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Abstract

This paper is devoted to minimum stress design in structural optimiza-

tion. We propose a simple and efficient numerical algorithm for shape

and topology optimization based on the level set method coupled with

the topological derivative. We compute a shape derivative, as well as a

topological derivative, for a stress-based objective function. Using an ad-

joint equation we implement a gradient algorithm for the minimization

of the objective function. Several numerical examples in 2-d and 3-d are

discussed.

1 Introduction

Since the seminal papers [6], [7], [27], [34], [40], there has been a burst of pub-
lications on the application of the level set method to shape and topology opti-
mization of structures. Most of the recent papers focus on numerical issues for
improving the level set method but do not extend so much its range of applica-
bility. Let us mention, for example, works on its coupling with the topological
gradient for holes nucleation [3], [13], [41], or velocity/derivative regularization
[20]. Most of these recent works consider only compliance optimization which
is a notably simpler problem than optimization of a general objective function.
The goal of the present paper is, on the contrary, to extend the range of ob-
jective functions which are successfully treated by the level set method, and
more specifically to treat the case of objective functions depending on the stress
tensor. Together with our previous works [4] (for eigenvalue and multiple loads
optimization) and [21] (for robust or worst-case optimization) it clearly demon-
strates that the level set method is a versatile tool for structural optimization
which can tackle industrial, and not merely academic, problems.
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Stress objective functions have been studied for a long time in the classical
setting of geometric shape optimization (in the framework of Hadamard method
[24], [31], [38]). There are relatively fewer papers on this topic in the context
of topology optimization, based either on the homogenization method, SIMP
or phase-field method, see [5], [17], [16], [23], [39]. There are however a vast
literature on truss optimization with stress constraints or stress-based objective
functions, see e.g. [1], [30]. In any case, there are still simple test problems
which are not satisfactorily handled by topology optimization methods (see
Section 6). Therefore, it is important to prove by numerical evidence that the
level set method is a viable approach for this type of problems.

The content of the paper is the following. In Section 2 the problem of
minimum stress design is introduced in the classical setting of shape optimiza-
tion. Section 3 is devoted to computing the shape derivative of the stress-based
objective function using an adjoint method. Section 4 recalls the necessary in-
gredients on the level set method of Osher and Sethian [28], [26], [33]. Section
5 gives the details of the proposed numerical algorithm and discusses numerical
examples.

2 Setting of the problem

In this paper we restrict ourselves to linear elasticity although there is no con-
ceptual difficulty in extending our work to non-linear elasticity (see [7]). A
shape is a bounded open set Ω ⊂ R

d (d = 2 or 3) with a boundary made of
three disjoint parts

∂Ω = Γ ∪ ΓN ∪ ΓD, (1)

where only Γ is subject to optimization and free to move, while ΓN and ΓD

are fixed. Homogeneous Neumann boundary condition (no traction) is imposed
on the free boundary Γ, a Dirichlet boundary condition on ΓD and a Neumann
boundary condition on ΓN . All admissible shapes Ω are required to be a subset
of a working domain D (a bounded open set of R

d). The shape Ω is occupied by
a linear isotropic elastic material with Hooke’s law A defined, for any symmetric
matrix ξ, by

Aξ = 2µξ + λ
(

Trξ
)

I2,

where µ and λ are the Lamé moduli of the material. The displacement field u
in Ω is the solution of the linearized elasticity system















− div (Ae(u)) = 0 in Ω
u = 0 on ΓD

(

Ae(u)
)

n = g on ΓN
(

Ae(u)
)

n = 0 on Γ,

(2)

where g ∈ H−1/2(ΓN )d is a given surface load. For simplicity we do not consider
volume forces here although there is again no difficulty to take them into account
(see [7]). Assuming that the surface measure of ΓD is not zero (otherwise we
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should impose an equilibrium condition on g), (2) admits a unique solution in
u ∈ H1(Ω)d.

