 90.12 85.04 88.15 92.12 14.50 7.82

Fig. 5. The resulting output of our approach in perspective space. The
first, second and third rows show the UU, UM and UMM category image
respectively.

our approach improved the detection of roads in scenarios
with high complexity, significantly outperforming the base-
line.

TABLE II
RESULTS [%] OF PIXEL-BASED FOR COMPLETE URBAN ROAD AREA

EVALUATION.

Fmax AP Prec. Recall FPR FNR
Baseline [30] 75.61 79.72 68.93 83.73 21.73 16.27
ANN [20] 68.12 51.52 54.85 89.85 42.59 10.15
Our 87.21 77.79 86.96 87.47 7.55 12.53

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an approach for road
recognition for inner-city based on appearance, shape and
spacial model learned from training data. The main contribu-
tion of this work is the creation of a probabilistic distribution
based on Texton and Dispton maps to model weak classifiers
used in a Joint Boosting classifier.

Experiments conducted on real driving situations demon-
strate the qualitative and quantitative evaluation of our al-
gorithm to detect road despite the presence of shadows and
other objects in the scene, inherent from the complexity of
inner-city environments. The result also provides the benefits
of our approach over existing methods.

We are still working on improvements to reduce the pro-
cessing time using the GPU architecture, and also working

http://www.cvlibs.net/datasets/kitti/eval_road.php
http://www.cvlibs.net/datasets/kitti/eval_road.php


Fig. 6. The resulting output of our approach in metric space (highlighted
in green). The first, second and third columns show the UU, UM and UMM
category image respectively, from the images of Figure 5.

on Self-Organizing Maps [31], in order to better discrim-
inate the road pattern and extending the recognition for
different classes such as vehicles, builds, sidewalks, etc.
This approach could improve the prediction of the classifier.
The complete application will be embedded in a real car-
like robot, sponsored by the project ROBOTEX, from the
Heudiasyc laboratory, to perform autonomous driving in
urban environments.
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