Hajer Bahouri 
email: hbahouri@math.cnrs.fr
  
STRUCTURE THEOREMS FOR 2D LINEAR AND NONLINEAR SCHR ÖDINGER EQUATIONS

Keywords: November 30, 2014 Nonlinear Schrödinger equation, Orlicz space, Strichartz norms, profile decomposition

This paper is devoted to the qualitative study of the nonlinear Schrödinger equation with exponential growth, where the Orlicz norm plays a crucial role. The approach we adopted in this paper which is based on profile decompositions consists in comparing the evolution of oscillations and concentration effects displayed by sequences of solutions to 2D linear and nonlinear Schrödinger equations associated to the same sequence of Cauchy data, up to small remainder terms both in Strichartz and Orlicz norms. The analysis we conducted in this work emphasizes the correlation between the nonlinear effect highlighted in the behavior of the solutions to the 2D nonlinear Schrödinger equation and the 1-oscillating component of the sequence of the Cauchy data.

Introduction and statement of the results

1.1. Setting of the problem. In this paper, we investigate the feature of the solutions to the nonlinear Schrödinger equation with exponential growth: [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF] i∂ t u + ∆u = f (u),

u |t=0 = u 0 ∈ H 1 (R 2 ),
where the function u with complex values depends on (t, x) ∈ R × R 2 , and where the nonlinearity f : C → C is defined by These equations arise in 3D nonlinear optics problems and describe the propagation of the laser beams in different media (for more details, one can consult [START_REF] Lam | Self trapped laser beams in plasma[END_REF]).

Let us emphasize that the solutions of the Cauchy problem (1)-( 2) formally satisfy the conservation of mass and Hamiltonian

(3)

M (u, t) = R 2
|u(t, x)| 2 dx = M (u 0 ) and ( 4)

H(u, t) = R 2 |∇u(t, x)| 2 + F p (u(t, x)) dx = H(u 0 ) , where (5) 
F p (u) = 1 4π φ p+1 √ 4π |u| • Denoting by W 1,4 (R 2 ) := f ∈ S ′ (R 2 ), f L 4 (R 2 ) + ∇f L 4 (R 2 )
< ∞ , it is known (we refer to [START_REF] Colliander | Energy critical NLS in two space dimension[END_REF] for more details and a strategy of proof) that global well-posedness for the Cauchy problem (1)-(2) holds in both subcritical and critical regimes in the functional space

C(R, H 1 (R 2 )) ∩ L 4 loc (R, W 1,4 (R 2
)), while well-posedness fails to hold in the supercritical one. Here the notion of criticality is related to the size of the initial Hamiltonian H(u 0 ) with respect to 1. More precisely, the concerned Cauchy problem is said to be subcritical if H(u 0 ) < 1, critical if H(u 0 ) = 1 and supercritical if H(u 0 ) > 1.

Recall also that the issue of scattering has been investigated in both subcritical and critical regimes respectively in [START_REF] Ibrahim | Scattering for the two dimensional NLS with exponential nonlinearity[END_REF] and [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF], and that the following a priori estimate has been proved independently by Colliander-Grillakis-Tzirakis and by Planchon-Vega in [START_REF] Colliander | Tensor products and correlation estimates with applications to nonlinear Schrödinger equations[END_REF][START_REF] Planchon | Bilinear virial identities and applications[END_REF] (6)

u L 4 (R,L 8 (R 2 )) ≤ u 3/4 L ∞ (R,L 2 (R 2 )) ∇u 1/4 L ∞ (R,L 2 (R 2 )) , for any global solution u in L ∞ (R, H 1 (R 2 )).
Structures theorems originates in the elliptic framework in the studies by H. Brézis and J.-M. Coron in [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF] and M. Struwe in [START_REF] Struwe | A global compactness result for boundary value problems involving limiting nonlinearities[END_REF]. The approach that we shall adopt in this article consists in comparing the evolution of oscillations and concentration effects displayed by sequences of solutions of the nonlinear Schrödinger equation ( 1)-( 2) and solutions of the linear Schrödinger equation associated to the same sequence of Cauchy data. Our source of inspiration here is the pioneering works [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF] and [START_REF] Merle | Compactness at Blow-up Time for L2 Solutions of the Critical Nonlinear Schrödinger Equation in 2D[END_REF] whose aims were to describe the structure of bounded sequences of solutions to semilinear defocusing wave and Schrödinger equations, up to small remainder terms in Strichartz norms. Let us point out that these profile decomposition techniques are currently successfully used in various contexts: among others, one can mention [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF][START_REF] Bahouri | On the stability in weak topology of the set of global solutions to the Navier-Stokes equations[END_REF][START_REF] Bahouri | Stability by rescaled weak convergence for the Navier-Stokes equations[END_REF][START_REF] Bahouri | Stability by rescaled weak convergence for the Navier-Stokes equations[END_REF][START_REF] Berlyand | Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling[END_REF][START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: I[END_REF][START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: II[END_REF][START_REF] Druet | Multibumps analysis in dimension 2 -Quantification of blow up levels[END_REF][START_REF] Gallagher | A profile decomposition approach to the L ∞ t (L 3 x ) Navier-Stokes regularity criterion[END_REF][START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation[END_REF][START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equation[END_REF][START_REF] Mancini | Trudinger-Moser inequality in the hyperbolic space H N[END_REF][START_REF] Schindler | An abstract version of the concentration compactness principle[END_REF].

To carry out our analysis of the nonlinear effect in the Cauchy problem (1)-(2), we have been led to develop a profile decomposition of bounded sequences of solutions to the linear Schrödinger equation both in the framework of Strichartz and Orlicz norms. It is well understood that the Strichartz norms play a decisive role in the study of semilinear and quasilinear problems which appear in numerous physical applications, and that in any dimension (we refer for instance to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften[END_REF] for an exposition on the subject), but the Orlicz norm (see below Definition 1.1) occurs rather in evolution equations with exponential growth which are relevant in R 2 . The linear structure theorem we have obtained in this work highlights the distinguished role of the 1-oscillating component of the sequence of the Cauchy data, according to the vocabulary of [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] (see also Definition 1.15 in this paper). As it will be discussed in Paragraph 1.3, it turns out that there is a form of orthogonality between the Orlicz and the Strichartz norms for the evolution under the flow of the free Schrödinger equation of the unrelated component to the scale 1 of the Cauchy data (using the terminology introduced [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] or Definition 1.15 below), while this is not the case for the 1-oscillating component.

The analysis of the nonlinear equation ( 1)- [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF] we conducted in this article strengthens the key role of the 1-oscillating component of the sequence of the Cauchy data, and that even in the subcritical case. The nonlinear result we have obtained in this paper, not only underlines the relevance of the 1-oscillating component in the nonlinear effect displayed by the solutions, but also provides us with a qualitative description of the solutions to (1)-( 2) associated to any bounded sequence of Cauchy data in H 1 rad (R 2 ), up to small remainder terms in Strichartz and Orlicz norms.

1.2. Profile decompositions in the framework of Orlicz spaces.

1.2.1. Critical 2D Sobolev embeddings. It is well known that in 2D the following continuous embeddings hold [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF])

H 1 (R 2 ) ֒→ L φp (R 2 ), ∀p ≥ 1 ,
where L φp (R 2 ) denotes the Orlicz space associated to the function

φ p (s) = e s 2 - p-1 k=0 s 2k k! •
Recall that generally the Orlicz spaces are defined as follows (for a complete presentation and more details, we refer the reader to [START_REF] Rao | Applications of Orlicz spaces[END_REF]):

Definition 1.1.

Let φ : R + → R + be a convex increasing function such that φ(0) = 0 = lim s→0 + φ(s) and lim s→∞ φ(s) = ∞ .

We say that a measurable function u : R d → C belongs to L φ if there exists λ > 0 such that

R d φ |u(x)| λ dx < ∞ .
We denote then

(8) u L φ (R d ) = inf λ > 0, R d φ |u(x)| λ dx ≤ 1 .
Let us emphasize that the embedding [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] derives immediately from the following Trudinger-Moser inequality (see [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF][START_REF] Moser | A sharp form of an inequality of N. Trudinger[END_REF][START_REF] Ruf | A sharp Trudinger-Moser type inequality for unbounded domains in R 2[END_REF][START_REF] Trudinger | On imbedding into Orlicz spaces and some applications[END_REF]):

Proposition 1.2.

(9) sup

u H 1 (R 2 ) ≤1 R 2 e 4π|u(x)| 2 -1 dx := κ < ∞ .
Recall that we may replace in [START_REF] Bahouri | On the elements involved in the lack of compactness in critical Sobolev embedding[END_REF] the number 1 by any positive constant, and that this changes the Orlicz norm by an equivalent norm. In the sequel, we shall endow the space L φp with the norm • L φp where the number 1 is replaced by the constant κ involved in Identity [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF]. Sobolev embedding [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] states then as follows:

(10)

u L φp (R 2 ) ≤ 1 √ 4π u H 1 (R 2 ) •
Note also that H 1 (R 2 ) embeds in all Lebesgue spaces L q (R 2 ) for 2 ≤ q < ∞, in the space BMO(R 2 ) ∩ L 2 (R 2 ), where BM O(R 2 ) denotes the space of bounded mean oscillations, and in BW (R 2 ) the Brezis-Wainger space introduced in [START_REF] Brezis | A note on limiting cases of Sobolev embeddings and convolution inequalities[END_REF]. The embedding of H 1 (R 2 ) into BW (R 2 ) is sharper than [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] since BW (R 2 ) L φp (R 2 ). However, there is no comparison between L φp (R 2 ) and BMO(R 2 ) ∩ L 2 (R 2 ) (see for instance [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] for further details).

1.2.2. Overview on the lack of compactness of Sobolev embedding into the Orlicz spaces. The lack of compactness of the Sobolev embedding [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] has been investigated by several authors (see [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF][START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF][START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF][START_REF] Bahouri | A Fourier approach to the profile decomposition in Orlicz spaces[END_REF][START_REF] Ben Ayed | Characterization of the lack of compactness of H 2 rad (R 4 ) into the Orlicz space[END_REF][START_REF] Ben Ayed | Description of the lack of compactness in Orlicz spaces and applications[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. II[END_REF]). The typical example illustrating the defect of compactness in this framework is the example by Moser (see [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. II[END_REF][START_REF] Moser | A sharp form of an inequality of N. Trudinger[END_REF]) defined by:

f αn (x) = α n 2π L -log |x| α n , where 
L(s) =    0 if s ≤ 0, s if 0 ≤ s ≤ 1, 1 if s ≥ 1,
and (α n ) n≥0 is a sequence of positive real numbers going to infinity. Here we limit ourselves to recall the characterization of the lack of compactness of [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] in the radial framework. To state the result in a clear way, let us introduce some objects.

Definition 1.3. We shall designate by scale any sequence α := (α n ) n≥0 of positive real numbers going to infinity and by profile any function ψ belonging to the set

P := ψ ∈ L 2 (R, e -2s ds); ψ ′ ∈ L 2 (R) and ψ |]-∞,0] = 0 • Two scales α, β are said orthogonal if log (β n /α n ) n→∞ -→ ∞ .
In [START_REF] Ben Ayed | Description of the lack of compactness in Orlicz spaces and applications[END_REF], the authors highlighted the fact that the lack of compactness of the Sobolev embedding [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] can be reduced to the example by Moser. More precisely, they established the following result when p > 1:

Theorem 1.4. Let (u n ) n≥0 be a bounded sequence in H 1 rad (R 2 ) such that (11)
u n ⇀ 0 and

(12) lim sup n→∞ u n L φp (R 2 ) = A 0 > 0 .
Then, there exist a sequence (α (j) ) j≥1 of pairwise orthogonal scales and a sequence of profiles (ψ (j) ) j≥1 in P such that, up to a subsequence extraction, we have for all ℓ ≥ 1,

(13) u n (x) = ℓ j=1 α (j) n 2π ψ (j) -log |x| α (j) n + R (ℓ) n (x), lim sup n→∞ R (ℓ) n L φp (R 2 ) ℓ→∞ -→ 0 .
Moreover the following stability estimates hold

(14) ∇u n 2 L 2 (R 2 ) = ℓ j=1 ψ (j) ′ 2 L 2 (R) + ∇R (ℓ) n 2 L 2 (R 2 ) + •(1), n → ∞ .
Remarks 1.5.

• In the case when p = 1, the same result was proved in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] under the additional hypothesis of compactness at infinity:

(15) lim R→∞ lim sup n→∞ |x|>R |u n | 2 dx = 0 .
This hypothesis is necessary to get [START_REF] Bahouri | Stability by rescaled weak convergence for the Navier-Stokes equations[END_REF]. To be convinced, consider the sequence

(u n ) n≥1 defined by u n (x) = 1 n e -| x n | 2 .
• The hypothesis of compactness at infinity is not required in the case when p > 1. This is justified by the fact that H 1 rad (R 2 ) is compactly embedded in L q (R 2 ), for any 2 < q < ∞. • Let us point out that it was proved in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF] and [START_REF] Ben Ayed | Description of the lack of compactness in Orlicz spaces and applications[END_REF] that

(16) ℓ j=1 w (j) n L φp (R 2 ) n→∞ -→ sup 1≤j≤ℓ lim n→∞ w (j) n L φp (R 2 ) ,
where

w (j) n (x) := α (j) n 2π ψ (j) -log |x| α (j) n and (17) lim n→∞ w (j) n L φp (R 2 ) = 1 √ 4π max s>0 |ψ (j) (s)| √ s • 1.2.
3. Some additional properties on Orlicz spaces. Many research articles and monographs have been devoted to the study of Trudinger-Moser type inequalities and their applications to elliptic and biharmonic problems involving nonlinearities with exponential growth, where the Orlicz spaces play a crucial role. We shall not recall all the results existing in the literature concerning this subject which is of constant interest, and refer for instance to [START_REF] Rao | Applications of Orlicz spaces[END_REF][START_REF] Ruf | Sharp Adams-type inequalities in R n[END_REF][START_REF] Schindler | An abstract version of the concentration compactness principle[END_REF] and the references therein, for recent surveys on the subject. Let us simply recall the results that will be of constant use all along this paper.

Firstly, let us stress that Trudinger-Moser inequality ( 9) is sharp in the sense that if we replace 4π by β > 4π, then the supermum in ( 9) is infinite. But if we only require that ∇u L 2 (R 2 ) ≤ 1 rather than u H 1 (R 2 ) ≤ 1, then the following estimates needed in the sequel occur (for a detailed proof, see for instance [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF]): Proposition 1.6. Let β ∈ [0, 4π[ and q be a nonnegative real larger than 2. A constant C(β, q) exists such that

(18) R 2 e β|u(x)| 2 |u(x)| q dx ≤ C(β, q) R 2 |u(x)| q dx, for all u in H 1 (R 2 ) satisfying ∇u L 2 (R 2 ) ≤ 1.
Proposition 1.7. For any δ > 0, there exit c δ and ε 0 such that for all 0 < ε ≤ ε 0 and all nonnegative real q ≥ 2, there is a positive constant C(δ, ε, q) such that for r =

1 1 -ε c δ = 1 + O(ε),
the following estimate holds [START_REF] Brezis | A note on limiting cases of Sobolev embeddings and convolution inequalities[END_REF] fails for β = 4π as it can be shown by the example by Moser introduced in Paragraph 1.2.2, and which satisfies:

(19) R 2 e 4π(1+ε)|u(x)| 2 |u(x)| q dx ≤ C(δ, ε, q) u q L q (R 2 ) + u q L q r (R 2 ) , for all u in H 1 (R 2 ) satisfying ∇u L 2 (R 2 ) ≤ 1 and u L φp (R 2 ) ≤ 1-δ √ 4π • Remark 1.8. Inequality
∇f αn L 2 (R 2 ) = 1 and f αn L φp (R 2 ) → 1 √ 4π •
However Proposition 1.7 asserts that when the whole mass does not concentrate in the sense that the Orlicz norm L φp (R 2 ) is strictly less than 1 √ 4π

, then we have a control even when the L 2 -norm of the gradient exceeds slightly 1.