The objective function is denoted by J(Ω). A typical example in this paper
is

J(Ω) =

∫

Ω

k(x)|σ|2dx, (3)

where k(x) ∈ L∞(D) is a given piecewise smooth non-negative function (a
weighting factor that can localize the objective function). More generally we
can set

J(Ω) =

∫

Ω

j(x, σ(x))dx, (4)

with a smooth function j. This allows us, for example, to minimize the equiva-
lent Von Mises stress intensity in Ω, or to reach a stress target σ0 (a useful crite-
rion for mechanism design). Similarly, we could consider a function j(x, e(u)(x))
depending on the strain tensor. In both formulas (3) and (4), the stress tensor
is

σ = Ae(u)

where u = u(Ω) is the solution of (2). We define the set of admissible shapes
that must be open sets contained in the working domain D, of fixed volume V
and satisfying (1)

Uad =
{

Ω ⊂ D such that |Ω| = V,ΓN ∪ ΓD ⊂ ∂Ω
}

. (5)

Our model problem of shape optimization is

inf
Ω∈Uad

J(Ω). (6)

In practice we often work with an unconstrained problem. Introducing a La-
grange multiplier `, we consider the Lagrangian minimization

inf
Ω∈Uad

L(Ω) = J(Ω) + `|Ω|. (7)

3 Shape derivative

In order to apply a gradient method to the minimization of (6) we recall the
classical notion of shape derivative, going back to Hadamard (see e.g. [2], [24],
[31], [38]). Starting from a smooth reference open set Ω, we consider domains
of the type

Ωθ =
(

I2 + θ
)

(Ω), (8)

with I2 the identity mapping from R
d into R

d and θ a vector field inW 1,∞(Rd,Rd).
It is well known that, for sufficiently small θ, (I2 + θ) is a diffeomorphism in
R

d. We remark that all admissible domains Ωθ belong to the class of homo-
topy of the reference domain Ω (it implies that in 2-d the number of connected
components of the boundary remains constant). In other words, no change of
topology is possible with this method of shape variation.
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Definition 3.1. The shape derivative of J(Ω) at Ω is defined as the Fréchet
derivative in W 1,∞(Rd,Rd) at 0 of the application θ → J

(

(I2 + θ)(Ω)
)

, i.e.

J
(

(I2 + θ)(Ω)
)

= J(Ω) + J ′(Ω)(θ) + o(θ) with lim
θ→0

|o(θ)|

‖θ‖
= 0 ,

where J ′(Ω) is a continuous linear form on W 1,∞(Rd,Rd).

Because of the constraint (1) on the boundary of all admissible shapes, we
always assume that the vector fields θ vanish on ΓN and ΓD, which ensures that
Ωθ satisfy (1). Let us recall the following classical lemma (see e.g. [2], [24], [31],
[38]).

Lemma 3.2. Let Ω ∈ Uad be a smooth bounded open set and φ(x) a smooth
function defined in R

d. Define

Jvol(Ω) =

∫

Ω

φ(x) dx and Jsurf (Ω) =

∫

∂Ω

φ(x) ds.

These two functions are shape differentiable at Ω ∈ Uad and

J ′
vol(Ω)(θ) =

∫

Γ

θ · nφ ds,

J ′
surf (Ω)(θ) =

∫

Γ

θ · n

(

∂φ

∂n
+Hφ

)

ds,

for any θ ∈ W 1,∞(Rd; R
d) vanishing on ΓN∪ΓD, where H is the mean curvature

of ∂Ω defined by H = divñ (where ñ is a local extension of the normal n near
Γ).

Our main result in this section is the following theorem.

Theorem 3.3. Let Ω ∈ Uad be a smooth bounded open set and θ ∈W 1,∞(Rd; R
d).

