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We prove that the n th pure braid group of a nonorientable surface (closed or with boundary, but different from RP 2 ) is residually 2-finite. Consequently, this group is residually nilpotent. The key ingredient in the closed case is the notion of p-almost direct product, which is a generalization of the notion of almost direct product. We prove therefore also some results on lower central series and augmentation ideals of p-almost direct products.

Introduction

Let M be a surface (orientable or not, possibly with boundary) and F n (M ) = {(x 1 , . . . , x n ) ∈ M n / x i = x j for i = j} its n th configuration space. The fundamental group π 1 (F n (M )) is called the n th pure braid group of M and shall be denoted by P n (M ).

The mapping class group Γ(M ) of M is the group of isotopy classes of homeomorphisms h : M -→ M which are identity on the boundary. Let X n = {z 1 , . . . , z n } a set of n distinguished points in the interior of M ; the pure mapping class group PΓ(M, X n ) relatively to X n is the group of the isotopy classes of homeomorphisms h : M -→ M satisfying h(z i ) = z i for all i: since this group does not depend on the choice of the set X n but only on its cardinality we can write P n Γ(M ) instead of PΓ(M, X n ). Forgetting the marked points, we get a morphism P n Γ(M ) -→ Γ(M ) whose kernel is known to be isomorphic to P n (M ) when M is not a sphere, a torus, a projective plane or a Klein bottle (see [Sc, GJ]). Now, recall that if P is a group-theoretic property, then a group G is said to be residually P if, for all g ∈ G, g = 1, there exists a group homomorphism ϕ : G -→ H such that H is P and ϕ(g) = 1. We are interested in this paper to the following properties: nilpotence, being free and being a finite p-group for a prime number p (mostly p = 2). Recall that, if for subgroups H and K of G, [H, K] Γ k G = {1}. From the lower central series of G one can define another filtration

is the subgroup generated by {[h, k] / (h, k) ∈ H × K} where [h, k] = h -1 k -1 hk, the lower central series of G, (Γ k G) k≥1 , is defined inductively by Γ 1 G = G and Γ k+1 G = [G, Γ k G]. It is
D 1 (G) ⊇ D 2 (G) ⊇ . . . setting D 1 (G) = G, and for i ≥ 2, defining D i (G) = { x ∈ G | ∃n ∈ N * , x n ∈ Γ i (G) }.
After Garoufalidis and Levine [GLe], this filtration is called rational lower central series of G and a group G is residually torsion-free nilpotent if, and only if,

∞ i=1 D i (G) = {1}.
When M is an orientable surface of positive genus (possibly with boundary) or a disc with holes, it is proved in [BGG] and [BB] that P n (M ) is residually torsion-free nilpotent for all n ≥ 1. The fact that a 1 group is residually torsion-free nilpotent has several important consequences, notably that the group is bi-orderable [MR] and residually p-finite [Gr]. The goal of this article is to study the nonorientable case and, more precisely, to prove the following:

Theorem 1 The n th pure braid group of a nonorientable surface different from RP 2 is residually 2-finite.

In the case of P n (RP 2 ) we give some partial results at the end of Section 4. Since a finite 2-group is nilpotent, a residually 2-finite group is residually nilpotent. Thus, we have Corollary 1 The n th pure braid group of a nonorientable surface different from RP 2 is residually nilpotent.

Remark that in [Go] it was shown that the n th pure braid group of a nonorientable surface is not bi-orderable and therefore it is not residually torsion-free nilpotent. Let us notice also that if pure braid groups of nonorientable surfaces with boundary are residually p for a prime p = 2 therefore pure braid groups of nonorientable closed surfaces are also residually p (Remark 3); however since the technique proposed in the nonorientable case applies only for p = 2, the question if pure braid groups of nonorientable surfaces are residually p for p = 2 is still open (recall that there are groups residually p for infinitely many primes p which are not residually torsion-free nilpotent, see [H]).

Remark that one can prove that finite type invariants separate classical braids using the fact that the pure braid group P n is residually nilpotent without torsion (see [Pa]). Moreover using above residual properties it is possible to construct algebraically a universal finite type invariant over Z on the classical braid group B n (see [Pa]). Similar constructions were afterwards proposed for braids on orientable surfaces (see [BF, GP]): in a further paper we will explore the relevance of Theorem 1 in the realm of finite type invariants over Z/2Z for braids on non orientable surfaces.

From now on, M = N g,b is a nonorientable surface of genus g with b boundary components, simply denoted by N g when b = 0. We will see N g as a sphere S 2 with g open discs removed and g Möbius strips glued on each circle (see figure 2 where each crossed disc represents a Möbius strip). The surface N g,b is obtained from N g by removing b open discs. The mapping class groups Γ(N g,b ) and pure mapping class group P n Γ(N g,b ) will be denoted respectively Γ g,b and Γ n g,b . The paper is organized as follows. In Section 2, we prove Theorem 1 for surfaces with boundary: following what the authors did in the orientable case (see [BGG]), we embed P n (N g,b ) in a Torelli group. The difference here is that we must consider mod 2 Torelli groups. In Section 3 we introduce the notion of p-almost direct product, which generalizes the notion of almost direct product (see Definition 1) and we prove some results on lower central series and augmentations ideals of p-almost direct products (Theorems 4 and 5) that can be compared with similar results on almost direct products (Theorem 3.1 in [FR] and Theorem 3.1 in [Pa]).