Let us end this paragraph by point out that the Orlicz space

L φp (R 2 ) behaves like L 2p (R 2 ) for functions in H 1 (R 2 ) ∩ L ∞ (R 2
) and that the following embedding holds:

(20) L φp (R 2 ) ֒→ 2p≤q<∞ L q (R 2 ) .
1.3. Statement of the linear result. As it is mentioned above, to investigate the nonlinear effect in the Cauchy problem (1)-( 2), we are led to establish a structure theorem for the linear Schrödinger equation both in the framework of Strichartz and Orlicz norms. It is well-known that the solutions of the two-dimensional free Schrödinger equation:

(S) i ∂ t v + ∆v = 0 in R + × R 2 v |t=0 = v 0 ∈ H 1 (R 2 ) ,
satisfy the conservation of energy and mass

(21) E 0 (v, t) = ∇v(t, •) 2 L 2 (R 2 ) = ∇v 0 2 L 2 (R 2 ) = E 0 (v 0 ) , (22) 
M 0 (v, t) = v(t, •) 2 L 2 (R 2 ) = v 0 2 L 2 (R 2 ) = M 0 (v 0 ) ,
and for t = 0 the dispersive inequality

(23) v(t, •) L ∞ (R 2 ) 1 |t| v 0 L 1 (R 2 ) •
Combining [START_REF] Colliander | Tensor products and correlation estimates with applications to nonlinear Schrödinger equations[END_REF], [START_REF] Colliander | Energy critical NLS in two space dimension[END_REF] together with the interpolation between L q spaces imply that

(24) ∀t = 0 , ∀q ∈ [2, ∞] , v(t, •) L q 1 |t| (1-2 q ) v 0 L q ′ ,
where q ′ denotes the conjugate exponent of q, defined by:

1 q + 1 q ′ = 1, with the rule that 1 ∞ = 0 •
Thanks to a standard argument known by the T T * -argument, we deduce the following space-time estimates called Strichartz estimates (see [START_REF] Cazenave | Equations de Schrödinger non linéaires en dimension deux[END_REF]):

Proposition 1.9. Let I ⊂ R be a time slab, t 0 ∈ I and (q, r), (q, r) two L 2 -admissible Strichartz pairs, i.e., [START_REF] Côte | Characterization of large energy solutions of the equivariant wave map problem: II[END_REF] 2 ≤ r, r < ∞ and

1 q + 1 r = 1 q + 1 r = 1 2 •
There exists a positive constant C such that if v is the solution of the Cauchy problem

i∂ t v + ∆v = G(t, x), v |t=t0 = v 0 ∈ H 1 (R 2 ), then for m ∈ {0, 1} (26) 
∇ m v L q (I,L r (R 2 )) ≤ C ∇ m v 0 L 2 (R 2 ) + ∇ m G L q′ (I,L r′ (R 2 )) .
In the sequel, we shall denote for any time slab

I ⊂ R v ST(I) := v L 4 (I,L 4 (R 2 )) + ∇v L 4 (I,L 4 (R 2 ))
,

and v ST * (I) := v L 4 3 (I,L 4 3 (R 2 )) + ∇v L 4 3 (I,L 4 3 (R 2 ))
.

The approach, that we shall adopt to achieve our goal, is based on profile decompositions. The novelty here is that we shall investigate the behavior of the sequences of solutions both within the framework of Strichartz and Orlicz norms. More precisely, we shall establish the following result when p > 1:

Theorem 1.10. Let (v n ) n≥0 be the sequence of solutions to the free Schrödinger equation (S)

with initial data v n (0, •) = ϕ n , where (ϕ n ) n≥0 is a bounded sequence in H 1 rad (R 2 ). There exist a sequence (ϕ (k) ) k≥0 of functions in L 2 rad (R 2
), a sequence of profiles (ψ (j) ) j≥1 in P, a sequence (α (j) ) j≥1 of scales in the sense of Definition 1.3, a sequence ((h

(k) n ) n∈N ) k≥0 of
positive real numbers sequences, and two sequences ((t

(j) n ) n∈N ) j≥1 and (( t (k) n ) n∈N ) k≥0 of real sequences such that (27) ∀ j = i, either log α (j) n /α (i) n n→∞ -→ ∞ or α (j) n = α (i) n and - log |t (j) n -t (i) n | 2 α (j) n n→∞ -→ a ∈ [-∞, +∞[ ,
with in the case when a ∈ ]0, +∞[ ψ (j) (s) or ψ (i) (s) null for s < a, [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] for any k = m, log

h (k) n /h (m) n + | t (k) n -t (m) n | h (k) n 2 → ∞, as n → ∞,
and, up to a subsequence extraction, we have for all ℓ ≥ 1 1

v n (t, •) = ℓ k=0 D -1 1 h (k) n e i(t-t (k) n )∆ ϕ (k) • h (k) n (29) 
+ ℓ j=1 α (j) n 2π e i(t-t (j) n )∆ ψ (j) -log | • | α (j) n + r (ℓ) n (t, •), with lim sup n→∞ r (ℓ) n L ∞ (R,L φp )∩ST(R) ℓ→∞ -→ 0.
Moreover we have the following stability estimates as n tends to infinity

(30) M 0 (v n ) = k∈Γ ℓ (1) D -1 ϕ (k) 2 L 2 (R 2 ) + k∈Λ ℓ ∞ (1) ϕ (k) 2 L 2 (R 2 ) + r (ℓ) n (t, •) 2 L 2 (R 2 ) + •(1) , and (31) 
E 0 (v n ) = k∈Γ ℓ (1) ∇ D -1 ϕ (k) 2 L 2 (R 2 ) + k∈Λ ℓ 0 (1) ϕ (k) 2 L 2 (R 2 ) + ℓ j=1 ψ (j) ′ 2 L 2 (R) + E 0 (r (ℓ) n ) + •(1),
where we noted Γ ℓ (1

) := k ∈ {0, . . . , ℓ} / h (k) = 1 , Λ ℓ 0 (1) := k ∈ {1, . . . , ℓ} / h (k) n n→∞ -→ 0 and Λ ℓ ∞ (1) := k ∈ {1, . . . , ℓ} / h (k) n n→∞
-→ ∞ , and designate by 1 the scale in which all the terms are equal to the number 1.

Remarks 1.11.

• All along this paper, we shall note under the above notations:

(32) g (j) n (t, •) := α (j) n 2π e i(t-t (j) n )∆ ψ (j) -log | • | α (j) n and (33) 
f (k) n (t, •) := D -1 1 h (k) n e i(t-t (k) n )∆ ϕ (k) • h (k) n •
• Note that up to extracting a subsequence and rescaling the profiles ϕ (k) by a fixed constant, any sequence (h

(k)
n ) n∈N involved in the statement of Theorem 1.10 can be assumed to converge either to 0, to ∞, or to coincide with the scale 1.

• We shall see in Proposition 3.4 that the elements responsible for the lack of compactness within the Strichartz and Orlicz frameworks for the evolution of the 1-oscillating component of the Cauchy data over time under the free Schrödinger equation coincide.

• However, contrary to the case of the 1-oscillating component, we have a form of orthogonality between the Orlicz and the Strichartz norms regarding the component unrelated to the scale 1. This can be illustrated by the following propositions whose proofs are postponed to Section 2:

Proposition 1.12. Under the above notations, we have for any j ∈ N

g (j) n ST(R) n→∞ -→ 0 and g (j) n L ∞ (R,L φp (R 2 ))
1 .

1 We used the classical notation

D = (1 + |D| 2 ) 1 2 .
Proposition 1.13. Denoting by Λ ℓ (1) = Λ ℓ ∞ (1) ∪ Λ ℓ 0 (1), we have with the above notations in the case when h

(k) n ∈ Λ ℓ (1) f (k) n ST(R) 1 and f (k) n L ∞ (R,L φp (R 2 )) n→∞ -→ 0 .
As will be discussed in Section 2, the proof of Proposition 1.13 stems from Formula (33) by straightforward computations, but the proof of Proposition 1.12 is more challenging. Indeed since ∇g

(j) n (t (j) n , •) L 2 (R 2 )
1, applying Strichartz estimate [START_REF] Druet | Multibumps analysis in dimension 2 -Quantification of blow up levels[END_REF] does not lead to the result. In fact to achieve our goal, we shall establish a very accurate property of the Fourier transform of the Cauchy data g n (t (j) n , •) (see below Lemma 2.1), and resort to the following estimate derived in [START_REF] Bourgain | Some new estimates on oscillatoryon integrals, Essays on Fourier Analysis in Honor of Elias M. Stein[END_REF][START_REF] Moyua | Restriction theorems and maximal operators related to oscillatory integrals in R 3[END_REF]:

(34) ∇ m e it ∆ v 0 L 4 (R,L 4 (R 2 )) ≤ C ∇ m v 0 Xr , ∀ r ≥ 12 7
and m ∈ {0, 1} , and with

(35) f Xr := ∞ j=-∞ τ ∈Cj 2 4j 1 2 2j τ |f | r 4 r 1 4 
,

where τ denotes a square with side length 2 j , and C j denotes a corresponding grid of the plane. These spaces X r introduced by J. Bourgain in [START_REF] Bourgain | A remark on Schrödinger operators[END_REF] are strictly bigger than L 2 (R 2 ), for 1 ≤ r < 2 and satisfy (for a complete presentation and more details, we refer the reader to [START_REF] Bourgain | A remark on Schrödinger operators[END_REF][START_REF] Merle | Compactness at Blow-up Time for L2 Solutions of the Critical Nonlinear Schrödinger Equation in 2D[END_REF][START_REF] Moyua | Restriction theorems and maximal operators related to oscillatory integrals in R 3[END_REF]):

(36) f Xr f r 2 L 2 (R 2 ) sup j,τ ∈Cj 2 j 1 2 2j τ |f | r 1 r 1-r 2 , for 1 ≤ r < 2 .
• It will be useful to emphasize that the free concentrating waves f

n and g

n are orthogonal in the energy space. More precisely, we have the following orthogonality property the proof of which will be also given in Section 2: Proposition 1.14. For any k ∈ N and any j ∈ N, we have 

sup t∈R (f (k) n (t, •) | g (j) n (t, •)) H 1 (R
n→∞ hn|ξ|≤ 1 R | f n (ξ)| 2 dξ + hn|ξ|≥R | f n (ξ)| 2 dξ R→∞ -→ 0 .
• The sequence f is said unrelated to the scale h if for any reals b > a > 0 (38

) a≤hn|ξ|≤b | f n (ξ)| 2 dξ n→∞ -→ 0 .
Our result formulates as follows:

2 where u denotes the Fourier transform of u defined by u(ξ) = R 2 e -i x•ξ u(x) dx .

Theorem 1.16. Let (u n ) n≥0 be the sequence of solutions to the nonlinear Schrödinger equation (1)-( 2) with initial data u n (0, •) = ϕ n , where (ϕ n ) n≥0 is a bounded sequence in H 1 rad (R 2 ) satisfying H(ϕ n ) ≤ 1. Let us suppose that the sequence ( D ϕ n ) n≥0 is not unrelated to the scale 1 in the sense of Definition 1.15. Then, with the notations of Theorem 1.10, we have for all ℓ ≥ 1 [START_REF] Moyua | Restriction theorems and maximal operators related to oscillatory integrals in R 3[END_REF] u n (t,

•) = ℓ j=1 g (j) n (t, •) + k∈Λ ℓ (1) f (k) n (t, •) + k∈Γ ℓ (1) U k (t -t (k) n , •) + r (ℓ) n (t, •) , where Λ ℓ (1) = Λ ℓ 0 (1) ∪ Λ ℓ ∞ (1)
, where g

(j)
n and f

(k) n
are respectively defined by [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equation[END_REF] and [START_REF] Lam | Self trapped laser beams in plasma[END_REF], with r

(ℓ) n satisfying (40) lim sup n→∞ r (ℓ) n -e it∆ r (ℓ) n (0, •) L ∞ (R,H 1 (R 2 ))∩ST(R) ℓ→∞ -→ 0 ,
and where U 0 designates the solution to the nonlinear Schrödinger equation with initial data the weak limit of the sequence (ϕ n ) n≥0 and, for k ≥ 1 in Γ ℓ (1), U k denotes the solution to (1)-( 2) satisfying

(41) U k (s, •) -e is∆ D -1 ϕ (k) H 1 (R 2 ) s→∓∞ -→ 0, if t (k) n n→∞ -→ ±∞ .
Remarks 1.17.

• The existence and uniqueness of solutions U k satisfying the asymptotic estimate (41) is ensured by the scattering results obtained in [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF] and [START_REF] Ibrahim | Scattering for the two dimensional NLS with exponential nonlinearity[END_REF]. • The key point in Theorem 1.16 relies on the following property [START_REF] Rao | Applications of Orlicz spaces[END_REF] lim sup

n→∞ ℓ j=1 g (j) n L ∞ (R,L φp (R 2 )) < 1 √ 4π , ∀ℓ ≥ 1 •
Indeed, combining the stability estimate [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation[END_REF] together with the fact that by hypothesis H(ϕ n ) ≤ 1 and ( D ϕ n ) n≥0 is not unrelated to the scale 1, we infer that there is a real number 0 < δ < 1 such that

lim sup n→∞ ℓ j=1 E 0 (g (j) n ) ≤ 1 -δ ,
for any integer ℓ ≥ 1. This ensures the result according to the Sobolev embedding (10). • Theorem 1.16 shows that the 1-oscillating component of the sequence of Cauchy data generates a nonlinear effect even in the subcritical case.

1.5. Layout. Our paper is organized as follows: we first in Section 2 demonstrate Propositions 1.12, 1.13 and 1.14. Section 3 is devoted to the proof of profile decompositions of sequences of solutions to the linear Schrödinger equation both in the framework of Orlicz and Strichartz norms. The purpose of Section 4 is to investigate the influence of the nonlinear term on the main features of solutions to the nonlinear Schrödinger equation with exponential growth by comparing their evolution with the evolution of the solutions to the linear Schrödinger equation. Finally, we deal in appendix with several useful estimates for the sake of completeness.

Finally, we mention that, C will be used to denote a constant which may vary from line to line. We also use A B (respectively A B) to denote an estimate of the form A ≤ CB (respectively A ≥ CB) for some absolute constant C. For simplicity, we shall also still denote by (u n ) any subsequence of (u n ) and designate by •(1) any sequence which tends to 0 as n goes to infinity.

Preliminary results

This section is dedicated to the proof of Propositions 1.12, 1.13 and 1.14.