Assume that the data g as well as the solution u of (2) are smooth, say g ∈
H2(Ω)d, u ∈ H2(Ω)d. The shape derivative of (4) is

J ′(Ω)(θ) =

∫

Γ

θ · n
(

j(x, σ) +Ae(u) · e(p)
)

ds, (9)

where σ = Ae(u) and p is the adjoint state, assumed to be smooth, say p ∈
H2(Ω)d, defined as the solution of











− div (Ae(p)) = div
(

Aj′(x, σ)
)

in Ω

p = 0 on ΓD
(

Ae(p)
)

n = −
(

Aj′(x, σ)
)

n on ΓN ∪ Γ,

(10)

where j′ denotes the partial derivative of j(x, σ) with respect to σ.
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Proof. Although Theorem 3.3 is a standard result in the framework of shape
variations, it has never been published in the above explicit form, so we indulge
ourselves in giving its proof for the sake of completeness. To simplify the ex-
position, we give a short, albeit formal, proof based on the Lagrangian method
([14], [2]). To the general objective function (4) we associate the Lagrangian

defined for (v, q) ∈
(

H1(Rd; R
d)

)2
, such that v = q = 0 on ΓD, by

L(Ω, v, q) =

∫

Ω

j(x,Ae(v)(x)) dx +

∫

Ω

Ae(v) · e(q) dx −

∫

ΓN

q · g ds. (11)

For notational simplicity we drop the x-dependence of the integrand j in the
sequel. In (11) q is a Lagrange multiplier for the state equation and its boundary
conditions. Note that the above Lagrangian L(Ω, v, q) has nothing to do with
that, denoted by L(Ω), introduced in (7). Recall that ΓD is fixed so there is no
need to introduce a Lagrange multiplier for the Dirichlet boundary condition
on ΓD. The two functions v and q belong to a functional space that does
not depend on Ω ∈ Uad, so we can apply the usual differentiation rule to the
Lagrangian L. The stationarity of the Lagrangian is going to give the optimality
conditions of the minimization problem. For a given Ω, we denote by (u, p) such
a stationary point. The partial derivative of L with respect to q, in the direction
φ ∈ H1(Rd; R

d) satisfying φ = 0 on ΓD, after integration by parts leads to

〈
∂L

∂q
(Ω, u, p), φ〉 = 0 = −

∫

Ω

φ ·
(

div(Ae(u))
)

dx

+

∫

ΓN

φ ·
((

Ae(u)
)

n− g
)

ds.

(12)

Taking first φ with compact support in Ω gives the state equation. Then, varying
the trace function φ on ΓN gives the Neumann boundary condition for u. On
the other hand, in order to find the adjoint equation, we differentiate L with
respect to v in the direction φ ∈ H1(Rd; R

d) satisfying φ = 0 on ΓD. This yields

〈
∂L

∂v
(Ω, u, p), φ〉 = 0 =

∫

Ω

j′(σ) · Ae(φ) dx +

∫

Ω

Ae(φ) · e(p) dx.

Integrating by parts we obtain

∂L

∂v
(Ω, u, p), φ〉 = −

∫

Ω

div
(

Aj′(σ) +Ae(p)
)

·φ dx+

∫

ΓN

φ ·A
(

e(p) + j′(σ)
)

n ds.

Taking first φ with compact support in Ω gives the adjoint state equation

− div(Ae(p)) = div
(

Aj′(σ)
)

in Ω.

Then, varying the trace of φ on ΓN ∪Γ yields the Neumann boundary condition

(

Ae(p)
)

n = −
(

Aj′(σ)
)

n on ΓN ∪ Γ.
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Taking into account the constraint that p = 0 on ΓD gives a well-posed boundary
value problem for the adjoint state p.

The shape derivative of the objective function is obtained by differentiating

J(Ω) = L(Ω, u(Ω), q),

which yields

J ′(Ω)(θ) = 〈
∂L

∂v
(Ω, u(Ω), q), u′(Ω)(θ)〉 +

∂L

∂Ω
(Ω, u(Ω), q)(θ).