In Section 4, the existence of a split exact sequence

1 / / P n-1 (N g,1 ) / / P n (N g ) / / π 1 (N g ) / / 1
and results from Section 2 and 3 are used to prove Theorem 1 in the closed case (Theorem 7). The method is similar to the one developed for orientable surface in [BB]: the difference will be that the semi-direct product P n-1 (N g,1 ) π 1 (N g ) is a 2-almost-direct product (and not an almost-direct product as in the case of closed oriented surfaces).

For proving the main result of the paper, we will also need a group presentation for P n (N g,b ) when b ≥ 1. Although generators of this group seem to be known, we could not find a group presentation in the literature. Thus, we give one in the Appendix (Theorem A).
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The case of non-empty boundary

In this section, N = N g,b is a nonorientable surface of genus g ≥ 1 with boundary (ie b ≥ 1). In this case, one has

P n (N ) = Ker(Γ n g,b -→ Γ g,b
) for all n ≥ 1.

Notations

We will follow notations from [PS]. A simple closed curve in N is an embedding α : S 1 -→ N \ ∂N . Such a curve is said two-sided (resp. one-sided) if it admits a regular neighborhood homeomorphic to an annulus (resp. a Möbius strip). We shall consider the following elements in Γ g,b .

• If α is a two-sided simple closed curve in N , τ α is a Dehn twist along α.

• Let µ and α be two simple closed curves such that µ is one-sided, α is two-sided and |α ∩ µ| = 1. A regular neighborhood K (resp. M ) of α ∪ µ (resp. µ) is diffeomorphic to a Klein bottle with one hole (resp. a Möbius strip). Pushing M once along α, we get a diffeomorphism of K fixing the boundary: it can be extended via the identity to N . Such a diffeomorphism is called a crosscap slide, and denoted by Y µ,α .

• Consider a one-sided simple closed curve µ containing exactly one marked point z i . Sliding z i once along µ, we get a diffeomorphism S µ of N which is identity outside a regular neighborhood of µ. Such a diffeomorphism will be called puncture slide along µ.

Blowup homomorphism

In this section, we recall the construction of the Blowup homomorphism η n g,b : Γ n g,b -→ Γ g+n,b given in [START_REF] Szepietowski | Embedding the braid group in mapping class group[END_REF], [START_REF] Szepietowski | Crosscap slides and the level 2 mapping class group of a nonorientable surface[END_REF] and [PS].

Let U = {z ∈ C / |z| ≤ 1} and, for i = 1, . . . , n, fix an embedding e i : U -→ N such that e i (0) = z i , e i (U ) ∩ e j (U ) = ∅ if i = j and e i (U ) ∩ ∂N = ∅ for all i. If we remove the interior of each e i (U ) (thus getting the surface N g,b+n ) and identify, for each z ∈ ∂U , e i (z) with e i (-z), we get a nonorientable surface of genus g + n with b boundary components, that is to say a surface homeomorphic to N g+n,b . Let us denote by γ i = e i (S 1 ) the boundary of e i (U ), and by

µ i its image in N g+n,b : it is a one-sided simple closed curve. Now, let h be an element of Γ n g,b . It can be represented by a homeomorphism N g,b -→ N g,b , still denoted h, such that (1) h e i (z) = e i (z) if h preserves local orientation at z i ; (2) h e i (z) = e i (z) if h reverses local orientation at z i .

Such a homeomorphism h commutes with the identification leading to N g+n,b and thus induces an element

η(h) ∈ Γ g+n,b . It is proved in [Sz2] that the map η n g,b = η : Γ n g,b -→ Γ g+n,b
which sends h to η(h) is well defined for n = 1, but the proof also works for n > 1. This homomorphism is called blowup homomorphism.

Proposition 1 The blowup homomorphism η n g,b : Γ n g,b -→ Γ g+n,b is injective if (g + n, b) = (2, 0).
Remark 1 This result is proved in [START_REF] Szepietowski | Embedding the braid group in mapping class group[END_REF] for (g, b) = (0, 1), but the proof can be adapted in our case as follows.

Proof. Suppose that h :

N g,b -→ N g,b is a homeomorphism satisfying h(z i ) = z i for all i and η(h) : N g+n,b -→ N g+n,b is isotopic to identity.
Then h is isotopic to a map equal to identity on e i (U ) for all i (otherwise,

µ i is isotopic to µ -1 i since η(h)(µ i ) is isotopic to µ i )
and its restriction to N g,b+n is an element of the kernel of the natural map Γ g,b+n -→ Γ g+n,b induced by glueing a Möbius strip on n boundary components. However, this kernel is generated by the Dehn twists along the curves γ i (see [START_REF] Stukow | Commensurability of geometric subgroups of mapping class groups[END_REF]theorem 3.6]). Now, any γ i bounds a disc with one marked point in N g,b : the corresponding Dehn twist is trivial in Γ g,b and therefore h is isotopic to identity. 2

Embedding P n (N g,b ) in Γ g+n+2(b-1),1

Gluing a one-holed torus onto b-1 boundary components of N g,b , we get N g,b as a subsurface of N g+2(b-1),1 . This inclusion induces a homomorphism χ g,b : Γ g,b -→ Γ g+2(b-1),1 which is injective (see [St]). Thus, the composed map

λ n g,b = χ g+n,b • η n g,b : Γ n g,b -→ Γ g+n+2(b-1
),1 is also injective. Recall that the mod p Torelli group I p (N g,1 ) is the subgroup of Γ g,1 defined as the kernel of the action of Γ g,1 on H 1 (N g,1 ; Z/pZ). In the following we will consider in particular the case of the mod 2 Torelli group I 2 (N g,1 ).