2.1. Proof of Proposition 1.12. The fact that g

(j) n L ∞ (R,L φp (R 2 ))
1 is ensured by Formula [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF]. In order to establish that g

(j) n ST(R)

n→∞

-→ 0, it suffices by invariance by translation to prove that [START_REF] Ruf | Sharp Adams-type inequalities in R n[END_REF] e it ∆ w (j)

n ST(R) n→∞ -→ 0 ,
where w

(j) n (x) = α (j) n 2π ψ (j) -log |x| α (j) n .
Firstly taking advantage of Strichartz estimate [START_REF] Druet | Multibumps analysis in dimension 2 -Quantification of blow up levels[END_REF], we get

e it ∆ w (j) n L 4 (R,L 4 (R 2 )) w (j) n L 2 (R 2 ) ,
which ensures that e it ∆ w (j)

n L 4 (R,L 4 (R 2 ))
n→∞ -→ 0 according to the obvious fact that the L 2 -norm of the Cauchy data w

(j)
n tends to 0, as n goes to infinity. In order to end the proof of ( 43), we shall take advantage of Estimate [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF] which leads us to prove that for some r ≥ 12 7 ∇w

(j) n Xr n→∞ -→ 0 ,
where X r is the space defined by [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case. II[END_REF]. For that purpose, we shall make use of the following lemma, which we shall admit for the time being:

Lemma 2.1. Consider K n (x) = α n 2π ψ -log |x| α n with (α n ) a sequence of positive real numbers
going to infinity and

ψ in P. If ψ ′ belongs to D(]0, +∞[) and is supported in [a, b], then there is a positive constant C such that (44) | ∇K n (ξ)| ≤ C 1 [1,e b αn ] (|ξ|) √ α n |ξ| + t n (ξ) , where t n L 2 (R 2 ) n→∞ -→ 0.
Now by density arguments and in view of Lemma 2.1, we are reduced to demonstrate that (45)

W n Xr n→∞ -→ 0 , where W n (ξ) := 1 [1,e b αn ] (|ξ|) √ α n |ξ| , with b a positive constant. Obviously sup n∈N W n L 2 (R 2 )
1, thus we are led in view of [START_REF] Mancini | Trudinger-Moser inequality in the hyperbolic space H N[END_REF] to establish that for 1 ≤ r < 2 sup j,τ ∈Cj

2 j 1 2 2j τ |W n (ξ)| r dξ 1 r n→∞ -→ 0 .
The function W n being a radial function, it suffices to limit ourselves to a grid C j of the plane determined for (k, ℓ) in Z 2 from the squares

C j k,ℓ := ξ ∈ R 2 , k 2 j ≤ ξ 1 ≤ (k + 1) 2 j and ℓ 2 j ≤ ξ 2 ≤ (ℓ + 1) 2 j . Clearly if max(|k| , |ℓ|) ≥ 2, then C j k,ℓ |W n (ξ)| r dξ 1 α r/2 n k 2 j ≤ξ1≤(k+1) 2 j ℓ 2 j ≤ξ2≤(ℓ+1) 2 j dξ 1 dξ 2 {max(|ξ 1 | , |ξ 2 |)} r , which gives rise to 1 2 2j C j k,ℓ |W n (ξ)| r dξ 1 r 2 -j √ α n max(|k| , |ℓ|) • Thus (46) 2 j 1 2 2j C j k,ℓ |W n (ξ)| r dξ 1 r 1 √ α n max(|k| , |ℓ|) ,
which leads to the result in that case according to the fact that α n n→∞ -→ ∞.

Taking advantage of the fact that |ξ| 2 ≥ 1 on the support de W n , we infer that there is an integer j 0 such that if the intersection of C j k,ℓ with the support of W n is not empty and max(|k| , |ℓ|) ≤ 2, then necessarily j ≥ j 0 . By straightforward computations and according to the fact that r < 2, we get in that case

C j k,ℓ |W n (ξ)| r dξ 1 α r 2 n C 2 j 1 dρ ρ r-1 2 j(2-r) α r 2 n
, which entails that

2 j 1 2 2j C j k,ℓ |W n (ξ)| r dξ 1 r 1 √ α n •
This achieves the proof of Proposition 1.12 provided of course we establish Lemma 2.1.

For that purpose, we shall follow the method developed in [START_REF] Bahouri | On the elements involved in the lack of compactness in critical Sobolev embedding[END_REF] and write

K n (ξ) = α n 2π R 2 e -ix.ξ ψ -log |x| α n dx = √ 2π α n ∞ 0 J 0 r|ξ| ψ -log r α n rdr ,
where J 0 is the Bessel function solution of the differential equation ( 47)

xy ′′ + y ′ + xy = 0 ,
that can be written under the form

(48) (xy ′ ) ′ + xy = 0 .
Performing the change of variables r = e -αn s , we get taking account of the fact that ψ |]-∞,0] = 0

K n (ξ) = α n √ 2π α n ∞ 0
J 0 (e -αn s |ξ|) ψ(s) e -2 αn s ds .

According to [START_REF] Trudinger | On imbedding into Orlicz spaces and some applications[END_REF], we have for t = e -αn s |ξ| and ξ = 0

e -αn s |ξ| J 0 (e -αn s |ξ|) = -∂ t e -αn s |ξ| J ′ 0 (e -αn s |ξ|) = ∂ s e -αn s |ξ| J ′ 0 (e -αn s |ξ|) α n e -αn s |ξ| •
Integrating by parts, this ensures that

K n (ξ) = - 1 |ξ| √ 2π α n ∞ 0 e -αn s J ′ 0 (e -αn s |ξ|) ψ ′ (s) ds • Since ψ ′ is supported in [a, b], the change of variables u = e -αn s |ξ| leads for ξ = 0 to (49) K n (ξ) = - 1 |ξ| 2 2π α n e -αn a |ξ| e -αn b |ξ| J ′ 0 (u) ψ ′ - log(u/|ξ|) α n du .
In order to demonstrate Estimate [START_REF] Schindler | An abstract version of the concentration compactness principle[END_REF], we first observe that

K n (ξ) = K n (ξ) 1 [1,e αn b ] (|ξ|) + R n (ξ) , where R n H 1 (R 2 ) n→∞ -→ 0. Indeed, since K n L 2 (R 2 ) n→∞ -→ 0, it suffices to prove that | • | K n L 2 (|ξ|≥e αn b ) n→∞ -→ 0 .
To this end, we shall make use of the following asymptotic formula (see for instance [START_REF] Olver | Asymptotics and special functions[END_REF]):

J ′ 0 (u) = - 2 πu sin u - π 4 + O(u -3 2 ) , (50) 
which easily implies that for |ξ| ≥ e αn b , we have

ξ K n (ξ) e αn b 2 √ α n |ξ| 3 2

•

We deduce that

| • | K n 2 L 2 (|ξ|≥e αn b ) e αn b α n |ξ|≥e αn b dξ |ξ| 3 1 α n n→∞ -→ 0 .
Finally for 1 ≤ |ξ| ≤ e αn b , we infer in view of ( 49) that

(51) ξ K n (ξ) 1 √ α n |ξ| •
Since J ′ 0 as well as ψ ′ are bounded functions, Estimate (51) stems easily from (49) in the case when e -αn a |ξ| ≤ M , with M a large fixed constant. In order to investigate the case when e -αn a |ξ| ≥ M , let us split the integral

I n := e -αn a |ξ| e -αn b |ξ| J ′ 0 (u) ψ ′ - log(u/|ξ|)
α n du on two parts as follows:

I n = M e -αn b |ξ| J ′ 0 (u) ψ ′ - log(u/|ξ|) α n du + e -αn a |ξ| M J ′ 0 (u) ψ ′ - log(u/|ξ|) α n du .
On the one hand, taking again advantage of the fact that J ′ 0 and ψ ′ are bounded functions, we infer that there is a positive constant

C M such that M e -αn b |ξ| J ′ 0 (u) ψ ′ - log(u/|ξ|) α n du ≤ C M .
On the other hand, in view of the asymptotic development (50), we find along the same lines as above that

e -αn a |ξ| M J ′ 0 (u) ψ ′ - log(u/|ξ|) α n du 1 √ M , which entails Estimate (51).
This ends the proof of the Lemma and thus of Proposition 1.12.

2.2. Proof of Proposition 1.13. Let us first emphasize that in the case when h

(k)
n tends to zero, the sequence f (k) n can be for any ε > 0 recast under the form:

(52) f (k) n (t, •) = e i(t-t (k) n )∆ (|D| -1 ϕ (k) ε ) • h (k) n + R (k) n,ε (t, •) , with |D| -1 ϕ (k) ε a regular function and R (k) n,ε L ∞ (R,H 1 (R 2 ))
ε. We can then observe that in that case (53)

f (k) n L ∞ (R,L 2 (R 2 )) + f (k) n L 4 (R,L 4 (R 2 )) n→∞ -→ 0 ,
and that lim

n→∞ ∇f (k) n L ∞ (R,L 2 (R 2 ))
1 and lim

n→∞ ∇f (k) n L 4 (R,L 4 (R 2 ))
1.

Along the same lines in the case when h n can be for any ε > 0 written under the form:

(54) f (k) n (t, •) = 1 h (k) n e i(t-t (k) n )∆ ϕ (k) ε • h (k) n + R (k) n,ε (t, •) , with ϕ (k) ε a regular function and R (k) n,ε L ∞ (R,H 1 (R 2 ))
ε. Moreover, we have

(55) ∇f (k) n L ∞ (R,L 2 (R 2 )) + ∇f (k) n L 4 (R,L 4 (R 2 )) n→∞ -→ 0 , lim n→∞ f (k) n L ∞ (R,L 2 (R 2 ))
1 and lim

n→∞ f (k) n L 4 (R,L 4 (R 2 ))
1.

This obviously gives rise to f

(k) n ST(R) 1 , when h (k) n ∈ Λ ℓ (1).
Now, let us investigate the behavior of the sequences (f

(k) n ) n≥0 in the space L ∞ (R, L φp (R 2 )
). In view of ( 52) and (54), we are led to establish the result for sequences under the form:

ϕ (k) n (t, x) := Φ (k) t -t (k) n (h (k) n ) 2 , x h (k) n
in the case when h (k) n n→∞ -→ 0, and

ϕ (k) n (t, x) := 1 h (k) n Φ (k) t -t (k) n (h (k) n ) 2 , x h (k) n in the case when h (k) n n→∞ -→ ∞ , where Φ (k) and Φ (k) belong to L ∞ (R, ∩ m H m (R 2 )) ⊂ L ∞ (R 3 ).
To this end, we shall treat separately the cases h

(k) n n→∞ -→ 0 and h (k) n n→∞ -→ ∞.
In the case when h (k) n goes to 0, we have for any fixed positive λ

R 2 φ p ϕ (k) n (t, x) λ dx C λ ϕ (k) n 2p L ∞ (R,L 2p (R 2 )) C λ (h (k) n ) 2 Φ (k) 2p L ∞ (R,L 2p (R 2 )) n→∞ -→ 0 ,
which leads to the desired estimate.

Along the same lines in the case when h

(k)
n goes to infinity, we get for any fixed positive λ

R 2 φ p ϕ (k) n (t, x) λ dx C λ ϕ (k) n 2p L ∞ (R,L 2p (R 2 )) C λ (h (k) n ) 2(1-p) Φ (k) 2p L ∞ (R,L 2p (R 2 )) n→∞ -→ 0 ,
which ends the proof of the result according to the fact that p > 1.

2.3. Proof of Proposition 1.14. Since for any j ∈ N, we have

g (j) n L ∞ (R,L 2 (R 2 )) n→∞ -→ 0 ,
it suffices to prove that for any k ∈ N and any j ∈ N, the following property holds

(56) sup t∈R R 2 ∇f (k) n (t, x) ∇g (j) n (t, x) dx n→∞ -→ 0 . Recalling that ∀k ∈ Λ ℓ ∞ (1), ∇f (k) n L ∞ (R,L 2 (R 2 )) n→∞ -→ 0 ,
we are reduce to prove that (56) occurs for any j ∈ N and k ∈ Γ ℓ (1) ∪ Λ ℓ 0 (1). Let us first consider the case when k ∈ Γ ℓ (1), where by hypothesis

f (k) n (t, •) = e i(t-t (k) n )∆ w (k) , with w (k) ∈ H 1 (R 2
). Under notations of Remarks 1.5, Fourier-Plancherel formula implies that

R 2 ∇f (k) n (t, x) ∇g (j) n (t, x) dx R 2 |ξ| | w (k) (ξ)| |ξ| | w (j) n (ξ)| dξ .
Moreover in view of Lemma 2.1, for any ε > 0 we have

(57) |ξ| | w (j) n (ξ)| 1 [1,e b α (j) n ] (|ξ|) α (j) n |ξ| + t (j) n (ξ) ,
where b is a positive constant and lim sup n→∞

t (j) n L 2 (R 2 ) ≤ ε.
Invoking density arguments, we deduce that

R 2 |ξ| | w (k) (ξ)| |ξ| | w (j) n (ξ)| dξ 1 α (j) n R 2 | w (k) ε (ξ)| dξ + O(ε) ,
where w

(k) ε ∈ D(R 2 ). Since α n n→∞
-→ ∞, this ends the proof of (56) for any j ∈ N and any k ∈ Γ ℓ (1).

Let us finally investigate the case when k ∈ Λ ℓ 0 [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF]. By hypothesis, we have in that case

f (k) n (t, x) = D -1 1 h (k) n e i(t-t (k) n )∆ ϕ (k) • h (k) n , with h (k) n n→∞
-→ 0 . Arguing as above and making use of (52), we deduce that for any ε > 0

R 2 |ξ| | f (k) n (ξ)| |ξ| | w (j) n (ξ)| dξ 1 α (j) n R 2 (h (k) n ) 2 | (|D| -1 ϕ (k) ε )(h (k) n ξ)| 1 [1,e b α (j) n ] (|ξ|) dξ + O(ε) .
Performing the change of variables η = h

(k) n ξ, this implies that R 2 |ξ| | f (k) n (ξ)| |ξ| | w (j) n (ξ)| dξ 1 α (j) n R 2 | (|D| -1 ϕ (k) ε )(η)| dη + O(ε) ,
which ensures Claim (56). This achieves the proof of Proposition 1.14.

Proof of the linear result

3.1. Background material. To establish Theorem 1.10, we shall use some results of P. Gérard in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF]. For the shake of completeness, let us start by recalling them. The first result (Proposition 2.5 in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF]) concerns the decomposition of an arbitrary sequence with respect to a given scale:

Proposition 3.1. Let h = (h n ) n≥0
be a sequence of positive real numbers and (f n ) n≥0 be a bounded sequence in L 2 (R d ). Then, up to a subsequence extraction, there is a bounded sequence

(g n ) n≥0 in L 2 (R d ) such that • (g n ) n≥0 is h-oscillating; • (f n -g n ) n≥0 is unrelated to the scale h . Remarks 3.2.
• Let us point out that it was shown in [START_REF] Bahouri | On the elements involved in the lack of compactness in critical Sobolev embedding[END_REF] that the gradient of the example by Moser (f αn ) n≥0 is unrelated to any scale. More precisely, it was proved in [START_REF] Bahouri | On the elements involved in the lack of compactness in critical Sobolev embedding[END_REF] that the sequence (f αn ) can be written under the form:

f αn (x) = f αn (x) + r n (x) , with r n H 1 (R 2 ) n→∞ -→ 0 and (58) f αn (x) = 1 (2π) 2 2π α n R 2 e i x•ξ 1 |ξ| 2 ϕ log |ξ| α n dξ ,
where ϕ(η) = 1 [0,1] (η), which shows that the spectrum of f αn is spread over the disk of radius e αn centered at the origin. • More generally under notations of Remarks 1.5, it has been emphasized in [START_REF] Bahouri | A Fourier approach to the profile decomposition in Orlicz spaces[END_REF] that

w (j) n (x) = 1 (2π) 2 2π α n |ξ|≥1 e i x•ξ |ξ| 2 ϕ (j) log |ξ| α n dξ + r (j) n (x) ,
where ϕ (j) = ψ (j) ′ and r

(j) n L φp (R 2 ) n→∞ -→ 0.
The second result (Theorem 2.9 in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF]) which is about the extraction of oscillating components of a bounded sequence in L 2 states as follows:

Proposition 3.3. Let (f n ) n≥0 be a bounded sequence in L 2 (R d ).
Then, there exist a sequence of scales (h (j) ) j≥1 and a sequence of bounded sequences (g (j) ) j≥1 in L 2 (R d ) such that:

• if j = k, then log h (j) n /h (k) n n→∞ -→ ∞,
• for all j, g (j) is h (j) -oscillating,

• up to a subsequence extraction, we have for all ℓ ≥ 1 (59)

f n (x) = ℓ j=1 g (j) n (x) + r (ℓ) n (x), lim sup n→∞ r (ℓ) n Ḃ0 2,∞ (R d ) ℓ→∞ -→ 0 ,
where Ḃ0 2,∞ (R d ) stands for the usual homogeneous Besov space (see for example [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften[END_REF] for a detailed exposition on Besov spaces).