Then taking q = p(Ω) cancels out the first term in the above right-hand side
because of the adjoint equation. Therefore, the shape derivative of J in the
direction θ is

J ′(Ω)(θ) =
∂L

∂Ω
(Ω, u(Ω), p(Ω))(θ).

Applying Lemma 3.2 and recalling that ΓN is fixed, we obtain

∂L

∂Ω
(Ω, u, p)(θ) =

∫

Γ

θ · n
(

j(σ) +Ae(u) · e(p)
)

ds. (13)

This proof is only a formal computation because we assume that u is shape
differentiable but it can be rigorously justified (see the references quoted above).
�

Remark 3.4. Lemma 3.2 yields the shape derivative of the volume constraint:

V (Ω) =

∫

Ω

dx ⇒ V ′(Ω)(θ) =

∫

∂Ω

θ · n ds.

4 Topological derivative

The notion of topological gradient (in the context of optimal design) has been
introduced by Schumacher, Masmoudi, Sokolowski and their co-workers [18],
[15], [19], [36], [37] and has been further developped by many authors [11],
[25], [32]. The same idea has also been proposed independently in the context
of inverse problems by Ammari and his co-workers [8], [9], [10]. The main
idea of the topological gradient method is to test the optimality of a domain
to topology variations by removing a small hole with appropriate boundary
conditions. Indeed, one drawback of the previous method of shape derivative
is that there is no change of topology in the parametrization Ωθ. Numerical
methods based on the shape derivative may therefore fall into a local minimum
(corresponding to the initial topology).

We give a brief overview of the topological derivative and we refer to the
above quoted references for details and proofs. For a given reference domain
Ω ⊂ R

d, a point x0 ∈ Ω and a model hole ω ⊂ R
d, we define the translated and

rescaled hole
ωρ = x0 + ρω , ∀ρ > 0,
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and the perforated domain
Ωρ = Ω \ ω̄ρ.

By insertion of a hole, the class of homotopy of Ωρ is different from that of the
reference domain Ω. In particular, in 2-d the number of connected components
of the boundary varies. Therefore, this approach, which performs topology
variations, is very different from the previous approach of shape derivative where
the class of homotopy of Ωθ, defined by (8), is always the same.

The objective function J(Ωρ) is computed with the elastic displacement uρ,
solution of the elasticity problem (2) where Ω is replaced by Ωρ and homogeneous
Neumann boundary conditions (no traction) are imposed on ∂ωρ.

Definition 4.1. If the objective function admits the following so-called topolog-
ical asymptotic expansion for small ρ > 0

J(Ωρ) = J(Ω) + ρdDTJ(x0) + o(ρd),

then DTJ(x0) is called the topological derivative at point x0.

It is a simple exercise to compute the topological derivative of the volume

of Ω, V (Ω) =

∫

Ω

dx, which is simply

DTV (x) = −|ω|.

The topological derivative of the objective function (3) is less straightforward:
it has been obtained in [36], [37]. From now on, we restrict ourselves to the 2-d
case and to a spherical model hole ω. This simplifies greatly the computations
of the topological derivatives. We do not discuss the 3-d case since our numer-
ical experience shows that the topological gradient is not a necessary tool for
obtaining complex topologies in 3-d, even if the initial guess is the full reference
domain without holes.

Theorem 4.2 ([36]). For d = 2, take ω to be the unit ball of R
2. Assume that

the state u, solution of (2), and the adjoint state p, solution of (10), are smooth.
We denote by σ(u) and σ(p) the corresponding stress tensors, with eigenvalues
σ1,2(u) and σ1,2(p). For any x ∈ Ω the topological derivative of (3) is

DTJ(x) = −2π

(

a2
u + 2b2u +

auap + 2bubp cos(2δ)

E

)

(x), (14)

where E is the Young’s modulus, given in terms of the Lamé moduli by E =
µ(3λ+ 2µ)/(µ+ λ),

au = trσ(u), bu = σ1(u) − σ2(u),
ap = trσ(p), bp = σ1(p) − σ2(p),

(15)

and δ is the angle between the eigenvectors of σ(u) and σ(p).
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The numerical application of the topological derivative is as follows. Con-
sider the minimization of the Lagrangian

L(Ω) = J(Ω) + `|Ω|, (16)

where ` is a given Lagrange multiplier. The corresponding topological gradient
is

DTL(x) = DTJ(x) − `|ω|.