Proposition 2 If b ≥ 1, λ n g,b P n (N g,b ) is a subgroup of the Torelli subgroup I 2 (N g+n+2(b-1),1 ). . . . . . . . . . . . . . . . α k,l 1 l g 1 j k u n . . . . . . . . . t µ k ξ u,t β 1,j δ t Figure 1: Image of the generators of P n (N g,b ) in Γ g+n+2(b-1),1
Proof. The image of the generators (see figures 2, 6 and theorem A)

(B i,j ) 1≤i<j≤n , (ρ k,l ) 1≤k≤n 1≤l≤g and (x u,t ) 1≤u≤n 1≤t≤b-1 of P n (N g,b ) under λ n
g,b are respectively (see figure 1):

According to [START_REF] Szepietowski | Crosscap slides and the level 2 mapping class group of a nonorientable surface[END_REF], all these elements are in the mod 2 Torelli subgroup I 2 (N g+n+2(b-1),1 ).

2

Remark 2 The embedding provided in Proposition 2 does not hold for I p (N g+n+2(b-1),1 ), when p = 2: for exemple, the cross slide Y µ k ,α k,l is not in the mod p Torelli subgroup since it sends µ k to µ -1 k .

Conclusion of the proof

We shall use the following result, which is a straightforward consequence of a similar result for mod p Torelli groups of orientable surfaces due to L. Paris [P]:

Theorem 2 Let g ≥ 1.
The mod p Torelli group I p (N g,1 ) is residually p-finite.

Proof. We use Dehn-Nielsen-Baer Theorem (see for instance Theorem 5.15.3 of [CVZ]) which states that Γ g,1 embeds in Aut(π 1 (N g,1 )). Since π 1 (N g,1 ) is free we can apply Theorem 1.4 in [P] which claims that if G is a free group, its mod p Torelli group (i.e. the kernel of the canonical map from Aut(G) to

GL(H 1 (G, F p )) is residually p-finite. Therefore I p (N g,1 ) is residually p-finite. 2 Theorem 3 Let g ≥ 1, b > 0, n ≥ 1. P n (N g,b ) is residually 2-finite.
Proof. The group 

P n (N g,b ) is a subgroup of I 2 (N g+n+2(b-1),
G) n∈N * of G by γ p 1 G = G and, for n ≥ 1, γ p n+1 G is the subgroup of G generated by [G, γ p n G] ∪ (γ p n G) p .
Note that the subgroups γ p n G are characteristic in G and that the quotient group G/γ p 2 G is nothing but the first homology group H 1 (G; F p ). The followings are proved in [P]:

• for m, n ≥ 1, [γ p m G, γ p n G] ⊂ γ p m+n G;
• a finitely generated group G is a finite p-group if, and only if, there exists some N ≥ 1 such that γ p N G = {1};

• a finitely generated group G is residually p-finite if, and only if, Proof. Let a ∈ A and c ∈ C. By hypothesis, σ(c) a (σ(c)) -1 ≡ a mod γ p 2 A. Let σ be another section for λ. Then λ • σ (c) = λ • σ(c), and so σ (c) (σ(c)) -1 ∈ Ker(λ). Thus there exists a ∈ A such that σ (c) = a σ(c), and hence

+∞ ∩ n=1 γ p n G = {1}; and clearly, if f : G -→ G is a group homomorphism, then f (γ p n G) ⊂ γ p n G for all n ≥ 1. Definition 1 Let 1 / / A / / B λ / / C / / σ a
σ (c) a (σ (c)) -1 ≡ a σ(c) a (σ(c)) -1 a -1 ≡ a aa -1 ≡ a mod γ p 2 A.
Thus the induced action of C on H 1 (A; F p ) via σ is also trivial. 2

The first goal of this section is to prove the following Theorem (see Theorem 3.1 in [FR] for an analogous result for almost direct products).

Theorem 4 Let 1 / / A / / B λ / / C / / σ a a
1 be a split exact sequence where B is a p-almost direct product of A and C. Then, for all n ≥ 1, one has a split exact sequence

1 / / γ p n A / / γ p n B λn / / γ p n C / / σn f f 1
where λ n and σ n are restrictions of λ and σ.

We shall need the following preliminary result.

Lemma 1 Under the hypotheses of Theorem 4, one has, for all m, n ≥ 1

[γ p m C , γ p n A] ⊂ γ p m+n A
where C denotes σ(C).

Proof. First, we prove by induction on n that [C , γ p n A] ⊂ γ p n+1 A for all n ≥ 1. The cas n = 1 corresponds to the hypotheses: the action of C on H 1 (A;

F p ) = A/γ p 2 A is trivial if, and only if, [C , A] ⊂ γ p 2 A. Thus, suppose that [C , γ p n A] ⊂ γ p n+1 A for some n ≥ 1 and let us prove that [C , γ p n+1 A] ⊂ γ p n+2 A. In view of the definition of γ p n+1 A, we have to prove that C , [A, γ p n A] ⊂ γ p n+2 A and [C , (γ p n A) p ] ⊂ γ p n+2 A.
For the first case, we use a classical result (see [MKS], theorem 5.2) which says