• Furthermore for any ℓ, (r

(ℓ) n ) n≥0 is unrelated to the scales (h (j) ), for j = 1, • • • , ℓ, and (60) f n 2 L 2 (R d ) = ℓ j=1 g (j) n 2 L 2 (R d ) + r (ℓ) n 2 L 2 (R d ) + •(1), n → ∞ .
3.2. General scheme of the proof. The proof of Theorem 1.10 is carried out by means of diagonal subsequence extraction. Roughly speaking, it is done in several steps. In the first step, up to a subsequence extraction, we decompose the sequence of Cauchy data (ϕ n ) n≥0 on three parts: its weak limit, its 1-oscillating component according to Proposition 3.1 and a remainder term which is unrelated to the scale 1, and then we treat differently the evolution of each part over time under the free Schrödinger equation: the weak limit will evolve with the flow of (S), while the 1-oscillating component will lead to an almost orthogonal sum of sequences of type e i(t-tn)∆ w, with w in H 1 rad (R 2 ). Finally, the unrelated component to the scale 1 will give rise to an asymptotically orthogonal sum of free concentrating waves of type [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equation[END_REF] and [START_REF] Lam | Self trapped laser beams in plasma[END_REF], with h (k) n tending to 0 or infinity. To investigate this last part, we shall take advantage of the fact that, in view of the radial setting, we deal with sequences whose L ∞ -norm tends to 0 far away from the origin.

3.3. Decomposition of the Cauchy data. The sequence (ϕ n ) n≥0 being bounded in H 1 rad (R 2 ), there is a function ϕ (0) in H 1 rad (R 2 ) such that, up to a subsequence extracting (61)

ϕ n n→∞ ⇀ ϕ (0) in H 1 (R 2 ) .
Denoting ϕ n -ϕ (0) by ϕ n , we deduce, in view of the compactness of the embedding of

H 1 rad (R 2 ) into L q (R 2 ) for 2 < q < ∞, that (62) ϕ n L q (R 2 ) → 0, as n → ∞, ∀ 2 < q < ∞ .
Besides thanks to the following well-known radial estimate available for 2

≤ q < ∞ (63) |u(x)| ≤ C q r 2 2+q u q q+2 L q (R 2 ) ∇u 2 q+2 L 2 (R 2 ) , with r = |x|, we obtain (64) | ϕ n (x)| ≤ C q r 2 2+q ϕ n q q+2 L q (R 2 ) ∇ ϕ n 2 q+2 L 2 (R 2 ) •
Therefore the L ∞ -norm of ϕ n tends to 0 far away from the origin. Now making use of Proposition 3.1, we extract the 1-oscillating component of the sequence ( D ϕ n ) n≥0 that will be noted ( D ϕ 1 n ) n≥0 . This allows us to decompose ϕ n on two parts:

ϕ n = ϕ 1 n + ϕ 2 n ,
where the sequence ( D ϕ 2 n ) is unrelated to the scale 1. Besides, Plancherel formula and Cauchy-Schwarz inequality lead easily to

R 2 D ϕ 1 n (x) D ϕ 2 n (x) dx n→∞ -→ 0 ,
which implies the almost orthogonality identity

ϕ n 2 H 1 (R 2 ) = ϕ 1 n 2 H 1 (R 2 ) + ϕ 2 n 2 H 1 (R 2 ) + •(1), n → ∞ . Therefore in view of (61), (65) ϕ n 2 H 1 (R 2 ) = ϕ (0) n 2 H 1 (R 2 ) + ϕ 1 n 2 H 1 (R 2 ) + ϕ 2 n 2 H 1 (R 2 ) + •(1), n → ∞ .
In the sequel, we shall denote respectively by v 1 n and v 2 n the sequences of solutions to the twodimensional free Schrödinger equation (S) associated to the Cauchy data ϕ 1 n and ϕ 2 n . Firstly, we shall establish in Paragraph 3.4 that

v 1 n (t, •) = ℓ k=1 e i(t-t (k) n )∆ w (k) + r (ℓ),1 n (t, •) ,
where lim sup n→∞

r (ℓ),1 n L ∞ (R,L φp (R 2 ))∩ST(R) ℓ→∞ -→ 0 and t (k) n -t (m) n n→∞ -→ ∞ for any k = m.
To investigate the sequence (v 2 n ), we will start by showing that v 2

n L ∞ (R,L 2p (R 2 ))
n→∞ -→ 0. As we shall see in Paragraph 3.5, the key point in this step relies on the fact that ϕ 2 n is unrelated to the scale 1. Combining this frequency information with the continuity of the Fourier transform (66)

F : L (2p) ′ (R 2 ) -→ L 2p (R 2 ) ,
where (2p) ′ denotes the conjugate exponent of 2p, we shall achieve our goal, namely that the sequence (v 2 n ) n≥0 converges strongly to 0 in L ∞ (R, L 2p (R 2 )), which allows us to extract the free concentrating waves of type (32).

Decomposition of v 1

n . The asymptotically orthogonal decomposition we have obtained in this paper for the component v 1 n is formulated in the following terms: Proposition 3.4. With the above notations, there exist a sequence (w (k) ) k≥0 of functions in H 1 rad (R 2 ) and a sequence (( t

(k) n ) n∈N ) k≥0 of real sequences such that (67) for any k = m, t (k) n -t (m) n → ∞, as n → ∞ ,
and, up to the extraction of a subsequence, we have for all ℓ ≥ 1

(68) v 1 n (t, •) = ℓ k=1 e i(t-t (k) n )∆ w (k) + r (ℓ),1 n (t, •), lim sup n→∞ r (ℓ),1 n L ∞ (R,L φp (R 2 ))∩ST(R) ℓ→∞ -→ 0 .
Furthermore we have as n tends to infinity

(69) M 0 (v 1 n ) = ℓ k=1 w (k) 2 L 2 (R 2 ) + M 0 (r (ℓ),1 n ) + •(1)
, and

(70) E 0 (v 1 n ) = ℓ k=1 ∇w (k) 2 L 2 (R 2 ) + E 0 (r (ℓ),1 n ) + •(1) .
Proof. Except for the remainder term, the proof of Proposition 3.4 is identical to those of Theorem 2 in [START_REF] Merle | Compactness at Blow-up Time for L2 Solutions of the Critical Nonlinear Schrödinger Equation in 2D[END_REF] and Theorem 1.6 in [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equation[END_REF]. So, the only point we must show here is

(71) lim sup n→∞ r (ℓ),1 n L ∞ (R,L φp (R 2 )) ℓ→∞ -→ 0 .
For that purpose, let us begin by recalling the useful properties of the remainder term r (ℓ),1 n proved in [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equation[END_REF]. Given P = (P n ) n≥0 a sequence of radial solutions to (S), if we denote by

η(P ) = sup E 0 (V ) 1 2 ; V ∈ V(P ) ,
where V(P ) is the set of solutions to (S) obtained as weak limits in L ∞ (R, H 1 (R 2 )) of subsequences of translated (P n (• + s n , •)) of P , then we have the following result: Lemma 3.5. Under the above notations, the sequence (r (ℓ),1 n ) n≥0 verifies:

(1) For every ℓ ≥ 1, r (ℓ),1 n is a uniformly (on n and ℓ) bounded energy solution to (S).

(2) For every ℓ ≥ 1 and every R ≥ 0 lim sup

n→∞ {|ξ|≤ 1 R }∪{|ξ|≥R} (1 + |ξ| 2 ) | r (ℓ),1 n (0, ξ)| 2 dξ ≤ lim sup n→∞ {|ξ|≤ 1 R }∪{|ξ|≥R} (1 + |ξ| 2 ) | ϕ 1 n (ξ)| 2 dξ .
(

) lim sup n→∞ η((r (ℓ),1 n )) ℓ→∞ -→ 0 . 3 
Now let us assume by contradiction that lim sup n→∞

r (ℓ),1 n L ∞ (R,L φp (R 2 ))
ℓ→∞ -→ ǫ 0 > 0. Thus there exist subsequences (n k ) k≥0 , (ℓ k ) k≥0 and (t k ) k≥0 such that for k big enough

r (ℓ k ),1 n k (t k , •) L φp (R 2 ) ≥ ǫ 0 2 •
Firstly, let us point out that there exists R 0 such that for k sufficiently large

(72) (Id -χ R0 (D))r (ℓ k ),1 n k (t k , •) L φp (R 2 ) ≤ ǫ 0 8 ,
where by

definition χ R (D)u(ξ) = 1 [ 1 R ,R] (|ξ|) u(ξ)
. Indeed the Cauchy data ϕ 1 n being 1-oscillating, it is easy to see that, in view of the conservation law [START_REF] Cazenave | Equations de Schrödinger non linéaires en dimension deux[END_REF] and Property (2) of Lemma 3.5, the H 1 -norm of the sequence (Id -χ R0 (D))r (ℓ k ),1 n k (t k , •) can be made smaller than any constant for R 0 and k large enough, which leads to (72) by virtue of the Sobolev embedding [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF]. Now R 0 being fixed so that (72) occurs, let us prove that for k large enough the following estimate holds

(73) χ R0 (D)r (ℓ k ),1 n k (t k , •) L φp (R 2 ) ≤ ǫ 0 8 •
To go to this end, let us begin by observing that since the function χ R0 (D)r

(ℓ k ),1 n k (t k , •) is spectrally localized in the set 1 R 0 ≤ |ξ| ≤ R 0 , then for any integer m (74) χ R0 (D)r (ℓ k ),1 n k (t k , •) ⇀ 0 in H m (R 2 ), as k → ∞ .
Indeed, combining Property (1) of Lemma 3.5 with the spectral localization ensures that for any integer m, the sequence (χ R0 (D) r

(ℓ k ),1 n k (t k , •)) k≥0 is uniformly bounded (on k) in H m (R 2
). Thus, up to the extraction of a subsequence, it converges weakly to a function F ∈ H m (R 2 ). But, in light of Property (3) of Lemma 3.5

η(χ R0 (D) r (ℓ k ),1 n k (t k , •)) k→∞ -→ 0 , which implies that F ≡ 0.
Finally given λ > 0, let us investigate the integral:

R 2 φ p χ R0 (D) r (ℓ k ),1 n k (t k , x) λ dx .
On the one hand combining the conservation laws ( 21)-( 22) with the radial estimate (63), we get for any δ > 0

I δ := |x|≥δ φ p χ R0 (D) r (ℓ k ),1 n k (t k , x) λ dx χ R0 (D) r (ℓ k ),1 n k (t k , •) 2p L 2p χ R0 (D) r (ℓ k ),1 n k (t k , •) 2 L 2 χ R0 (D) r (ℓ k ),1 n k (t k , •) 2p-2 L ∞ 1 δ p-1 • Thus ε > 0 being fixed, there is δ 0 > 0 such that |x|≥δ0 φ p χ R0 (D) r (ℓ k ),1 n k (t k , x) λ dx ≤ ε 2 •
On the other hand, since Property (74) ensures that χ R0 (D) r

(ℓ k ),1 n k (t k , •) L ∞ (|x|≤δ0)
k→∞ -→ 0, we find that

J δ0 := |x|≤δ0 φ p χ R0 (D) r (ℓ k ),1 n k (t k , x) λ dx χ R0 (D) r (ℓ k ),1 n k (t k , •) 2p L 2p (|x|≤δ0) χ R0 (D) r (ℓ k ),1 n k (t k , •) 2 L 2 (|x|≤δ0) χ R0 (D) r (ℓ k ),1 n k (t k , •) 2p-2 L ∞ (|x|≤δ0) k→∞ -→ 0 .
We deduce that for k large enough

|x|≤δ0 φ p χ R0 (D) r (ℓ k ),1 n k (t k , x) λ dx ≤ ε 2 •
This ends the proof of the desired estimate (71) and thus of Proposition 3.4.

Decomposition of v 2

n . As it is mentioned above, the heart of the matter relies on the fact that v 2 n L ∞ (R,L 2p (R 2 )) n→∞ -→ 0. So let us begin by establishing this key property.

Strong convergence to zero in L

∞ (R, L 2p (R 2 )).
Proposition 3.6. The sequence (v 2 n ) n≥0 of solutions to the two-dimensional free Schrödinger equation (S) associated to the Cauchy data (ϕ 2 n ) n≥0 converges strongly to 0 in L ∞ (R, L 2p (R 2 )).

Proof. In view of (66), it suffices to prove that v 2 n L ∞ (R,L (2p) ′ (R 2 )) → 0, as n tends to infinity, where denotes the partial Fourier transform in the variable x. By definition

v 2 n (t, •) = e i t ∆ ϕ 2
n , where the sequence ( D ϕ 2 n ) n≥0 is unrelated to the scale 1 and so it is therefore the same for the sequence ( D v 2 n (t, •)) n≥0 for any t ∈ R, since the support of the Fourier transform is preserved by the flow of the Schrödinger equation (S).

Now, let us apply Proposition 3.3 to the bounded sequence (f

n ) n≥0 in L 2 (R 2 ) defined by f n := D ϕ 2
n . Up to a subsequence extraction, this gives rise to (75)

f n (x) = ℓ j=1 f (j) n (x) + r (ℓ) n (x) ,
where the sequences (f

(j) n ) n≥0 are bounded sequences in L 2 (R 2
), which are with the vocabulary of [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] (see also Definition 1.15 in this paper), h 2,∞ (R 2 ) tends to 0 as ℓ tends to infinity. The sequence ( D ϕ 2 n ) n≥0 being unrelated to the scale 1, it is then clear that there are two possibilities for the scales h (j)

n : either they tend to infinity or to zero. Moreover, we have in view of (60) the following almost orthogonality identity

f n 2 L 2 (R 2 ) = ℓ j=1 f (j) n 2 L 2 (R 2 ) + r (ℓ) n 2 L 2 (R 2 ) + •(1), n → ∞ ,
that can be written

(76) ϕ 2 n 2 H 1 (R 2 ) = ℓ j=1 D -1 f (j) n 2 H 1 (R 2 ) + D -1 r (ℓ) n 2 H 1 (R 2 ) + •(1), n → ∞ .
Denoting by

v (j) n (t, •) := e i t ∆ D -1 f (j)
n , we shall begin by demonstrating that v

(j) n L ∞ (R,L 2p (R 2 ))
n→∞ -→ 0. For that purpose, we shall treat differently these sequences depending on whether the scale h

(j)
n tends to zero or infinity.