At the points x where DTL(x) is negative, we introduce holes into the current
domain Ω. Since this criterion applies for infinitesimal holes, we should not
remove too much material. In practice it is better to nucleate holes only at the
minimum (negative) points of this topological derivative. The coupling of the
topological gradient method with the level set algorithm has been studied in [3],
[13], [41].

5 Level set method and optimization algorithm

This section recalls the framework of the level set method as proposed by Osher
and Sethian [28] (see also the books [26] and [33]). The application of the
level set method to structural optimization was pioneering in [6], [7], [27], [34],
[40]. Consider D ⊂ R

d a bounded domain in which all admissible shapes Ω are
included, i.e. Ω ⊂ D. In numerical practice, the domain D will be uniformly
meshed once and for all. We parameterize the boundary of Ω by means of a
level set function ψ, defined in D by







ψ(x) = 0 ⇔ x ∈ ∂Ω ∩D,
ψ(x) < 0 ⇔ x ∈ Ω,
ψ(x) > 0 ⇔ x ∈

(

D \ Ω
)

.
(17)

The normal n to the shape Ω is recovered as ∇ψ/|∇ψ| and the mean curvature
H is given by the divergence of the normal div (∇ψ/|∇ψ|) (these quantities are
computed throughout the whole domain D and are thus natural extensions of
their original definition on the boundary ∂Ω).

During the optimization process, the shape Ω(t) is going to evolve according
to a fictitious time parameter t ∈ R

+ which corresponds to descent stepping.
The evolution of the level set function is governed by the following Hamilton-
Jacobi transport equation [28]

∂ψ

∂t
+ V |∇ψ| = 0 in D, (18)

where V (t, x) is the normal velocity of the shape’s boundary (a scalar function
from R

+ ×D into R). Equation (18) is simply obtained by differentiating the

definition of a level set of ψ, ψ
(

t, x(t)
)

= Cst, and replacing the velocity ẋ(t)

by V n. The main advantage of the non-linear equation (18) with respect to a
simpler linear transport equation (involving a vector velocity) is that every point
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x ∈ D moves along the normal direction to the level set of ψ in x. Recall that,
in theory, a tangential velocity does not change the level sets of ψ, although in
practice it yields numerical diffusion which may cause large errors in the position
of the boundary ∂Ω. Furthermore, (18) takes care of possible self-intersections
of the level sets of ψ and appropriately regularize, or not, possible corners in
the shape (see [26], [33]).

The choice of the normal velocity V is based on the shape derivative com-
puted in Theorem 3.3 for the Lagrangian (16)

L′(Ω)(θ) =

∫

∂Ω

−V θ · n ds, (19)

where the integrand V is given in terms of the state u and adjoint state p by

V = −
(

j(σ) +Ae(u) · e(p) + `
)