C , [A, γ p n A] = γ p n A, [C , A] A, [γ p n A, C ] . We have just seen that [C , A] ⊂ γ p 2 A thus γ p n A, [C , A] ⊂ [γ p n A, γ p 2 A] ⊂ γ p n+2 A. Then, the induction hypotheses says that [γ p n A, C ] ⊂ γ p n+1 A thus A, [γ p n A, C ] ⊂ [A, γ p n+1 A] ⊂ γ p n+2 A.
The second case works as follows: for c ∈ C and x ∈ γ p n A, one has, using the fact that

[u, vw] = [u, w][u, v] [u, v], w (see [MKS]) [c, x p ] = [c, x][c, x p-1 ] [c, x p-1 ], x = • • • = [c, x] p [c, x], x [c, x 2 ], x • • • [c, x p-1 ], x . Since c ∈ C and x ∈ γ p n A, one has [c, x i ] ∈ [C , γ p n A] ⊂ γ p n+1 A for all i, 1 ≤ i ≤ p -1, which leads to [c, x] p ∈ (γ p n+1 A) p ⊂ γ p n+2 A and [c, x i ], x ∈ [γ p n+1 A, A] ⊂ γ p n+2 A.
Now, we suppose that [γ p m C , γ p n A] ⊂ γ p m+n A for some m ≥ 1 and all n ≥ 1 and prove that [γ p m+1 C , γ p n A] ⊂ γ p m+n+1 A. As above, there are two cases which work on the same way:

(i) [C , γ p m C ], γ p n A = [γ p n A, C ], γ p m C [γ p m C , γ p n A], C ⊂ γ p n+1 A, γ p m C γ p m+n A, C ⊂ γ p m+n+1 A. (ii) For c ∈ γ p m C and x ∈ γ p n A, one has [c p , x] = c, [x, c p-1 ] [c p-1 , x][c, x] = • • • = c, [x, c p-1 ] • • • c, [x, c] [c, x] p
which is an element of γ p m+n+1 A by induction hypotheses. 2

Proof of Theorem 4. Restrictions of λ and σ give rise to morphisms λ n :

γ p n B -→ γ p n C and σ n : γ p n C -→ γ p n B satisfying λ n •σ n = Id γ p n C , σ n is onto and Ker(λ n ) = A∩γ p n B. Thus, we need to prove that A∩γ p n B = γ p n A for all n ≥ 1. Clearly one has γ p n A ⊂ A ∩ γ p n B.
In order to prove the converse inclusion, we follow the method developed in [FR] for almost semi-direct product and define τ :

B -→ B by τ (b) = σλ(b) -1 b.
This map has the following properties: We claim that τ (γ p n B) ⊂ γ p n A for all n ≥ 1. From this, we conclude easily the proof: if x ∈ A ∩ γ p n B, then x = τ (x) ∈ γ p n A. One has τ (γ p 1 B) ⊂ γ p 1 A. Suppose inductively that τ (γ p n B) ⊂ γ p n A for some n ≥ 1 and let us prove that τ (γ p n+1 B) ⊂ γ p n+1 A. Suppose first that x is an element of γ p n B. Then using (iii) we get:

(i) since λσ = Id C , τ (B) ⊂ A; (ii) for x ∈ B, τ (x) = x if, and only if, x ∈ A; (iii) for (b 1 , b 2 ) ∈ B 2 , τ (b 1 b 2 ) = [σλ(b 2 ), τ (b 1 ) -1 ]τ (b 1 )τ (b 2 ); ( 
τ (x p ) = [σλ(x), τ (x p-1 ) -1 ]τ (x p-1 )τ (x) . . . = [σλ(x), τ (x p-1 ) -1 ][σλ(x), τ (x p-2 ) -1 ] • • • [σλ(x), τ (x) -1 ]τ (x) p .
Since σλ(x) ∈ γ p n C and, by induction hypotheses, τ 

(x i ) ∈ γ p n A for 1 ≤ i ≤ p -1, we get τ (x p ) ∈ [γ p n C , γ p n A] • (γ p n A) p ⊂ γ p n+1 A by lemma 1 : this prove that τ (γ p n B) p ⊂ γ p n+1 A. Next, let b ∈ B and x ∈ γ p n B. Setting a = τ (b) ∈ A, y = τ (x) ∈ γ p n A by induction hypotheses, c = σλ(b) ∈ C and z = σλ(x) ∈ γ p n C , we get τ [b, x] = σλ [b, x] -1 [b, x] = σλ(b), σλ(x) -1 [b, x] = [c, z] -1 [ca, zy] = [z, c]a -1 c -1 y -1 z -1 cazy = [z, c] a -1 c -1 y -1 cya a -1 y -1 c -1 z -1 czya a -1 y -1 z -1 azy = [z, c] a -1 [c, y]a a -1 y -1 [c, z]ya a -1 y -1 ay y -1 a -1 z -1 azy = [z, c] a -1 [c, y]a a -1 y -1 [c, z]ya [a, y] y -1 [a, z]y = [c, z], a -1 [y, c]a a -1 [c, y]a [z, c] a -1 y -1 [c, z]ya [a, y] y -1 [a, z]y = [c, z], a -1 [y, c]a a -1 [c, y]a [c, z], ya [a, y] y -1 [a, z]y . Now, [c, z] ∈ [C , γ p n C ] ⊂ γ p n+1 C , [y, c] ∈ [γ p n A, C ] ⊂ γ p n+1 A (lemma 1) thus [c, z], a -1 [y, c]a ∈ γ p n+1 A. Then, [c, z], ya ∈ [γ p n+1 C , A] ⊂ γ p n+1 A, [a, y] ∈ [A, γ p n A] ⊂ γ p n+1 A and [a, z] ∈ [A, γ p n C ] ⊂ γ p n+1 A. Thus, τ ([b, x]) ∈ γ p n+1 A and τ ([B, γ p n B]) ⊂ γ p n+1 A. 2 Corollary 2 Let 1 / / A / / B λ / / C / / σ a