Let us first investigate the case when h

(j) n n→∞
-→ 0, and write for any fixed R > 0

R 2 v (j) n (t, ξ) 2p 2p-1 dξ = I (j) n,R + K (j) n,R , with I (j) n,R := 1 R ≤h (j) n |ξ|≤R F ( D -1 f (j) n )(ξ) 2p 2p-1 dξ .
Taking advantage of Hölder inequality, we infer that

I (j) n,R = 1 R ≤h (j) n |ξ|≤R F (∇ D -1 f (j) n )(ξ) 2p 2p-1 |ξ| -2p 2p-1 dξ ≤ C R ∇ D -1 f (j) n 2p 2p-1 L 2 (R 2 ) (h (j) n ) 2 2p-1 ≤ C R f (j) n 2p 2p-1 L 2 (R 2 ) (h (j) n ) 2 2p-1 n→∞ -→ 0 .
Along the same lines

K (j) n,R = h (j) n |ξ|≤ 1 R F ( D -1 f (j) n )(ξ) 2p 2p-1 dξ + h (j) n |ξ|≥R F ( D -1 f (j) n )(ξ) 2p 2p-1 dξ = h (j) n |ξ|≤ 1 R F (f (j) n )(ξ) 2p 2p-1 dξ (1 + |ξ| 2 ) p 2p-1 + h (j) n |ξ|≥R F (f (j) n )(ξ) 2p 2p-1 dξ (1 + |ξ| 2 ) p 2p-1 h (j) n |ξ|≤ 1 R |F (f (j) n )(ξ)| 2 dξ p 2p-1 + h (j) n |ξ|≥R |F (f (j) n )(ξ)| 2 dξ p 2p-1 .
Using the fact that (f

(j) n ) is h (j) n -oscillating, we deduce that lim sup n→∞ K (j) n,R R→∞ -→ 0 ,
which ends the proof of the desired result in the case when h

(j) n n→∞ -→ 0 .
Let us now consider the case when h

(j) n n→∞
-→ ∞ and write again for any fixed R > 0

R 2 v (j) n (t, ξ) 2p 2p-1 dξ = I (j) n,R + K (j) n,R .
Arguing as above, we obtain

I (j) n,R = 1 R ≤h (j) n |ξ|≤R F ( D -1 f (j) n )(ξ) 2p 2p-1 dξ ≤ C R D -1 f (j) n 2p 2p-1 L 2 (R 2 ) (h (j) n ) -2(p-1) 2p-1 n→∞ -→ 0 ,
and also

K (j) n,R h (j) n |ξ|≤ 1 R |F (f (j) n )(ξ)| 2 dξ p 2p-1 + h (j) n |ξ|≥R |F (f (j) n )(ξ)| 2 dξ p 2p-1 , which ensures that v (j) n L ∞ (R,L 2p (R 2 ))
n→∞ -→ 0 also in the case when h

(j) n n→∞ -→ ∞.
In view of (75), the solution to the two-dimensional free Schrödinger equation associated to the Cauchy data ϕ 2 n can be decomposed under the form:

v 2 n = ℓ j=1 v (j) n + R (ℓ) n ,
where R

(ℓ) n (t, .) := e i t ∆ D -1 r (ℓ) n . Thus v 2 n L ∞ (R,L 2p (R 2 )) ≤ ℓ j=1 v (j) n L ∞ (R,L 2p (R 2 )) + R (ℓ) n L ∞ (R,L 2p (R 2 )) .
Therefore according to the fact that for any j = 1,

• • • , ℓ, v (j) n L ∞ (R,L 2p (R 2 
)) → 0 as n tends to infinity, we are reduced to demonstrate that

lim sup n→∞ R (ℓ) n L ∞ (R,L 2p (R 2 )) ℓ→∞ -→ 0 .
Along the same lines as above, it suffices to establish that

lim sup n→∞ R (ℓ) n L ∞ (R,L (2p) ′ (R 2 )) ℓ→∞ -→ 0 , which in light of the definition of R (ℓ) n amounts to demonstrate that lim sup n→∞ F ( D -1 r (ℓ) n ) L (2p) ′ (R 2 ) ℓ→∞ -→ 0 . By hypothesis, lim sup n→∞ r (ℓ) n Ḃ0 2,∞ (R 2 ) ℓ→∞ -→ 0 ,
where by definition u Ḃ0 2,∞ (R 2 ) := sup

q∈Z 2 q ≤|ξ|≤2 q+1 | u(ξ)| 2 dξ 1 2 . Now writing R 2 F ( D -1 r (ℓ) n )(ξ) 2p 2p-1 dξ = q∈Z 2 q ≤|ξ|≤2 q+1 F ( D -1 r (ℓ) n )(ξ) 2p 2p-1 dξ ,
we deduce thanks to Hölder inequality

R 2 F ( D -1 r (ℓ) n )(ξ) 2p 2p-1 dξ ≤ q∈Z 2 2q(p-1) 2p-1 2 q ≤|ξ|≤2 q+1 F ( D -1 r (ℓ) n )(ξ) 2 dξ p 2p-1 q∈Z 2 2q(p-1) 2p-1 (1 + 2 2q ) p 2p-1 2 q ≤|ξ|≤2 q+1 r (ℓ) n (ξ) 2 dξ p 2p-1 r (ℓ) n 2p 2p-1 Ḃ0 2,∞ (R 2 ) , according to the fact that p > 1.
The proof of Proposition 3.6 is thus complete.

Decomposition within the framework of Orlicz norm.

Proposition 3.7. Under the above notations, there exist a sequence of profiles (ψ (j) ) j≥1 in P, a sequence (α (j) ) j≥1 of scales in the sense of Definition 1.3, and a sequence of real sequence ((t

(j) n ) n∈N ) j≥1 such that (77) ∀ j = i, either log α (j) n /α (i) n n→∞ -→ ∞ or α (j) n = α (i) n and - log |t (j) n -t (i) n | 2 α (j) n n→∞ -→ a ∈ [-∞, +∞[ ,
with in the case when a ∈ ]0, +∞[ ψ (j) (s) or ψ (i) (s) null for s < a, and up to a subsequence extraction, we have for all ℓ ≥ 1

(78) v 2 n (t, •) = ℓ j=1 α (j) n 2π e i(t-t (j) n )∆ ψ (j) -log | • | α (j) n + r (ℓ),2 n,1 (t, •), with lim sup n→∞ r (ℓ),2 n,1 L ∞ (R,L φp (R 2 )) ℓ→∞ -→ 0. Furthermore (79) E 0 (v 2 n ) = ℓ j=1 ψ (j) ′ 2 L 2 (R) + E 0 (r (ℓ),2 n,1 ) + •(1), n → ∞ .
Proof. In order to prove Proposition 3.7, we shall essentially follow the strategy developed in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF].

For the convenience of the reader, we will briefly give its schema.

Firstly setting w n (t, s) = v 2 n (t, e -s ), we deduce in light of Proposition 3.6, the conservation law ( 21) and the radial estimate (63) that for any M ∈ R (80)

w n L ∞ (R,L ∞ (]-∞,M[)) → 0, n → ∞ .
Then denoting by (81)

A 0 := lim sup n→∞ v 2 n L ∞ (R,L φp (R 2 )) ,
we infer in the case when A 0 > 0 that Lemma 3.8.

(82) sup

s≥0 t∈R 4 w n (t, s) A 0 2 -s n→∞ -→ ∞ .
Proof. Indeed if not, there is a constant C > 0 such that, up to the extraction of a subsequence (83) sup s≥0,n∈N t∈R

4 w n (t, s) A 0 2 -s ≤ C < ∞ .
But, if we designate by

ǫ n := v 2 n L ∞ (R,L 2p (R 2 
)) , we deduce directly from (83) that

|x|≤ǫn φ p 2 v 2 n (t, x) A 0 dx ≤ 2π ǫn 0 e 4 v 2 n (t,x) A 0 2 r dr ≤ 2π ǫn 0 e C dr ǫ n .
Combining the conservation law [START_REF] Cazenave | Equations de Schrödinger non linéaires en dimension deux[END_REF] and the radial estimate (63) for q = 2p, we infer that

ǫn≤|x|≤1 φ p 2 v 2 n (t, x) A 0 dx ≤ 2π 1 ǫn e 4C 2 v 2 n 2p p+1 L ∞ (R,L 2p ) ∇ϕ 2 n 2 p+1 L 2 r 2 p+1 A 2 0 -1 r dr ≤ 2π 1 ǫn e 4C 2 v 2 n 2p p+1 L ∞ (R,L 2p ) ∇ϕ 2 n 2 p+1 L 2 ǫ 2 p+1 n A 2 0 -1 r dr v 2 n 2(p-1) p+1 L ∞ (R,L 2p (R 2 )
) . Finally, using the simple fact that for any positive M , there exists a finite constant C M, p such that

sup |t|≤M φ p (t) t 2p < C M, p ,
we obtain in light of the radial estimate (63)

|x|≥1 φ p 2 v 2 n (t, x) A 0 dx v 2 n 2p L ∞ (R,L 2p (R 2 )) .
This leads finally to

R 2 φ p 2 v 2 n (t, x) A 0 dx n→∞ -→ 0 , uniformly on t ∈ R. Hence lim sup n→∞ v 2 n L ∞ (R,L φp (R 2 )) ≤ A 0 2 ,
which is in contradiction with (81).

Thus arguing as in the proof of Corollaries 2.4 and 2.5 in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF], we deduce that there exists a sequence (t

(1) n , α (1) 
n ) n≥0 in R × R + with (α (1) 
n ) tending to infinity and such that (84) 4 w n (t

(1) n , α (1) 
n ) A 0 2 -α (1) n n→∞ -→ ∞ , which ensures that for n large enough (85) A 0 2 α (1) n ≤ |w n (t (1) n , α (1) n )| ≤ C α (1) n + •(1) , n → ∞ , with C = (lim sup n→∞ ∇ ϕ 2 n L 2 )/ √ 2π.
Now to extract the first profile ψ (1) , we make use of the following lemma the proof of which is similar to that of Lemma 2.6 in [START_REF] Bahouri | On the lack of compactness in the 2D critical Sobolev embedding[END_REF]:

Lemma 3.9. Set ψ n (y) = 2π α (1) n v 2 n (t (1)
n , e -α (1) n y ), then there exists a constant C such that

A 0 2 √ 2π ≤ |ψ n (1)| ≤ C + •(1) , n → ∞ .
Moreover, there exists a profile ψ (1) ∈ P such that, up to a subsequence extraction

ψ ′ n ⇀ ψ (1) ′ in L 2 (R) and ψ (1) ′ L 2 (R) ≥ √ 2π 2 A 0 .
Now, we iterate the previous process and prove that the algorithmic construction converges. To this end, we consider (86) r (1) 

n (t, x) = α (1) n 2π e i(t-t (1) n )∆ ψ n -log |x| α (1) n -ψ (1) -log |x| α (1) n , and set A 1 := lim sup n→∞ r (1) n L ∞ (R,L φp (R 2 )) .
If A 1 = 0, we stop the process. If not, we apply the above arguments to r [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF] n . Clearly r [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF] n is bounded in H 1 rad (R 2 ) uniformly with respect to t ∈ R and satisfies

(87) E 0 (v 2 n ) = ψ (1) ′ 2 L 2 (R) + E 0 (r (1) n ) + •(1) , n → ∞ . Besides r (1) n L ∞ (R,L 2p (R 2 
)) → 0, as n tends to infinity. Indeed by definition r (1) 

n (t, x) = v 2 n (t, x) -g 1 n (t, x) , with g 1 n (t, x) = α (1) n 2π e i(t-t (1) n )∆ ψ (1) -log |x| α (1) n . Obviously g 1 n (t (1) n , •) L ∞ (R,L 2 (R 2 )) n→∞ -→ 0.
Moreover

g 1 n (t, •) L 2p (R 2 ) g 1 n (t, •) 1 2p-1 L 2 (R 2 ) g 1 n (t, •) 2p-2 2p-1 L 4p (R 2 ) g 1 n (t, •) 1 2p-1 L 2 (R 2 ) g 1 n (t, •) 2p-2 2p-1 H 1 (R 2 )
. Thus, in view of the conservation laws ( 21)-( 22), g 1 n tends to 0 in L ∞ (R, L 2p (R 2 )), which ensures that r [START_REF] Adachi | Trudinger type inequalities in R N and their best exponents[END_REF] n satisfies the same assumptions as v 2 n . Therefore along the same lines as above, there is a sequence (t

(2) n , α (2) n ) n≥0 in R × R + with (α (2)
n ) tending to infinity and ψ (2) in P such that (88) r (1) 

n (t, x) = α (2) n 2π e i(t-t (2) n )∆ ψ (2) -log |x| α (2) n + r (2) n (t, x) , with ψ (2) ′ L 2 (R) ≥ √ 2π 2 A 1 and E 0 (v 1 n ) = ψ (1) ′ 2 L 2 (R) + ψ (2) ′ 2 L 2 (R) + E 0 (r (2) n ) + •(1) , n → ∞ .
Let us now establish the orthogonality property (77) between the two first concentrating waves. If α

(1) n ⊥ α (2)
n , we are done. If not by rescaling the profiles, we can suppose that α 

n -t (2) n | 2 α n n→∞ -→ a ∈ [-∞, +∞] •
We claim, in the case when a > -∞, that ψ (2) ′ (y) = 0 for all y < a. Indeed, if not there exists a < a such that

(90) a -∞ ψ (2) ′ (y) 2 dy = δ > 0 .
By hypothesis if ǫ > 0 is chosen so that a + ǫ < a, then (91) -log |t

(1)

n -t (2) n | 2 α n ≥ a + ǫ, for n sufficiently large .
By construction, we have 2π α n r (1) n (t (2) n , e -αn• )

′ ⇀ ψ (2) ′ in L 2 (R) , which implies that a -∞ ψ (2) ′ (y) 2 dy = lim n→∞ I n ,
with

I n := +∞ -∞ 2π α n r (1)
n (t (2) n , e -αny ) ′ χ [0, a] (y) ψ (2) ′ (y) dy .

But

I n = 2π α n +∞ -∞
r (1) n (t (2) n , e -αny ) -r (1) n (t (1) n , e -αny )

′ χ [0, a] (y) ψ (2) ′ (y) dy + R n ,
where

R n = 2π α n +∞ -∞
r (1) n (t (1) n , e -αny )

′ χ [0, a] (y) ψ (2) ′ (y) dy .
In light of Lemma 3.9, we have 2π α n r (1) n (t (1) n , e -αn• )

′ ⇀ 0 in L 2 (R) . Consequently R n tends
to 0 as n goes to infinity. Now performing the change of variable y = -log |x| α n , we get

I n = R 2 ∇ r (1) n (t (2) n , x) -r (1) n (t (1) n , x) • ∇ α n 2π ψ (2) -log |x| α n dx + •(1) ,
as n tends to infinity, with ψ (2) (s) := s 0 χ [0, a] (y) ψ (2) ′ (y) dy. By Cauchy-Schwarz inequality, we get

I n ≤ ∇f n L 2 (R 2 ) ∇ e it (1) n ∆ -e it (2) n ∆ w (2) n L 2 (R 2 ) + •(1) , n → ∞ ,
where we notice f n (x) = r (1) n (0, x) and w (2) n (x) = α n 2π ψ (2) -log |x| α n . Invoking (87) and the conservation law of energy [START_REF] Cazenave | Equations de Schrödinger non linéaires en dimension deux[END_REF], this easily gives rise to

I n ∇ 1 -e i(t (2) n -t (1) n )∆ w (2) n L 2 (R 2 ) + •(1)
, n → ∞ . By Fourier-Plancherel formula, we have

∇ 1 -e i(t (1) n -t (2) n )∆ w (2) n 2 L 2 (R 2 ) |ξ| 1 -e -i(t (1) n -t (2) n )|ξ| 2 w (2) n 2 L 2 (R 2 ) .
Since by definition ( ψ (2) ) ′ is supported in [0, a], we have up to regularization thanks to Lemma 2.1

| w (2) 
n (ξ)| 1 [1,e a αn ] (|ξ|) √ α n |ξ| 2 + t n (ξ) , where t n H 1 (R 2 ) n→∞ -→ 0. Therefore ∇ 1 -e i(t (1) n -t (2) n )∆ w (2) n 2 L 2 (R 2 ) |ξ|≤e a αn |ξ| 2 |t (1) n -t (2) n | 2 |ξ| 4 | w (2) n (ξ)| 2 dξ + •(1) , n → ∞ ,
which implies in view of (91) that for n large enough

∇ 1 -e i(t (1) n -t (2) n )∆ w (2) n 2 L 2 (R 2 ) e -4 ǫ αn ∇ w (2) n 2 L 2 (R 2 ) + •(1) , n → ∞ .
This implies that I n n→∞ -→ 0, which yields a contradiction with (90), and then concludes the proof of the orthogonality property for ψ (2) . According to the fact that by construction ψ (2) is not null, we deduce that a < +∞.