with `, the Lagrange multiplier for the volume constraint as defined in (7).
Remark that V is defined everywhere in D and not only on the boundary ∂Ω,
which is a crucial point for solving (18). We have implicitly chosen a simple
normal velocity based on steepest descent, θ = V n. Transporting ψ by (18) is
equivalent to moving the boundary ∂Ω (the zero level set of ψ) along the descent
gradient direction −L′(Ω). The length of the time interval on which (18) is
integrated corresponds to the descent step. Other choices of the velocity are
possible, corresponding to different choices of the inner product between L′(Ω)
and θ, or to a preconditioning of the gradient method (see [12], [20] for details).
Overall, the level set method allows us to replace the Lagrangian evolution of
the boundary ∂Ω by the Eulerian solution of a transport equation in the entire
fixed domain D. On the same token, the elasticity equations for the state u
(and for the adjoint state p) are extended to the whole domain D by using the
so-called “ersatz material” approach. It amounts to fill the holes D\Ω by a weak
phase mimicking void but avoiding the singularity of the stiffness matrix. This
is a well-known procedure in topology optimization which we already described
in our previous work [7]. In numerical practice, the weak material mimicking
holes in D \ Ω is chosen as 10−3A.

It is possible to couple this level set algorithm with the topological deriva-
tive DTL(x) of Section 4 as follows. In a first step, the level set function ψ is
advected according to the velocity V by solving (18). In a second step, holes are
introduced into the current domain Ω where the topological derivative DTL(x)
is minimum and negative. More precisely, at those points we change the negative
sign of the level set function ψ into a positive sign, according to the parametriza-
tion (17). A reinitialization is then performed in order to smooth the resulting
level set function (see [3]).

In practice, it is better to perform more level set steps than topological
gradient steps. Therefore, the main parameter of our coupled algorithm is
an integer nopt which is the number of gradient steps between two successive
application of the topological gradient. The value of nopt is given for each
example in Section 6. Sometimes we simply take nopt = +∞ which means we
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do not use at all the topological derivative (for instance, this is the case for 3-d
computations). Our proposed algorithm for the minimization of (6) with the
shape derivative (9) and the topological derivative (14) is an iterative method,
structured as follows:

1. Initialization of the level set function ψ0 corresponding to an initial guess
Ω0.

2. Iteration until convergence, for k ≥ 0:

(a) Elasticity analysis. Computation of the state uk and adjoint state
pk through two problems of linear elasticity posed in Ωk. This yields
the values of the shape derivative and of the topological gradient.

(b) Shape gradient. If mod (k, ntop) < ntop, the current shape Ωk,
characterized by the level set function ψk, is deformed into a new
shape Ωk+1, characterized by ψk+1 which is the solution of the trans-
port Hamilton-Jacobi equation (18) after a time interval ∆tk with the
initial condition ψk and a velocity Vk computed in terms of uk and pk.
The time of integration ∆tk is chosen such that L(Ωk+1) ≤ L(Ωk).

(c) Topological gradient. If mod (k, ntop) = 0, we perform a nu-
cleation step. We obtain a new shape Ωk+1 by inserting new holes
into the current shape Ωk. Namely, the sign of the level set function
ψk is changed from negative to positive values where the topological
derivativeDTLk , depending on uk and pk, has minimum negative val-
ues. If the objective function has increased, i.e. if L(Ωk+1) > L(Ωk),
then no holes are nucleated and we just take Ωk+1 = Ωk.

The Hamilton-Jacobi equation (18) is solved by a finite difference, explicit,
second order, upwind scheme (see [26], [33]) on a Cartesian grid (we also im-
plemented a finite volume type scheme on unstructured meshes, see [4]). The
boundary conditions for ψ are of Neumann type. Since this scheme is explicit
in time, its time stepping must satisfy a CFL condition (which implies that
the boundary ∂Ω can not move from more than one cell at each time step).
However, a finite element analysis being much more computationally intensive,
the integration time ∆tk at iteration k in the above algorithm is not limited
to a single CFL time step but is usually equal to roughly 20 to 50 of those
explicit time steps. We thus perform several explicit time steps for (18) before
re-evaluating the shape derivative, i.e., computing the state u and adjoint p.
The precise number of time steps is controlled by the decrease of the objective
function.

The Lagrange multiplier `k for the volume constraint is updated at each
iteration by increasing or decreasing its values if the actual volume is larger or
smaller than the target volume in (5).