Augmentation ideals

(K[G]) = ⊕K[G] j /K[G] j+1 .
The following theorem provides a decomposition formula for the augmentation ideal of a 2-almost direct product (see Theorem 3.1 in [Pa] for an analogous in the case of almost direct products). Let A C be a semi-direct product between two groups A and C. It is a classical result that the map

a ⊗ c → ac induces a K-isomorphism from K[A] ⊗ K[C] to K[A C].
Identifying these two K-modules, we have the following:

Theorem 5 If A C is a 2-almost direct product then : F 2 [A C] k = i+h=k F 2 [A] i ⊗ F 2 [C] h for all k.
Proof. We sketch the proof which is almost verbatim the same as the proof of Theorem 3.1 in [Pa]. Let [Pa] for a proof of this fact): we call e a special element. We associate to a special element e an element in {0, 1} k : let type(e) = (δ(e 1 ), . . . , δ(e k )) where δ(e j ) = 0 if e j ∈ A and δ(e j ) = 1 if e j ∈ C. We will say that the special element e is standard if type(e) = ( i 0, . . . , 0, h 1, . . . , 1)

R k = i+h=k F 2 [A] i ⊗F 2 [C] h ; R k is a descending filtration on F 2 [A]⊗F 2 [C],
In this case e ∈ F 2 [A] i ⊗ F 2 [C] h ⊂ R k
and we are done. We claim that we can reduce all special elements to linear combinations of standard elements. If e is not standard, then it must be of the form

e = r i=1 (a i -1) s j=1 (c i -1)(c -1)(a -1) t l=1 (e i -1)
where a 1 , . . . , a r , a ∈ A, c 1 , . . . , c s , c ∈ A, ẽ = t l=1 (e i -1) is special and r + s + t + 2 = k. Therefore type(e) = ( r 0, . . . , 0, s 1, . . . , 1, 1, 0, δ(e 1 ), . . . , δ(e t )) . Now we can use the assumption that A C is a 2-almost direct product to claim that one has commutation relations in Z[A C] expressing the difference (c -1)(a -1) -(a -1)(c -1) as a linear combination of terms of the form (a -1)(a -1)c with a , a ∈ A for any a ∈ A and c ∈ C. In fact,

(c -1)(a -1) -(a -1)(c -1) = ca -ac = (cac -1 a -1 -1)ac = (f -1)ac where f = [c -1 , a -1 ] ∈ [C, A] ⊂ γ 2 2 (A) by lemma 1. We can decompose f as f = h 1 k 1 • • • h m k m
where, for j = 1, . . . , m, h j belongs to [A, A] and k j = (k j ) 2 for some k j ∈ A. One knows (see for instance [Ch] p. 194) that for j = 1, . . . , m (h j -1) is a linear combination of terms of the form

(h j -1)(h j -1)α j with h j , h j , α j ∈ A.
On the other hand for j = 1, . . . , m we have also that

(k j -1) = (k j -1)(k j -1) with k j ∈ A since the coefficients are F 2 .
Then, recalling that (hk -1) = (h -1)k + (k -1) for any h, k ∈ A, we can conclude that f -1 can be rewritten as a linear combination of terms of the form

(f -1)(f -1)α with f , f , α ∈ A
and that (c -1)(a -1) -(a -1)(c -1) is a linear combination of terms of the form

(f -1)(f -1)αc with f , f , α ∈ A.
Rewriting (f -1)α as (f α -1) -(α -1) we obtain that the difference (c -1)(a -1) -(a -1)(c -1) can be seen as a linear combination of terms of the form (a -1)(a -1)c with a , a ∈ A.

Therefore e can be rewritten as a sum whose first term is the special element

e = r i=1 (a i -1) s j=1 (c i -1)(a -1)(c -1) t l=1 (e i -1)
and whose second term is a linear combination of elements of the form e c where e = r i=1

(a i -1) s j=1 (c i -1)(a -1)(a -1) t l=1 (ce i c -1 -1)c.
Using the lexicographic order from the left, one has type(e) >type(e ) and type(e) >type(e ). By induction on the lexicographic order we infer that e and e belong to We recall a group presentation of P n (N g ) given in [START_REF] Gonçalves | Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence[END_REF]: the geometric interpretation of generators is provided in Figure 2.

R k : since R k • c ⊂ R k for any c ∈ C it
Theorem 6 ( [GG3]) For g ≥ 2 and n ≥ 1, P n (N g ) has the following presentation: For 1 ≤ k ≤ g, let us consider the element a k in P n (N g ) given by a k = ρ k,g-1 ρ k,g and set