At iteration ℓ, we get

v 2 n (t, x) = ℓ j=1 α (j) n 2π e i(t-t (j) n )∆ ψ (j) -log |x| α (j) n + r (ℓ) n (t, x) ,
where

ψ (ℓ) ′ L 2 (R) ≥ √ 2π 2 A ℓ-1 , with A ℓ-1 = lim sup n→∞ r (ℓ-1) n L ∞ (R,L φp (R 2 )) and (92) E 0 (v 2 n ) = ℓ j=1 ψ (j) ′ 2 L 2 (R) + E 0 (r (ℓ) n ) + •(1) , n → ∞, which leads to lim sup n→∞ E 0 (r (ℓ) n ) 1 -A 2 0 -A 2 1 -• • • -A 2 ℓ-1 .
Therefore A ℓ → 0 as ℓ → ∞, which ends the proof of Decomposition (78) as well as the stability estimate (79). This achieves the proof of Proposition 3.7.

Decomposition within the framework of Strichartz norm.

Proposition 3.10. Under the above notations, there exist a sequence (ϕ

(k) ) k≥0 of functions in L 2 rad (R 2 ), a sequence ((h (k) 
n ) n∈N ) k≥0 of positive real numbers sequences tending to 0 or infinity, and a sequence ((τ

(k) n ) n∈N ) k≥0 of real sequences such that (93) for any k = i, log h (k) n h (i) n + τ (k) n -τ (i) n h (k) n 2 → ∞, as n → ∞ ,
and, up to a subsequence extraction, we have for all ℓ ≥ 1

(94) v 2 n (t, •) = ℓ k=0 D -1 1 h (k) n e i(t-τ (k) n )∆ ϕ (k) • h (k) n + r (ℓ),2 n,2 (t, •) , with lim sup n→∞ r (ℓ),2 n,2 ST(R) ℓ→∞ -→ 0.
Besides, under notations of Theorem 1.10, we have the following stability estimates

(95) M 0 (v 2 n ) = k∈Λ ℓ ∞ (1) ϕ (k) 2 L 2 (R 2 ) + r (ℓ),2 n,2 (t, •) 2 L 2 (R 2 ) + •(1) , and (96) 
E 0 (v 2 n ) = k∈Λ ℓ 0 (1) ϕ (k) 2 L 2 (R 2 ) + E 0 (r (ℓ),2 n,2 ) + •(1), n → ∞ .
Proof. The proposition derives easily from Theorem 2 in [START_REF] Merle | Compactness at Blow-up Time for L2 Solutions of the Critical Nonlinear Schrödinger Equation in 2D[END_REF] applied to the sequence ( D ϕ 2 n ) n∈N .

3.6. End of the proof of Theorem 1.10. According to [START_REF] Keraani | On the defect of compactness for the Strichartz estimates of the Schrödinger equation[END_REF], [START_REF] Lam | Self trapped laser beams in plasma[END_REF] and under notations of Propositions 3.7 and 3.10, write

v 2 n = ℓ k=0 f (k) n + ℓ j=1 g (j) n + r (ℓ),2 n ,
and let us prove that lim sup n→∞

r (ℓ),2 n L ∞ (R,L φp (R 2 ))∩ST(R) ℓ→∞ -→ 0. Since r (ℓ),2 n L ∞ (R,L φp (R 2 )) ≤ v 2 n - ℓ j=1 g (j) n L ∞ (R,L φp (R 2 )) + ℓ k=0 f (k) n L ∞ (R,L φp (R 2 )) , Proposition 3.7 implies that lim sup n→∞ r (ℓ),2 n L ∞ (R,L φp (R 2 )) ≤ lim sup n→∞ ℓ k=0 f (k) n L ∞ (R,L φp (R 2 )) + •(1), as ℓ → ∞ ,
which in view of Proposition 1.13, gives rise to

(97) lim sup n→∞ r (ℓ),2 n L ∞ (R,L φp (R 2 )) ℓ→∞ -→ 0 .
Along the same lines, we have

r (ℓ),2 n ST(R) ≤ v 2 n - ℓ k=0 f (k) n ST(R) + ℓ j=1 g (j) n ST(R) .
We deduce in view of Proposition 3.10 that

lim sup n→∞ r (ℓ),2 n ST(R) ≤ lim sup n→∞ ℓ j=1 g (j) 
n To end the proof of Theorem 1.10, it remains to establish stability estimates [START_REF] Ibrahim | Double logarithmic inequality with a sharp constant[END_REF] and [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation[END_REF]. Firstly making use of the fact that

ST(R) + •(1), as ℓ → ∞ ,
∀j ∈ N, g (j) n L ∞ (R,L 2 (R 2 )) n→∞ -→ 0 ,
we end up with [START_REF] Ibrahim | Double logarithmic inequality with a sharp constant[END_REF] in view of the orthogonality equalities (69) and (95). Finally recalling that in view of Proposition 1.14, we have for any k ∈ N and any j ∈ N

sup t∈R R 2 ∇f (k) n (t, x) ∇g (j) n (t, x) dx n→∞ -→ 0 ,
we get the energy stability estimate [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation[END_REF] invoking the orthogonality equalities (70) and (96).

4. Proof of the nonlinear result 4.1. Strategy of proof. The proof of Theorem 1.16 is based on continuity arguments coupled with priori estimates. Two ingredients play a crucial role in establishing the priori estimates: the first one is the orthogonality between the concentrating elements involved in Decomposition [START_REF] Moyua | Restriction theorems and maximal operators related to oscillatory integrals in R 3[END_REF] which implies that the concentrating waves do not interact one with the other, and the second one is the non concentration of the whole mass of the solution to the free Schrödinger equation associated to the component unrelated to the scale 1 of the Cauchy data, in the sense of [START_REF] Rao | Applications of Orlicz spaces[END_REF].

To be more precise, let us start by designating for any integer ℓ ≥ 1

u ap,(ℓ) n (t, •) := ℓ j=1 g (j) n (t, •) + k∈Λ ℓ (1) f (k) n (t, •) + k∈Γ ℓ (1) U k (t -t (k) n , •) • Obviously we have (99) i ∂ t + ∆ u n (t, •) -u ap,(ℓ) n (t, •) = G (ℓ) n (t, •) , where G (ℓ) n (t, •) := f (u n (t, •)) - k∈Γ ℓ (1) f (U k (t -t (k) n , •)) .
Besides since (u n -v n ) |t=0 = 0, we have under notations of Theorems 1.10 and 1.16

u n -u ap,(ℓ) n |t=0 = r (ℓ) n (0, •) + k∈Γ ℓ (1) e -i t (k) n ∆ D -1 ϕ (k) -U k (-t (k) n , •) •
Thus in view of the asymptotic estimate (41), we get

(100) u n -u ap,(ℓ) n |t=0 -r (ℓ) n (0, •) H 1 (R 2 ) n→∞ -→ 0 .
Recall that by Theorem 1.10, we have lim sup

n→∞ e i t ∆ r (ℓ) n (0, •) L ∞ (R,L φp (R 2 ))∩ST(R) ℓ→∞ -→ 0 ,
which thanks to the Sobolev embedding [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF], the Strichartz estimate [START_REF] Druet | Multibumps analysis in dimension 2 -Quantification of blow up levels[END_REF] and the above property (100) gives rise to

(101) lim sup n→∞ e i t ∆ r (ℓ) n (0, •) L ∞ (R,L φp (R 2 ))∩ST(R) ℓ→∞ -→ 0 ,
where by definition r

(ℓ) n := u n -u ap, (ℓ) n . 

Now, let us split G (ℓ)

n on two parts as follows: (102)

G (ℓ) n = G (ℓ),1 n + G (ℓ),2 n , with G (ℓ),1 n := f (u ap,(ℓ) n (t, •)) - k∈Γ ℓ (1) f (U k (t -t (k) n , •))
, and establish the following lemmas which by standard arguments ensure Theorem 1.16.

Lemma 4.1. We have for any integer ℓ ≥ 1 (103)

G (ℓ),1 n ST * (R) n→∞ -→ 0 ,
where

G (ℓ),1 n
is the function defined by (102).

Lemma 4.2. Under the above notations, there exists an integer L so that for any ℓ ≥ L there is an integer N (ℓ) such that for any ℓ ≥ L and any n ≥ N (ℓ) the following holds. If for a positive time T , we have

(104) u n -u ap,(ℓ) n ST([0,T ]) ≤ 10 e it∆ r (ℓ) n (0, •) 1 2 L ∞ (R,L φp (R 2 ))∩ST(R) + G (ℓ),1 n 1 2 ST * (R)
and

(105) u n -u ap,(ℓ) n -e it∆ r (ℓ) n (0, •) L ∞ ([0,T ],H 1 (R 2 ))
≤ 10 e it∆ r (ℓ) n (0, •)

1 2 L ∞ (R,L φp (R 2 ))∩ST(R) + G (ℓ),1 n 1 2 ST * (R) , then u n -u ap,(ℓ) n ST([0,T ]) ≤ e it∆ r (ℓ) n (0, •) 1 2 L ∞ (R,L φp (R 2 ))∩ST(R) + G (ℓ),1 n 1 2 ST * (R)
and

u n -u ap,(ℓ) n -e it∆ r (ℓ) n (0, •) L ∞ ([0,T ],H 1 (R 2 )) ≤ e i t ∆ r (ℓ) n (0, •) 1 2 L ∞ (R,L φp (R 2 ))∩ST(R) + G (ℓ),1 n 1 2
ST * (R) .

Before going into the proof of Lemmas 4.1 and 4.2, let us show how they lead to the result. First of all, in view of the scattering results derived in [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF] and [START_REF] Ibrahim | Scattering for the two dimensional NLS with exponential nonlinearity[END_REF], the stability estimates ( 30)- [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation[END_REF], the asymptotic estimate [START_REF] Planchon | Bilinear virial identities and applications[END_REF] and the Strichartz estimates [START_REF] Druet | Multibumps analysis in dimension 2 -Quantification of blow up levels[END_REF], we infer that for any integer n there is a positive constant C n such that (106)

u n ST(R) + sup ℓ u ap,(ℓ) n ST(R) ≤ C n .
This implies that the first hypothesis (104) holds for T small enough. Secondly, for any integers n and ℓ, the function

u n -u ap,(ℓ) n -e i t ∆ r (ℓ) n (0, •) which belongs to C(R, H 1 (R 2 )
) is null at time t = 0. This ensures, for T sufficiently small, the second hypothesis (105).

Now let us set

T * := sup T ∈ R + ; ∀ T < T , (104) and (105) hold on [0, T ] .

If T * < +∞, then necessarily u n -u ap,(ℓ) n ST([0,T * ]) = 10 e i t ∆ r (ℓ) n (0, •) 1 2 L ∞ (R,L φp (R 2 ))∩ST(R) + G (ℓ),1 n 1 2 ST * (R) or u n -u ap,(ℓ) n -e i t ∆ r (ℓ) n (0, •) L ∞ ([0,T * ],H 1 (R 2 )) = 10 e i t ∆ r (ℓ) n (0, •) 1 2 L ∞ (R,L φp (R 2 ))∩ST(R) + G (ℓ),1 n 1 2
ST * (R) , which is in contradiction with the conclusion of Lemma 4.2 and thus according to (100) achieves the proof of Theorem 1.16. . Firstly, note that for any k ∈ Γ ℓ (1)

(107) f (U k (• -t (k) n , •)) ST * (|t-t (k) n |≥A) A→∞ -→ 0 , and (108) 
U k (• -t (k) n , •) ST(|t-t (k) n |≥A) A→∞ -→ 0 .
Indeed by virtue of scattering results in [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF] and [START_REF] Colliander | Energy critical NLS in two space dimension[END_REF], we have

f (U k ) ST * ([T,+∞[)∪ST * (]-∞,-T ])
T →∞ -→ 0 , which ensures (107) and implies that there exist unique solutions w k ± of the free linear Schrödinger equation such that

U k -w k ± L ∞ (I ± T ,H 1 (R 2 ))∩ST(I ± T ) T →∞ -→ 0 , with I + T = [T, +∞[ and I - T =] -∞, -T ]. We deduce that U k (• -t (k) n , •) ST(|t-t (k) n |≥A) ≤ (U k -w k + )(τ, •) ST(τ ≥A) + w k + (τ, •) ST(τ ≥A) + (U k -w k -)(τ, •) ST(τ ≤-A) + w k -(τ, •) ST(τ ≤-A)
, which by virtue of Strichartz estimates [START_REF] Druet | Multibumps analysis in dimension 2 -Quantification of blow up levels[END_REF] leads to (108).

Along the same lines in view of the orthogonality condition (67), we have for any fixed A and all Γ ℓ (1)

∋ k ′ = k (109) f (U k ′ (• -t (k ′ ) n , •)) ST * (|t-t (k) n |≤A) n→∞ -→ 0 , and (110) 
U k ′ (• -t (k ′ ) n , •) ST(|t-t (k) n |≤A) n→∞ -→ 0 .
Moreover again thanks to the orthogonality condition (67), we infer that (111)

U k ′ (• -t (k ′ ) n , •) L ∞ (|t-t (k) n |≤A,L φp (R 2 )) n→∞ -→ 0 ,
which according to the Sobolev embedding

L φp (R 2 ) ֒→ L 2p (R 2 ) leads to (112) U k ′ (• -t (k ′ ) n , •) L ∞ (|t-t (k) n |≤A,L 2p (R 2 )) n→∞ -→ 0 .
Indeed, combining density arguments with scattering results, we find that for any ε > 0, there is a regular function ϕ

(k ′ ) ε such that (113) U k ′ (t -t (k ′ ) n , •) = e i(t-t (k ′ ) n )∆ ϕ (k ′ ) ε + R (k ′ ) ε (t -t (k ′ ) n , •) , with R (k ′ ) ε (t -t (k ′ ) n , •) L ∞ (|t-t (k) n |≤A,H 1 (R 2 
)) ≤ ε, for n large enough. Now the dispersive estimate [START_REF] Colliander | Energy critical NLS in two space dimension[END_REF] ensures that

e i(t-t (k ′ ) n )∆ ϕ (k ′ ) ε L ∞ (R 2 ) 1 |t -t (k ′ ) n | ϕ (k ′ ) ε L 1 (R 2 ) ,
which in view of (67) gives rise to

e i(•-t (k ′ ) n )∆ ϕ (k ′ ) ε L ∞ ({|t-t (k) n |≤A}×R 2 ) n→∞ -→ 0 .
We deduce that when |t -t

(k) n | ≤ A, we have for any fixed λ R 2 φ p e i(t-t (k ′ ) n )∆ ϕ (k ′ ) ε (x) λ dx C λ e i(•-t (k ′ ) n )∆ ϕ (k ′ ) ε 2p L ∞ (|t-t (k) n |≤A,L 2p (R 2 )) ϕ (k ′ ) ε 2 L 2 (R 2 ) e i(•-t (k ′ ) n )∆ ϕ (k ′ ) ε 2(p-1) L ∞ ({|t-t (k) n |≤A}×R 2 ) n→∞ -→ 0 .
Invoking the approximation (113) and the Sobolev embedding [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF], we end the proof of (111).