In order to regularize the level set function (which may become too steep),
we reinitialize it periodically by solving another Hamilton-Jacobi equation which
admits as a stationary solution the signed distance to the initial interface [33].
For details of numerical implementation we refer to [7].

10



6 Numerical results
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Figure 1: Boundary conditions and initialization for the cantilever problem.

In all examples below the Young modulus is 1, the Poisson ratio is 0.3, the
mesh is uniformly rectangular with Q1 finite elements for the displacement and
a second-order explicit upwind finite difference scheme for the Hamilton-Jacobi
equation. We perform of the order of 10 explicit time steps for the Hamilton-
Jacobi equation for each elasticity analysis (that we call iteration).

Optimal design for: Compliance

∫

|σ|2
∫

|σ|5

value of the compliance 78.195 78.305 79.620

value of

∫

|σ|2 82.574 82.513 84.140

value of

∫

|σ|5 5.367E+5 5.434E+5 4.754E+5

Table 1: Values of the objective functions for the three optimal designs of Fig-
ure 2.

Cantilever:
Our first test case is a classical 2-d cantilever problem (see Figure 6). The size
of the domain is 1.6× 1. discretized by 160× 100 square cells. We start with an
initialization with many holes and we do not use the topological gradient (i.e.,
nopt = +∞). We compare the optimal shapes and topologies for three different
objective functions

∫

Ω

A−1σ · σ dx ,

∫

Ω

|σ|2dx ,

∫

Ω

|σ|5dx ,

the first one being the usual compliance. Note that the topological derivative
is explicitly known for the two first objective functions, but not for the third
one. With the same initialization the optimal topologies are the same and the
shapes are only slightly different. We display on Figure 2 the optimal shapes and
a zoom near the tip of the cantilever where one can see some minor differences.
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One possible explanation for these similar optimal designs is that the compliance
optimality condition (see [7]) states that the boundary is iso-stressed: there are
therefore no stress concentrations at the corners of the truss structure (because
the bars are optimally oriented) except where the load is applied. We check on
Table 6 that our optimal designs are actually optimal for their corresponding
objective functions and not for the other ones ! The convergence is obtained in
less than 200 iterations as can be checked on Figure 3.

One advantage of the level set method is that we always obtain “black and
white designs” with no composite areas or possible checkerboard instabilities as
is sometimes the case with the SIMP or homogenization methods. In particular,
we do not encounter the so-called stress singularity problem as described in
[1], [5], [16], [30] (which is very sensitive in the penalization process of the
homogenization method).

Figure 2: Optimal cantilevers for the compliance (left),
∫

|σ|2 (middle) and
∫

|σ|5 (right). The bottom line is a zoom near the tip of the cantilever.

We revisit the previous cantilever problem with an initialization which is the
full domain D, using the topological gradient with nopt = 5. We minimize the
objective function

∫

Ω
|σ|2dx. As can be checked on Figure 4 we obtain the same

shape and topology as in Figure 2 (middle). However the present computation
was not relying on any clever initial guess.

L-beam:
Our second test case is the L-beam problem already studied e.g. in [5]. On
Figure 5 we display the boundary conditions and the optimal designs for three
objective functions of the type

∫

Ω

k(x)|σ|αdx , with α = 2, 5, 10.
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Figure 3: Typical convergence history of the algorithm for

∫

|σ|5.

The localizing function k(x) is equal to 1 everywhere except on a small zone
around the point on the right side where the vertical load is applied, where it
is set to 0. We use such a localizing function because our goal is to reduce the
stress singularity developed in the re-entrant corner and not the one caused by
the applied load. We do not use the topological gradient (i.e., nopt = +∞). In
this case the three optimal designs are quite different. In particular, for α = 10
we clearly see that the shape is smoothed and “rounded” around the re-entrant
corner where a stress singularity can develop.