generators: (B i,j ) 1≤i<j≤n and (ρ k,l ) 1≤k≤n 1≤l≤g . relations : (a) for all 1 ≤ i < j ≤ n and 1 ≤ r < s ≤ n, B r,s B i,j B -1 r,s =        B i,j if i < r < s < j or r < s < i < j (a 1 ) B -1 i,j B -1 r,j B i,j B r,j B i,j if r < i = s < j (a 2 ) B -1 s,j B i,j B s,j if i = r < s < j (a 3 ) B -1 s,j B -1 r,j B s,j B r,j B i,j B -1 r,j B -1 s,j B r,j B s,j if r < i < s < j (a 4 ) (b) for all 1 ≤ i < j ≤ n and 1 ≤ k, l ≤ g, ρ i,k ρ j,l ρ -1 i,k =    ρ j,l if k < l (b 1 ) ρ -1 j,k B -1 i,j ρ 2 j,k if k = l (b 2 ) ρ -1 j,k B -1 i,j ρ j,k B -1 i,j ρ j,l B i,j ρ -1 j,k B i,j ρ j,k if k > l (b 3 ) (c) for all 1 ≤ i ≤ n, ρ 2 i,1 • • • ρ 2 i,g = T i where T i = B 1,i • • • B i-1,i B i,i+1 • • • B i,n (c) (d) for all 1 ≤ i < j ≤ n, 1 ≤ k ≤ n, k = j and 1 ≤ l ≤ g, ρ k,l B i,j ρ -1 k,l =    B i,j if k < i or j < k (d 1 ) ρ -1 j,l B -1 i,j ρ j,l if k = i (d 2 ) ρ -1 j,l B -1 k,j ρ j,l B -1 k,j B i,j B k,j ρ -1 j,l B k,j ρ j,l if i < k < j (d 3 ) . . . . . . . . . . . . . . . . . . ρ k,l 1 l g 1 k i j n B i,j
U = a n • • • a 2 .
Lemma 2 The following relations holds in P n (N g ):

(1) [ρ i,k , ρ -1 j,k ] = B -1 i,j for 1 ≤ i < j ≤ n and 1 ≤ k ≤ g; (e)
(2) U commutes with ρ 1,l for 1 ≤ l ≤ g -2;

(f 1 )

(3) [ρ 1,g-1 , U -1 ] = T -1 1 ; (f 2 ) (4) a k a j a -1 k commutes with B i,k for 1 ≤ i < j < k ≤ n; (g) (5) a n a n-1 • • • a 1 commutes with B j,k for 1 ≤ j < k ≤ n; (h) (6) U commutes with B i,j for 2 ≤ i < j ≤ n; (i) (7) a n a n-1 • • • a 1 commutes with T 1 ; (j) (8) T 1 commutes with B j,k for 2 ≤ j < k ≤ n; (k)
Proof. Some of these identities can easily be verified drawing corresponding braids. This is the case for example for the first, the fourth and the eighth ones (see figure 3, 4 and 5). Let us give an algebraic proof for the others. (3) By relation (b 1 ), ρ 1,g-1 commutes with ρ j,g for 2 ≤ j ≤ n. Thus, using relation (e), we get:

B -1 i,j ρ j,k ρ -1 i,k ρ j,k ρ i,k i j . . . i j . . . = i j . . . = k k k
ρ -1 1,g-1 U ρ 1,g-1 = ρ -1 1,g-1 a n • • • a 2 ρ 1,g-1 = ρ -1 1,g-1 (ρ n,g-1 ρ n,g ) • • • (ρ 2,g-1 ρ 2,g )ρ 1,g-1 = (B -1 1,n ρ n,g-1 ρ n,g ) • • • (B -1 1,2 ρ 2,g-1 ρ 2,g ) = B -1 1,n B -1 1,n-1 • • • B -1 1,2 (ρ n,g-1 ρ n,g ) • • • (ρ 2,g-1 ρ 2,g ) by (d 1 ) = T -1 1 U.
(5) Let j and k be integers such that 1 ≤ j < k ≤ n. By (d 1 ), a 1 , . . . , a j-1 commute with B j,k . Then, one has

a j B j,k a -1 j = ρ j,g-1 ρ j,g B j,k ρ -1 j,g ρ -1 j,g-1 = ρ j,g-1 ρ -1 k,g B -1 j,k ρ k,g ρ -1 j,g-1 by (d 2 ) = ρ -1 k,g ρ j,g-1 B -1 j,k ρ -1 j,g-1 ρ k,g by (b 1 ) = ρ -1 k,g ρ -1 k,g-1 B j,k ρ k,g-1 ρ k,g by (d 2 ) = a -1 k B j,k a k and we get a n • • • a 1 B j,k a -1 1 • • • a -1 n = a n • • • a k+1 a k a k-1 • • • a j+1 a -1 k B j,k a k a -1 j+1 • • • a -1 k-1 a -1 k a -1 k+1 • • • a -1 n = a n • • • a k+1 B j,k a -1 k+1 • • • a -1 n by (g) = B j,k by (d 1 ). (6) By (d 1 ), a 1 = ρ 1,g-1 ρ 1,g commutes with B i,j for 2 ≤ i < j ≤ n. Thus, relation (i) is a direct consequence of (h). (7) A direct consequence of (h) since T 1 = B 1,2 • • • B 1,n . 2 

The pure braid group P n (N g ) is residually 2-finite

Following [START_REF] Gonçalves | On the structure of surface pure braid groups[END_REF], one has, for g ≥ 2, a split exact sequence