Further note that, for any integer k in Γ ℓ (1), the same reasoning conducts to

(114) U k (• -t (k) n , •) L ∞ (|t-t (k) n |≥A,L φp (R 2 )) A→∞ -→ 0 , and (115) 
U k (• -t (k) n , •) L ∞ (|t-t (k) n |≥A,L 2p (R 2 )) A→∞ -→ 0 .
Observe also that in light of the asymptotic estimate [START_REF] Planchon | Bilinear virial identities and applications[END_REF], the following estimate holds for any k ≥ 1 belonging to Γ ℓ (1)

(116) U k L ∞ (R,H 1 (R 2 )) ≤ D -1 ϕ (k) H 1 (R 2 )
. Indeed firstly in view of the the conservation laws (3) and [START_REF] Colliander | Tensor products and correlation estimates with applications to nonlinear Schrödinger equations[END_REF], we obtain for any s ∈ R

U k L ∞ (R,L 2 (R 2 )) = U k (s, •) L 2 (R 2 ) ≤ U k (s, •) -e is∆ D -1 ϕ (k) L 2 (R 2 ) + D -1 ϕ (k) L 2 (R 2 )
, which according to [START_REF] Planchon | Bilinear virial identities and applications[END_REF] implies that

U k L ∞ (R,L 2 (R 2 )) ≤ D -1 ϕ (k) L 2 (R 2 )
. Secondly the conservation of Hamiltonian (4) gives for any integer n

∇U k 2 L ∞ (R,L 2 (R 2 )) ≤ ∇U k (-t (k) n , •) 2 L 2 (R 2 ) + R 2 F p (U k (-t (k) n , x)) dx .
Obviously, we have

∇U k (-t (k) n , •) 2 L 2 (R 2 ) ≤ ∇U k (-t (k) n , •) -e -i t (k) n ∆ ∇ D -1 ϕ (k) L 2 (R 2 ) + ∇ D -1 ϕ (k) L 2 (R 2 ) . Besides (117) R 2 F p (U k (-t (k) n , x)) dx n→∞ -→ 0 .
Indeed combining the asymptotic condition [START_REF] Planchon | Bilinear virial identities and applications[END_REF] together with the orthogonality condition (67) and the dispersive estimate [START_REF] Colliander | Energy critical NLS in two space dimension[END_REF], we infer that

lim sup n→∞ U k (-t (k) n , •) L φp (R 2 ) = 0 ,
which leads to the result in view of Proposition 1.7 and the Sobolev embedding [START_REF] Bourgain | Some new estimates on oscillatoryon integrals, Essays on Fourier Analysis in Honor of Elias M. Stein[END_REF]. This competes the proof of (116).

It will be useful later on to stress that the estimates [START_REF] Ibrahim | Double logarithmic inequality with a sharp constant[END_REF], [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation[END_REF] and [START_REF] Planchon | Bilinear virial identities and applications[END_REF] imply that for any integers ℓ ≥ L 0 (118) u ap,(ℓ)

n = u ap,(L0) n + ρ n,ℓ,L0 , with (119) lim sup n→∞ ρ n,ℓ,L0 L ∞ (R,H 1 (R 2 ))∩ST(R)∩L 4 (R,L 8 (R 2 )) ≤ C(L 0 ) L0→∞ -→ 0 .
This obviously ensures that (120) sup

n,ℓ u ap,(ℓ) n L ∞ (R,H 1 (R 2 ))∩ST(R)∩L 4 (R,L 8 (R 2 )) 1 .
As well, it is crucial to emphasize that combining the stability estimate [START_REF] Kenig | Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation[END_REF] together with the asymptotic estimate [START_REF] Planchon | Bilinear virial identities and applications[END_REF] and the hypothesis H(ϕ n ) ≤ 1, we find that

(121) lim sup n→∞ ∇u ap,(ℓ) n L ∞ (R,L 2 (R 2 )) ≤ 1 ,
for any integer ℓ ≥ 1.

Let us end this paragraph by the following useful estimates where we denote by I any time slab. Their proofs are postponed to Appendix A.

Proposition 4.3. For any 0 < δ < 1, there exists a real number 0 < ǫ 0 < 1 such that for any real number 0 < ǫ ≤ ǫ 0 , any function w in L ∞ (I, H 1 ) ∩ ST(I) satisfying ∇w L ∞ (I,L 2 ) < 1 -δ and any function v in L 4 (I, L 4 ), the following estimate holds:

(122) e 4π|w| 2 |w| 2p v L 4 3 (I,L 4 
3 ) ≤ T ǫ w ST(I)∩L ∞ (I,H 1 ) w |v| 1-ǫ L 4 (I,L 4 ) v ǫ L 4 (I,L 4 ) ,
where T ǫ is a non decreasing locally bounded function from R + into R + , depending only on ǫ.

Proposition 4.4. For any 0 < δ < 1, there exists a real number 0 < ǫ 0 < 1 such that for any real number 0

< ǫ ≤ ǫ 0 , any function w in L ∞ (I, H 1 ) ∩ ST(I) satisfying ∇w L ∞ (I,L 2 ) ≤ 1 and w L ∞ (I,L φp ) < 1 -δ √ 4π
, the following estimate holds

(123) e 4π(1+ǫ)|w| 2 |w| 2p L 2 (I,L 2 ) ≤ T ǫ w L ∞ (I,H 1 )∩ST(I)∩L 4 (I,L 8 ) w L ∞ (I,L 2p ) ,
where T ǫ is a non decreasing locally bounded function from R + into R + , depending only on ǫ.

Proposition 4.5. Under the above notations, there is a positive real number ǫ 1 so that for any 0 ≤ ǫ ≤ ǫ 1 , the following estimate holds for any ℓ ≥ 1

I e 8π|u ap,(ℓ) n (t,•)| 2 |u ap,(ℓ) n (t, •)| 4 1+ǫ L 1+ǫ dt 1 ,
provided that n is sufficiently large.

4.4.

Proof of Lemma 4.2. The proof of Lemma 4.2 proceeds in several steps. The first step consists in the construction of a suitable finite partition of R. This crucial step is ensured by the following lemma:

Lemma 4.6. For any positive constant c, there exist an integer N , a real number ǫ 1 and (I j ) j∈J a finite partition of R, depending on n but of fixed cardinality J, such that for all n ≥ N , for all 0 < ǫ ≤ ǫ 1 and for all j in J = 1, • • • , J}, the following estimate holds

(130) e 4π(1+ǫ)|u ap,(ℓ) n | 2 |u ap,(ℓ) n | 2p L 2 (Ij ×R 2 ) ≤ c , for any integer ℓ ≥ 1.
Proof. Under notations of (118) and (119), we infer that for any positive real number ǫ, there is a positive constant C ǫ such that for any time slab I e 4π(1+ǫ)|u ap,(ℓ)

n | 2 |u ap,(ℓ) n | 2p L 2 (I×R 2 ) e 4π(1+2ǫ)|u ap,(L 0 ) n | 2 |u ap,(L0) n | 2p L 2 (I×R 2 ) + e Cǫ|ρ n,ℓ,L 0 | 2 |ρ n,ℓ,L0 | 2p L 2 (R×R 2 ) .
Since in view of (119), lim sup

n→∞ e Cǫ|ρ n,ℓ,L 0 | 2 |ρ n,ℓ,L0 | 2p L 2 (R×R 2
) can be made smaller than any constant for L 0 large enough, we just need to establish (130) for 1 ≤ ℓ ≤ L 0 . Now the proof of Estimate (130) goes the same lines as the proof of Lemma 4.1 by refining the finite partition of R defined by (124):

I A k = |t -t (k) n | ≤ A for k ∈ Γ ℓ (1) and J A = |t -t (k ′ ) n | ≥ A, ∀k ′ ∈ Γ ℓ (1)
, where as in the proof of Lemma 4.1, the real number A is suitably fixed.

Note firstly that according to Proposition 1.13 and estimates ( 42) and ( 114), there exist an integer N 1 , and real numbers 0 < δ 1 < 1 and A 1 > 0 such that for all n ≥ N 1 , all A ≥ A 1 and all 1 ≤ ℓ ≤ L 0 , the following estimate holds (131)

u ap,(ℓ) n L ∞ (J A ,L φp (R 2 )) < 1 -δ 1 √ 4π •
Invoking Proposition 4.4, we infer from Estimate (120) that e 4π(1+ǫ)|u ap,(ℓ)

n | 2 |u ap,(ℓ) n | 2p L 2 (J A ×R 2 ) u ap,(ℓ) n L ∞ (J A ,L 2p (R 2 ))
, provided that ǫ is small enough.

Finally applying Proposition 3.6 and Estimate (115), we deduce that there exist an integer N 2 , and a positive real number A 2 so that for ǫ sufficiently small, for all n ≥ N 2 , all A ≥ A 2 and all 1 ≤ ℓ ≤ L 0 , we have (132) e 4π(1+ǫ)|u ap,(ℓ)

n | 2 |u ap,(ℓ) n | 2p L 2 (J A ×R 2 ) ≤ c .
To end the proof of the lemma, we must address the case of the intervals I A k , where the real A is fixed so that Estimate (132) holds. Arguing as in Paragraph 4.3, we claim that there is a positive constant C ǫ such that (133) e 4π(1+ǫ)|u ap,(ℓ)

n | 2 |u ap,(ℓ) n | 2p L 2 (I A k ×R 2 ) ≤ C e 4π(1+2ǫ)|wn| 2 |w n | 2p L 2 (I A k ×R 2 ) + C e Cǫ| wn| 2 | w n | 2p L 2 (I A k ×R 2 ) , with w n = u ap,(ℓ) n -U k (• -t (k) n , •) and w n = U k (• -t (k) n ,
•) • Along the same lines as above, taking advantage of Proposition 1.13 and estimates [START_REF] Rao | Applications of Orlicz spaces[END_REF] and (110), we infer that there exist an integer N 2 and a real number 0 < δ 2 < 1 such that for all n ≥ N 2 , we have

(134) u ap,(ℓ) n -U k (• -t (k) n , •) L ∞ (I A k ,L φp (R 2 )) < 1 -δ 2 √ 4π , for any k ∈ Γ ℓ (1), with 1 ≤ ℓ ≤ L 0 .
By virtue of Proposition 4.4, this leads to

e 4π(1+2ǫ)|wn| 2 |w n | 2p L 2 (I A k ×R 2 ) w n L ∞ (I A k ,L 2p (R 2 
)) , for ǫ small enough and n sufficiently large. Now C designating the constant appearing in Estimate (133), we deduce thanks to Proposition 3.6 and Estimate (112) that

(135) e 4π(1+2ǫ)|wn| 2 |w n | 2p L 2 (I A k ×R 2 ) ≤ c 2C ,
provided that n is sufficiently large.

Finally applying the same reasoning as in Paragraph 4.3 page 33, we find that

e Cǫ| wn| 2 | w n | 2p L 2 (I A k ×R 2 ) e Cǫ|(U k -U ν k )(•-t (k) n ,•)| 2 | w n | 2p L 2 (I A k ×R 2 ) , where U ν k is a regular function satisfying U k -U ν k L ∞ (I A k ,H 1 (R 2 )) ≤ ν . Dealing separately the cases (U k -U ν k )(t -t (k) n , •) L ∞ ≤ 1 and (U k -U ν k )(t -t (k) n , •) L ∞ ≥ 1, we get as above making use of Trudinger-Moser inequality (9) e Cǫ| wn| 2 | w n | 2p L 2 (I A k ×R 2 ) | w n | 2p L 2 (I A k ×R 2 ) + I A k R 2 | w n | 4p(1+β) dx 1 1+β dt 1 2 ,
with β a small positive real number fixed according to ν so that (129) holds.

But by definition, the above estimate also writes

e Cǫ| wn| 2 | w n | 2p L 2 (I A k ×R 2 ) U k 2p L 4p (I A ×R 2 ) + I A R 2 |U k | 4p(1+β) dx 1 1+β dt 1 2 , with I A = [-A, A].
Recall that the function U k belongs to L ∞ (R, H 1 ) ∩ ST (R), which implies that there is (J A m ) m∈M a finite partition of I A (depending on k, but of cardinality independent of n) so that

e Cǫ| wn| 2 | w n | 2p L 2 (τ t (k) n (J A m )×R 2 ) ≤ c 2C , where τ t (k) n (J A m ) := t ∈ R / t -t (k) n ∈ J A m
and where C denotes the constant appearing in Estimate (133). Since k ∈ Γ ℓ (1), with 1 ≤ ℓ ≤ L 0 , this ends the proof of the desired estimate (130).

The second step in the proof of Lemma 4.2 amounts to establish the following estimate on the remainder term in Taylor's development of G (ℓ),2 n : Lemma 4.7. Under hypothesis of Lemma 4.2, there exist positive real numbers ǫ 2 and γ 0 < 1 such that for any 0 < ǫ ≤ ǫ 2 , the following estimate holds: 

(136) G (ℓ),2 n -φ p (u ap,(ℓ) n )(u n -u ap,(ℓ) n ) -u ap,(ℓ) n φ ♭ p (u ap,(ℓ) n )(u n -u ap,(ℓ) n ) ST * ([0,T ]) (u n -u ap,(ℓ) n ) 2 e 4π(1+ǫ)|u ap,(ℓ) n | 2 |u ap,(ℓ) n | 2(p-1) ∇u ap,(ℓ) n L 4 3 ([0,T ],L 4 
G (ℓ),2 n ST * (I T j+1 ) e i t ∆ r (ℓ) n (0, •) ST(I T j+1 )∩L ∞ (I T j+1 ,L φp (R 2 )) + c 2 b j+1,n,ℓ + c 3 u n -u ap,(ℓ) n ST(I T j+1 )
, where c 2 and c 3 are small constants, which ends the proof of the claim according to (146).

Since the partition (I j ) j∈J is finite, it follows from (147) that for all j in J the following estimate holds This section is devoted to the proof of Propositions 4.3, 4.4 and 4.5. For that purpose, we shall use the following logarithmic estimate proved in [START_REF] Ibrahim | Double logarithmic inequality with a sharp constant[END_REF], which compensates the fact that the Sobolev space H 1 (R 2 ) does not embed into L ∞ (R 2 ): Obviously, for any 0 < ǫ < 1 we have ≤ T ǫ0 w ST(I)∩L ∞ (I,H 1 (R 2 )) |w| |v| L ∞ (I,L 2p (R 2 )) , together with the Sobolev embedding of H 1 (R 2 ) into L q (R 2 ), for any 2 ≤ q < ∞, we infer that there is a non decreasing locally bounded function T ǫ from R + into R + such that e 4π(1+ǫ)|w| 2 |w| 2p L 2 (I,L 2 (R 2 ))

T ǫ w L ∞ (I,H 1 )∩ST(I)∩L 4 (I,L 8 ) w L ∞ (I,L 2p (R 2 )) .

This ends the proof of the proposition. A.3. Proof of Proposition 4.5. Taking advantage of (118) and (119) and arguing as in the proof of Lemma 4.6, one can be restricted to the proof of the proposition for 1 ≤ ℓ ≤ L 0 , with L 0 an integer fixed sufficiently large. To this end, we will again use the partition of R defined by (124) with A a real number fixed big enough. Our purpose is to show that if ǫ is small enough, then there is a an integer N such that for all n ≥ N and any integer k in Γ ℓ (1), with 1 ≤ ℓ ≤ L 0 , we have 4(1+ǫ) dx , provided that n is large enough, we end up with the result by the same reasoning as above. This ends the proof of the proposition.

( 2 )

 2 f (u) = φ p ( √ 4π |u|) u with p > 1 ,and φ p (s) = e s 2 -

n

  tends to infinity, the sequence f (k)

  (j)n -oscillating and where lim sup n→∞ r (ℓ) n Ḃ0

  n = α n . Up to a subsequence extraction, we can suppose that

Invoking Proposition 3 . 4 ,

 34 this ends the proof of Decomposition[START_REF] Ibrahim | Scattering for the two dimensional NLS with exponential nonlinearity[END_REF].

4. 2 .