Gripping mechanism:
Our third test case is a gripping mechanism design problem [7], [35]. The goal
is to design a compliant mechanism such that, if an horizontal load is applied to
the left side, the jaws on the right side close. The jaws are the black zones on
Figure 6. The domain is fixed on the lower and upper part of its left boundary.
We optimize the structure using two different objective functions. The first one
is the “geometrical advantage” (GA), widely used for the compliant mechanism
design (see e.g. [35]). It consists in maximizing the ratio uout/uin where uout is
the mean displacement of the jaws in the direction e2 (the vertical unit vector)
and uin is the mean displacement on the zone submitted to the input force (see
[22] for details). The second objective function is

∫

Ω

k(x)|σ − σ0(x)|2dx ,

where, denoting by Z the black zone of the jaws,

k(x) =

{

1 in Z
0.1 in Ω \ Z

, σ0(x) =

{

±e2 ⊗ e2 in Z
0 in Ω \ Z

,
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Figure 4: Topological gradient: successive configurations obtained by the nu-
merical algorithm coupled with the topological gradient. One evaluation of
the topological gradient is made every 5 iterations up to iteration number 100
(snapshots at iterations 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200 and 300)

where σ0 takes opposite values on the opposite faces of the jaws. These values
have been chosen to allow a good strength on the jaws together with a control
on the stresses over the whole structure. No volume constraint is imposed on
both objective functions.

When the structure is optimized for the GA, the jaws support a traction
free (homogeneous Neumann) boundary condition, while they are fixed (Dirich-
let boundary condition) for the optimization of the stress criterion. Thus, the
obtained optimal structures are quite different: the GA leads to very compli-
ant mechanisms, with many weak hinges. The second objective function opti-
mizes stiffer mechanisms, with less displacement of the jaws but more tightening
strength. The optimal configurations for both objective functions are displayed
on Figure 7, with the deformed configurations. We did not use the topological
gradient.

To evaluate the performances of the gripping mechanisms optimized for the
two objective functions we compute, for each structure, its behavior when the
external force is applied with and without blocking the jaws. Figure 8 shows
the distribution of the maximal principal stress on each gripping mechanism in
both configuration. The grayscale corresponds to the same stress values on the
four plots. It is obvious that the global stress level is lower in the structure
optimized with the stress objective function than in the other one.

A 3d case:
Our fourth and last test case is a 3-d optimal mast. The boundary conditions
are displayed on Figure 9. The four corners of the bottom of the structure are
fixed. By symmetry the computation is done on one fourth of the structure.
The optimal designs for the compliance and for

∫

Ω
|σ|2dx are shown on Figure 10
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Figure 5: L-beam problem. Top: boundary conditions and optimal structure
for the compliance. Bottom: optimal structures for

∫

|σ|α with α = 2 (left), 5
(middle) and 10 (right).

where one can see the efficiency of the level set method for capturing complex
topologies. No topological gradient is used here. According to our experience
it is not a necessary ingredient: different initializations yield the same results.
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Figure 6: Boundary conditions for the gripping mechanism.
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Figure 7: Gripping mechanism. Top: optimal designs for the “geometrical
advantage” GA (left) and the stress criterion (right). Bottom: deformed con-
figuration of both structures.
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Figure 8: Stress distribution in the gripping mechanisms (left: optimized for GA,
right: optimized for the stress criterion) with two different boundary conditions:
top: jaws free, bottom: jaws clamped.
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Figure 9: Boundary conditions for the 3-d optimal mast.
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Figure 10: Optimal 3-d masts for the compliance (left), and
∫

|σ|2 (right).

18



References

[1] Achtziger W., Topology Optimization Subject to Design-Dependent Valid-
ity of Constraints, in Topology optimization of structures and composite
continua, G.I.N. Rozvany and N. Olhoff eds., 177–191, Kluwer Academic
Publishers (2000).

[2] Allaire, G., Conception optimale de structures, Mathématiques & Applica-
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