1 / / P n-1 (N g,1 ) µ / / P n (N g ) λ / / P 1 (N g ) = π 1 (N g ) / / 1 (1)
where λ is induced by the map which forgets all strands except the first one, and µ is defined by capping the boundary component by a disc with one marked point (the first strand in P n (N g )). According to the definition of µ and to Theorem A, Im(µ) is generated by {ρ

i,k , 2 ≤ i ≤ n, 1 ≤ k ≤ g} ∪ {B i,j , 2 ≤ i < j ≤ n}.
The section given in [START_REF] Gonçalves | On the structure of surface pure braid groups[END_REF] is geometric, i.e. it is induced by a crossed section at the level of fibrations. In order to study the action of π 1 (N g ) on P n-1 (N g,1 ), we need an algebraic one. Recall that π 1 (N g ) has a group presentation with generators p 1 , . . . , p g and the single relation

p 2 1 • • • p 2 g = 1. We define the set map σ : π 1 (N g ) -→ P n (N g ) by setting σ(p i ) =          ρ 1,i for 1 ≤ i ≤ g -3, ρ 1,g-2 U -1 for i = g -2, U ρ 1,g-1 for i = g -1, ρ 1,g T -1 1 for i = g. Proposition 4 The map σ is a well defined homomorphism satisfying λ • σ = Id π1(N g) . Proof. Since λ(ρ 1,i ) = p i for all 1 ≤ i ≤ g and λ(U ) = λ(T 1 ) = 1, one has clearly λσ = Id π1(N g) if σ is a group homomorpism. Thus, we have just to prove that σ(p 1 ) 2 • • • σ(p g ) 2 = 1: σ(p 1 ) 2 • • • σ(p g ) 2 = (ρ 2 1,1 • • • ρ 2 1,g-3 )(ρ 1,g-2 U -1 ) 2 (U ρ 1,g-1 ) 2 (ρ 1,g T -1 1 ) 2 = ρ 2 1,1 • • • ρ 2 1,g-3 ρ 1,g-2 U -1 ρ 1,g-2 ρ 1,g-1 U a 1 T -1 1 ρ 1,g T -1 1 = ρ 2 1,1 • • • ρ 2 1,g-3 ρ 2 1,g-2 U -1 ρ 1,g-1 U a 1 T -1 1 ρ 1,g T -1 1 by (f 1 ) = ρ 2 1,1 • • • ρ 2 1,g-3 ρ 2 1,g-2 ρ 1,g-1 U -1 T 1 U a 1 T -1 1 ρ 1,g T -1 1 by (f 2 ) = ρ 2 1,1 • • • ρ 2 1,g-3 ρ 2 1,g-2 ρ 1,g-1 U -1 T 1 T -1 1 U a 1 ρ 1,g T -1 1 by (j) = ρ 2 1,1 • • • ρ 2 1,g-3 ρ 2 1,g-2 ρ 1,g-1 a 1 ρ 1,g T -1 1 = ρ 2 1,1 • • • ρ 2 1,g-3 ρ 2 1,g-2 ρ 2 1,g-1 ρ 2 1,g T -1 1 = 1 by (c). 2 
So, the exact sequence (1) splits. In order to apply Theorem 4, we have to prove that the action of π 1 (N g ) on P n-1 (N g,1 ) is trivial on H 1 (P n-1 (N g,1 ); F 2 ). This is the claim of the following proposition.

Proposition 5 For all x ∈ Im(σ) and a ∈ Im(µ), one has [x -1 , a -1 ] = xax -1 a -1 ∈ γ 2 2 (Im(µ)).

Proof. It is enough to prove the result for a ∈ {B j,k , 2 ≤ j < k ≤ n} ∪ {ρ j,l , 2 ≤ j ≤ n and 1 ≤ l ≤ g} and x ∈ {σ(p 1 ), . . . , σ(p g )}, respectively sets of generators of Im(µ) and Im(σ). Suppose first that 2 ≤ j < k ≤ n. One has:

• [σ(p i ) -1 , B -1 j,k ] = [ρ -1
1,i , B -1 j,k ] = 1 for 1 ≤ i ≤ g -3 by (d 1 );

• [σ(p g-2 ) -1 , B -1 j,k ] = [U ρ -1 1,g-2 , B -1 j,k ] = 1 by (d 1 ) and (i);

• [σ(p g-1 ) -1 , B -1 j,k ] = [ρ -1 1,g-1 U -1 , B -1 j,k ] = 1 by (d 1 ) and (i);

• [σ(p g ) -1 , B -1 j,k ] = [T 1 ρ -1 1,g , B -1 j,k ] = 1 by (d 1 ) and (k). Now, let j and l be integers such that 2 ≤ j ≤ n and 1 ≤ l ≤ g and let us first prove that [ρ -1 1,i , ρ -1 j,l ] ∈ γ 2 2 (Im(µ)) for all i, 1 ≤ i ≤ n:

The case P n (RP 2 )

The main reason to exclude N 1 = RP 2 in Theorem 7 is that the exact sequence (1) doesn't exist in this case, but forgetting at most n -2 strands we get the following exact sequence (1 ≤ m ≤ n -2 ; see [VB]) 1 / / P m (N 1,n-m ) / / P n (RP 2 ) / / P n-m (N g ) / / 1 . This sequence splits if, and only if n = 3 and m = 1 (see [START_REF] Gonçalves | The braid groups of the projective plane and the Fadell-Neuwirth short exact sequence[END_REF]). Thus, what we know is the following:

• P 1 (RP 2 ) = π 1 (RP 2 ) = Z/2Z: P 1 (RP 2 ) is a 2-group.

• P 2 (RP 2 ) = Q 8 , the quaternion group (see [VB]): P 2 (RP 2 ) is a 2-group.

• One has the exact sequence 1 / / P 1 (N 1,2 ) / / P 3 (RP 2 ) / / P 2 (RP 2 ) / / 1 where P 1 (N 1,2 ) = π 1 (N 1,2 ) is a free group of rank 2, thus is residually 2-finite. Since P 2 (RP 2 ) is 2-finite, we can conclude that P 3 (RP 2 ) is residually 2-finite using lemma 1.5 of [Gr].