 2 Some estimates on the approximate solution u ap,(ℓ) n . Let us begin by pointing out some useful properties on the elements involved in the approximate solution u ap,(ℓ) n

3 (R 2 1 n 2 n

 212 )) + u n -u ap,(ℓ) n 1+γ0 ST([0,T ]) , where φ p (w) := φ p (|w|) + 4π |w| 2 φ p-1 (|w|) and φ ♭ p (w) := 4πwφ p-1 (|w|). which thanks to Strichartz estimates (26) gives rise to b j+1,n,ℓ b j,n,ℓ + G (ℓ),ST * (I T j+1 ) + G (ℓ),ST * (I T j+1 ) . But in view of (144) and (145), we have for n and ℓ sufficiently large (148)

1 n 1 n

 11 (149) b j,n,ℓ e i t ∆ r (ℓ) n (0, •)ST(I T j )∩L ∞ (I T j ,L φp (R 2 )) + G (ℓ),ST * (I T j ), and thus in view of (146),u n -u ap,(ℓ) n ST(I T j ) e i t ∆ r (ℓ) n (0, •) ST(I T j )∩L ∞ (I T j ,L φp (R 2 )) + G (ℓ),ST * (I T j ) • We deduce that (150) u n -u ap,(ℓ) n ST([0,T ]) e i t ∆ r (ℓ) n (0, •) ST([0,T ])∩L ∞ ([0,T ],L φp (R 2 )) + G (ℓ),1 n ST * ([0,T ]) •According to Estimate (149), this achieves the proof of the lemma and thus of Theorem 1.16.Appendix A. Proof of Propositions 4.3, 4.4 and 4.5

Proposition A. 1 . 2 L ∞ ≤ λ u 2 4 3 (I,L 4 3× I R 2 e

 122442 Let 0 < α < 1. For any λ > 1 2παand any 0 < µ ≤ 1, a constant C λ > 0 exists such that for any function u ∈ H 1 (R 2 ) ∩ C α (R 2 ), we have(151) u Hµ log C λ + 8 α µ -α u C α u Hµ ,where C α denotes the inhomogeneous Hölder space of regularity index α (consult[START_REF] Triebel | Theory of function spaces[END_REF] for an introduction to inhomogeneous Hölder spaces)and H µ the Sobolev space endowed with the normu 2 Hµ := ∇u 2 L 2 + µ 2 u 2 L 2 . A.1. Proof of Proposition 4.3. Let us now go to the proof of Proposition 4.3. Firstly, taking advantage of Hölder inequality, we get for any 0 < ǫ 0 < 1 (152) e 4π|w| 2 |w| 2p v L (R 2 )) ≤ |w| |v| 1-ǫ0 L 4 (I,L 4 (R 2 )) 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dt dx

R 2 e

 2 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx ≤ e 4π(1-ǫ) w(t,•) 

4 3 (I,L 4 3 4 3

 344 (R 2 )) |w| |v| 1-ǫ0 L 4 (I,L 4 (R 2 )) v ǫ0 L 4 (I,L 4 (R 2 )) × w 2 r L 4 (I,L 4 (R 2 )) + w 2 r ST(I) w 2 r L ∞ (I,L 4 (R 2 )) .This implies that e 4π|w| 2 |w| 2p v L

R 2 e 4 W 1 , 4 (R 2

 24142 8π(1+ǫ)|w(t,x)| 2 |w(t, x)| 4p dx w(t, •) ) w 2p L ∞ (I,L 2p (R 2 )) + w 2p L ∞ (I,L 2p r (R 2 )) .Combining the following Hölder inequalityw L p+4 (I,L p+4 (R 2 )) ≤ w 4 p+4 L 4 (I,L 8 (R 2 )) w p p+4

1 e 2 L ∞ R 2 e

 122 •)| 2 |u ap,(ℓ) n (t, •)| 4 1+ǫ L 1+ǫ (R 2 ) dt 1 ,andI∩J A e 8π|u ap,(ℓ) n (t,•)| 2 |u ap,(ℓ) n (t, •)| 4 1+ǫ L 1+ǫ (R 2 ) dt 1 . Writing for any 0 < ǫ < 8π|u ap,(ℓ) n (t,•)| 2 |u ap,(ℓ) n (t, •)| 4 1+ǫ L 1+ǫ (R 2 ) ≤ e 4π(1-ǫ) u ap,(ℓ) n (t,•) 4π(1+3ǫ)|uap,(ℓ) n (t,x)| 2 |u ap,(ℓ) n (t, x)|

  O(ǫ 0 ) . By hypothesis, one can choose ǫ 0 and ǫ small enough so thatr(1 + 2ǫ) ∇w L ∞ (R,L 2 (R 2 )) ≤ 1 -δ 2 •Applying Proposition 1.6, we deduce thatR 2 e 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx e 4π(1-ǫ) w(t,•) 2 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx e 4π(1-ǫ) w(t,•) 2 L ∞ w(t, •)In the case when w(t, •) L ∞ ≤ 1, we easily getR 2 e 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx v(t, •) 2ǫ0Now in the case when w(t, •) L ∞ ≥ 1, we make use of the logarithmic inequality (151) which gives for any fixed λ > 1 Hµ = ∇w(t, •) 2L 2 + µ 2 w(t, •) 2 L 2 ≤ 1 + µ 2 M 2 , we infer in view of the Sobolev embedding W 1,4 (R 2 ) ֒→ C 1/2 (R 2 ) that µ > 0 and λ > 1 π can be fixed so that R 2 e 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx 1 + w(t, •) W 1,4 (R 2 )Since we are dealing with the case w(t, •) L ∞ ≥ 1, this gives rise to R 2 e 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx w(t, •)

	with r =	2 2 -ǫ 0	= 1 + L ∞
						1
				v(t, •) 2ǫ0 L 4 (R 2 )	R 2	|w(t, x)| 2r(2p-1) dx	r ,
	which leads to			
						2(2p-3+ǫ0)
		R 2				L ∞
						1
	(153)			× v(t, •) 2ǫ0 L 4 (R 2 )	R 2	|w(t, x)| 4 dx	r
				e 4π(1-ǫ 2 ) w(t,•) 2 L ∞ v(t, •) 2ǫ0 L 4 (R 2 )	R 2	|w(t, x)| 4 dx	1 r .
						1
					L 4 (R 2 )	R 2	|w(t, x)| 4 dx	r .
			π	,	
						2 1	4π(1-ǫ 2 )λ u(t,•) 2 Hµ
	(154)				w(t, •) Hµ	1
				× v(t, •) 2ǫ0 L 4 (R 2 )	R 2	|w(t, x)| 4 dx	r .
	Recalling that			
				w(t, •) 2	
						4
						r
						1
				× v(t, •) 2ǫ0 L 4 (R 2 )	R 2	|w(t, x)| 4 dx	r .
					2 L ∞	4 r W 1,4 (R 2 ) v(t, •) 2ǫ0 L 4 (R 2 )
	× which thanks to Hölder inequality entails that R 2 e 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx ≤ e 4π(1-ǫ) w(t,•) 2 R 2 e 4π(1+ǫ)|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx , 1 × R 2 r . |w(t, x)| 4 dx Invoking (152), we get by time integration L ∞ v(t, •) 2ε0 L 4 (R 2 ) 1 e 4π|w| 2 |w| 2p v L
						r ,

× R 2 e 4πr(1+ǫ)|w(t,x)| 2 |w(t, x)| 2r(2p-1) dx e R 2 e 8π|w(t,x)| 2 |v(t, x)| 2ǫ0 |w(t, x)| 2(2p-1) dx 1 + w(t, •) C

  1-ǫ0 L 4 (I,L 4 (R 2 )) v ǫ0 L 4 (I,L 4 (R 2 )) , with T ǫ0 a non decreasing locally bounded function from R + into R + , which achieves the proof of the proposition. A.2. Proof of Proposition 4.4. The proof of Proposition 4.4 is in the same spirit as that of Proposition 4.3. Writing that for any ǫ > 0 4π(1+3ǫ)|w(t,x)| 2 |w(t, x)| 4p dx , we get in the case when w(t, •) L ∞ ≤ 1 (recalling that p ≥ 2) R 2 e 8π(1+ǫ)|w(t,x)| 2 |w(t, x)| 4p dx w(t, •) p+4 L p+4 (R 2 ) .On the other hand in the case when w(t, •) L ∞ ≥ 1, choosing ǫ small enough in (155) and making use of Proposition 1.7, we find thatR 2 e 8π(1+ǫ)|w(t,x)| 2 |w(t, x)| 4p dx e 4π(1-ǫ) w(t,•) 2 •) 2p L 2p (R 2 ) + w(t, •) 2p L 2p r (R 2 ), where r is the real number near to 1 involved in Estimate (122).Thus arguing as in the proof of Proposition 4.3 page 41 by applying the logarithmic inequality (151), we deduce that

	(155)	R 2	L ∞ e 8π(1+ǫ)|w(t,x)| 2 |w(t, x)| 4p dx ≤ e 4π(1-ǫ) w(t,•) 2	R 2
			L ∞	R 2	e 4π(1+4ǫ)|w(t,x)| 2 |w(t, x)| 2p dx
			e 4π(1-ǫ) w(t,•) 2 L ∞	w(t,

e

4.3.

Proof of Lemma 4.1. Our purpose is to demonstrate that for any integer ℓ ≥ 1

To this end, we shall consider the following partition of R:

(124)

, where A is a positive real number to be chosen later on, and treat separately G (ℓ),1 n on each interval. Note that the partition defined by (124) depends on n and ℓ, but to avoid heaviness we omit this dependence in the notations.

Let us start by estimating G (ℓ),1 n on the interval J A . The goal is to prove that for all ǫ > 0, there exist an integer N 0 and an absolute constant C such that for all n ≥ N 0 , we have (125) G (ℓ),1 n ST * (J A ) ≤ C ǫ , provided that A is suitably chosen.

Let us fix ǫ > 0. In light of (107) we infer that there is a real number A 0 such that for all A ≥ A 0

But by definition, we have , which in light of Hölder inequality and Estimate (120) gives rise to

. Now taking advantage of (114), we assert in view of [START_REF] Rao | Applications of Orlicz spaces[END_REF] and Proposition 1.13 that there exist an integer n 1 and a real number A 1 such that for all n ≥ n 1 and A ≥ A 1 , we have

Invoking Proposition 4.4 and estimates (120) and (121), we obtain

By virtue of Proposition 3.6 and Estimate (115), we deduce that there exist an integer n 2 and a real number A 2 such that for all n ≥ n 2 and A ≥ A 2 , the following estimate holds

This ends the proof of the desired estimate (125).

To achieve the proof of Lemma 4.1, it remains to investigate G (ℓ),1 n on the intervals I A k , where the real A is fixed so that (125) holds. For that purpose, we apply Taylor formula to f (u

Taking advantage of Estimate (109), we get

, n → ∞ • Now by virtue of Taylor's developments, we have

,

14 and orthogonality condition [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] ensure that

, as n tends to infinity. This implies in view of (121) that one can choose ǫ so that there exist a real number 0 < δ < 1 and an integer n 1 such that for any n ≥ n 1

Thus applying Proposition 4.3 with the above notations, we deduce that there is a real number 0 < ǫ 0 < 1 such that

)

) . Since according to Estimate (120), the sequences w n ST(R)∩L ∞ (R,H 1 (R 2 )) and g n L 4 (R,L 4 (R 2 )) are uniformly bounded with respect to n, we find that

Combining orthogonality condition [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] together with the properties (53), ( 55) and (110), we get

•( 1)

Invoking ( 52) and ( 54), this ensures that

Recall that U k which is the solution to the nonlinear Schrödinger equation ( 1)-( 2) belongs to the functional space C(R, H 1 (R 2 )). By density arguments, we deduce that for any positive real number ν, there is a regular function

On the one hand, in the case when

On the other hand, in the case when

applying Hölder inequality, we get for any positive real number β

Fixing β, let us choose ν small enough so that

In view of Trudinger-Moser inequality [START_REF] Bahouri | Scattering for the critical 2-D NLS with exponential growth[END_REF], this leads to e

.

As above, making use of the orthogonality condition [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] together with the properties (53), ( 55) and (110), we find that e

The same reasoning as for the first two terms leads to

This ends the proof of the fact that G (ℓ),1 n ST * (I A k ) tends to 0 as n goes to infinity, which achieves the proof of Lemma 4.1.

it stems from Taylor's formula that for any ǫ > 0, we have

As well by straightforward computations, we find that

where 1) .

We deduce that R ap,(ℓ)

,

where we have noted

Obviously, we have for any positive real number γ G 0,(ℓ)

u n -u ap,(ℓ)

and

Making use of Hölder inequality, we infer that e 4π(1+ǫ)|u ap,(ℓ)

, and also e 4π(1+ǫ)|u ap,(ℓ)

, where µ is a parameter depending on γ and ǫ that can be selected sufficiently small so as γ and ǫ, where q γ and q * γ are large positive real numbers depending on γ, and where T γ and T * γ designate generic locally bounded functions from R + into R + . Proposition 4.5 implies that there exist positive real numbers ǫ 2 and γ 0 < 1 such that for any 0 < ǫ ≤ ǫ 2 , we have

, and

. Recalling that we placed ourselves under Assumption (105), we deduce from (101) and (103) that

can be made smaller than any constant for n and ℓ large enough. This ensures that (139) e Cǫ|un-u ap,(ℓ)

, with q ♭ γ0 a large positive real number and T ♭ γ0 a generic locally bounded function from R + into R + . In conclusion, we proved that for n and ℓ sufficiently large, the following estimate holds:

u n -u ap,(ℓ)

Finally applying again Hölder inequality, we get

, which in view of (120) and along the same lines as for the proof of (139) leads to

ST([0,T ]) , for n and ℓ sufficiently large. This ends the proof of the desired estimate (136).

Let us now go to the proof of Lemma 4.2 and consider I j any interval of the finite partition (I j ) j∈J given by Lemma 4.6. Clearly in light of (99), the sequence u n -u ap,(ℓ) n writes on the interval I T j := [0, T ] ∩ I j = [t j , t j+1 ] as follows: , we obtain

Denoting by

, we infer in view of Strichartz estimates ( 26) that there is a constant C such that

According to the definition of φ p and φ ♭ p introduced page 35, we get applying Hölder inequality (142)

+ u n -u ap,(ℓ)

) := e 4π|u ap,(

| 2p-1 and φ ♯,2

) := e 4π|u ap,(

Clearly, we have

≤ ∇u ap,(ℓ)

Applying again Hölder inequality, we obtain for any ǫ > 0

.

Combining (120) and (130), we deduce that if ǫ is fixed small enough, then for any ℓ ≥ 1 and n sufficiently large

, which thanks to the Sobolev embeddings implies that

Invoking estimates (130) and ( 142), this gives rise to (144)

) . Recall that under hypothesis of Lemma 4.2, Lemma 4.7 asserts that there exist ǫ ≤ ǫ 1 and γ 0 such that R ap,(ℓ)

+ u n -u ap,(ℓ) n 1+γ0

ST(I T j ) . Arguing as in the proof of (143), we find that for n sufficiently large the following estimate holds

) . This ensures that (145) R ap,(ℓ)

, for any ℓ ≥ 1 and n big enough.

Choosing the partition (I j ) j∈J so that the constant appearing in Estimate ( 130) is small enough and invoking (144) and (145), we infer that for any integer ℓ ≥ 1 n -e i t ∆ r (ℓ) n (0, •) L ∞ (I T j ,H 1 (R 2 )) . According to Assumptions (104) and (105), this leads to

for n and ℓ sufficiently big, where c 1 is a small constant. Now for any 1 ≤ j ≤ J -1 and n and ℓ large enough, we claim that

and for any t in I T j+1 , we have

Thus in view of conservation laws ( 21) and ( 22), we get for any t in I T j+1

, we easily get in the case when u ap,(ℓ) n

Besides taking advantage of the logarithmic inequality (151) and arguing again as in the proof of Proposition 4.3 page 41, we find that in the case when u ap,(ℓ) n

provided that ǫ is small enough.

Recall that Proposition 1.13 and the properties ( 42) and (114) imply that there exist an integer N 1 and positive real numbers A 1 and 0 < δ < 1, such that for all n ≥ N 1 , A ≥ A 1 and 1 ≤ ℓ ≤ L 0 , we have

Thanks to (121), Proposition 1.7 ensures that , for all t ∈ I ∩ J A , all n ≥ N 1 and all 1 ≤ ℓ ≤ L 0 , with A large enough, ǫ sufficiently small and r the real number near to 1 appearing in Estimate (122).

Combining ( 156) and (157), we deduce that 

Choosing ν sufficiently small so that

with 0 < δ < 1, and observing that in view of Proposition 1.13 and the properties ( 42) and (112), we have for any k ∈ Γ ℓ (1), with 1 ≤ ℓ ≤ L 0 u ap,(ℓ)