Appendix: a group presentation for P n (N g,b )

Here we apply classical method (see [START_REF] Bellingeri | On presentations of surface braid groups[END_REF][START_REF] Gonçalves | Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence[END_REF]) to give a presentation of the n th pure braid group of a nonorientable surface with boundary. . π 1 (N g,b \ {z 1 , . . . , z n }, z n+1 ) by P n (N g,b ). Therefore, by recurrence, we get that P n+1 (N g,b ) is an iterated semidirect product of (finitely generated) free groups.

  iv) for b ∈ B, setting a = τ (b) and c = σλ(b), we get b = ca with c ∈ C = σ(C) and a ∈ A, this decomposition being unique.

  Given a group G and K = Z or F 2 we will denote by K[G] the group ring of G over K and by K[G] the augmentation ideal of G. The group ring K[G] is filtered by the powers K[G] j of K[G] and we can define the associated graded algebra gr

  and with the above identification, we get that R k ⊂ F 2 [A C] k . To verify the other inclusion we have to check that k j=1 (a j c j -1) ∈ R k for every a 1 , . . . , a k in A and c 1 , . . . , c k in C. Actually it is enough to verify that e = k j=1 (e j -1) ∈ R k either e j ∈ A or e j ∈ C (see Theorem 3.1 in

4

  follows that e belongs to R k and we are done. 2 The closed case 4.1 A presentation of P n (N g ) and induced identities

Figure 2 :

 2 Figure 2: Generators of P n (N g )

Figure

  Figure 3: identity (e)

Figure 4 :

 4 Figure 4: identity (g)

Figure 6 :

 6 Figure 6: Generators x k,t for P n (N g,b ), b ≥ 1

  well known that G is residually nilpotent if, and only if,

	+∞
	k=1

almost direct products 3.1 On residually p-finite groups

  

1 ) by Proposition 2 and by injectivity of the map λ n g,b . Then by Theorem 2 it follows that P n (N g,b ) is residually 2-finite. 2 3 p-Let p be a prime number and G a group. If H is a subgroup of G, we denote by H p the subgroup generated by {h p / h ∈ H}. Following [P], we define the lower F p -linear central filtration (γ p n

  be a p-almost direct product does not depend on the choice of the section.

	Proposition 3 Let 1	/ / A	/ / B

a 1 be a split exact sequence.

• If the action of C induced on H 1 (A; Z) is trivial (i.e. the action is trivial on A Ab = A/[A, A]), we say that B is an almost direct product of A and C.

• If the action of C induced on H 1 (A; F p ) is trivial (i.e. the action is trivial on A/γ p 2 A), we say that B is a p-almost direct product of A and C. λ / / C / / 1 be a split exact sequence of groups. Let σ, σ be sections for λ, and suppose that the induced action of C on A via σ on H 1 (A; F p ) is trivial. Then the same is true for the section σ .

  a 1 be a split exact sequence such that B is a p-almost direct product of A and C. If A and C are residually p-finite, then B is residually p-finite.

• this is clear for i < l by (b 1 );

• for i = l, the relation (b 2 ) gives [ρ -1 1,l , ρ -1 j,l ] = ρ -1 j,l B -1 1,j ρ j,l . But

is an element of γ 2 2 (Im(µ)) by (e), thus we get [ρ -1 1,l , ρ -1 j,l ] ∈ γ 2 2 (Im(µ)).

From this, we deduce the following facts.

(1

). In the same way, one has

We are now ready to prove the main result of this section

Theorem 7 For all g ≥ 2 and n ≥ 1, the pure braid group P n (N g ) is residually 2-finite.

Proof. Proposition 4 says that the sequence

) is residually 2-finite (Theorem 3). It is proved in [B1] and [B2] that π 1 (N g ) is residually free for g ≥ 4, so it is residually 2-finite. This result is proved in [LM] (lemma 8.9) for g = 3.

When

) is residually 2-finite by corollary 2. So, using Proposition 5 and Corollary 2, we can conclude that P n (N g ) is residually 2-finite. 2

Remark 3 It follows from the proof of Theorem 7 that, when g > 2, if P n (N g,1 ) is residually p-finite for some p = 2 then the pure braid group P n (N g ) is also residually p-finite.

relations : (a) for all 1 ≤ i < j ≤ n and 1

Proof. The proof works by induction and generalizes those of [START_REF] Gonçalves | Braid groups of non-orientable surfaces and the Fadell-Neuwirth short exact sequence[END_REF] (closed non orientable case) and [B] (orientable case, possibly with boundary components). It uses the following short exact sequence obtained by forgetting the last strand (see [FN]):

The presentation is correct for n = 1:

) is free on the ρ 1,l 's and x 1,t 's for 1 ≤ l ≤ g and 1 ≤ t ≤ b -1. Suppose inductively that P n (N g,b ) has the given presentation. Then, observe that ). The first one comes from the relations in Im(α): there are none here, since this group is free. The second type comes from the relations in P n (N g,b ): they lift to the same relations in P n+1 (N g,b ). Finally, the third type arrives by studying the action of P n (N g,b ) on Im(α) by conjugation. We leave to the reader to verify that this action corresponds to the given relations. 2

Remark 4 What precedes proves that P n+1 (N g,b ) is a semidirect product of the free group