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Abstract

From a broad perspective, this work deals with the question of reduction of filtration,
i.e., given a stopping time θ relative to a full model filtration G, when and how to
separate the information that comes from θ from a reference filtration in order to simplify
the computations. Toward this aim, some kind of local martingale invariance property is
required, but under minimal assumptions, so that the model stays as flexible as possible
in view of applications (to, in particular, counterparty and credit risk). Specifically, we
define an invariant time as a stopping time with respect to the full model filtration
such that local martingales with respect to a smaller filtration and a possibly changed
probability measure, once stopped right before that time, are local martingales with
respect to the original model filtration and probability measure. The possibility to
change the measure provides an additional degree of freedom with respect to other
classes of random times such as Cox times or pseudo-stopping times that are commonly
used to model default times. We provide an Azéma supermartingale characterization of
invariant times and we characterize the positivity of the stochastic exponential involved
in a tentative measure change. We study the avoidance properties of invariant times
and their connections with pseudo-stopping times.

Keywords: Random time, Progressive enlargement of filtration, Pseudo-stopping times.

Mathematics Subject Classification: 60G07, 60G44.

1 Introduction

We define an invariant time θ as a stopping time in a bigger filtration G such that local
martingales with respect to a smaller filtration F and a possibly changed probability mea-
sure, once stopped at (θ−) (“right before θ”), stay local martingales with respect to the
original (bigger) model filtration and probability measure. As shown in Crépey and Song
(2014a,2014b), invariant times offer a great flexibility and tractability for modeling default

∗This research benefited from the support of the “Chair Markets in Transition” under the aegis of
Louis Bachelier laboratory, a joint initiative of École polytechnique, Université d’Évry Val d’Essonne and
Fédération Bancaire Française.
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times in counterparty and credit risk applications. In this paper we provide an Azéma super-
martingale characterization of invariant times. The core of the idea is to exploit the formal
similarity between, on the one hand, the Girsanov martingale decomposition formula in the
context of measure change and, on the other hand, the Jeulin-Yor martingale decomposi-
tion formula in the context of progressive enlargement of filtration, for devising a measure
change that compensates in some sense a progressive enlargement of filtration (the interac-
tion between the two formulas is directly visible in (A.9)). But this is only possible under
suitable integrability conditions on the density process of a tentative measure change, which
is exactly our main characterization result (see Theorem 3.1 and Corollary 4.1). Note that
this Azéma supermartingale characterization of invariant times is not only of theoretical
interest, it is used in Crépey and Song (2014a, 2014b) for studying the well posedness and
numerical solution of counterparty risk related backward stochastic differential equations.

The above definition is evocative of the concept of pseudo-stopping times of Nikeghbali
and Yor (2005), except that invariant times have an additional degree of freedom provided
by the possibility of changing the measure in the martingale invariance condition (and also
for the fact that we stop local martingales at (θ−) in this definition, instead of θ in the
case of pseudo-stopping times; of course, this makes no difference in the case of times that
have the avoidance property). Due to this possibility to change the measure, invariant
times offer more flexibility than Cox times or pseudo-stopping times that are commonly
used to model default times (see e.g. Bielecki and Rutkowski (2001) or Crépey, Bielecki,
and Brigo (2014, Sect. 13.7)). Another conceptual difference is that pseudo-stopping times
were devised in a spirit of progressive enlargement of filtration (studying in an enlarged
filtration objects defined in a reference filtration F), whereas we view invariant times in
a spirit of reduction of filtration, i.e., given a stopping time θ relative to a full model
filtration G, separating the information that comes from θ from a reference information
(cf. the problem of filtration shrinkage of Föllmer and Protter (2011) regarding the stability
of local martingales by projection onto a smaller filtration). The idea of coupling a measure
change with an enlargement (or reduction) of filtration can already be found in the literature
about initial enlargement of filtration in relation with random times satisfying the density
hypothesis of Jacod (1987)—times also used in the context of progressive enlargement of
filtration as so called initial times in Jeanblanc and Le Cam (2009) and El Karoui, Jeanblanc,
and Jiao (2010). But the measure change makes a density (or initial) time independent from
the reference filtration, whereas in the case of invariant times it only produces the above
mentioned martingale invariance property. From this point of view, invariant times seem
to be less constrained than initial times.

The paper is organized as follows. In Sect. 2, we revisit the Barlow-Jeulin-Yor theory
of progressive enlargement of filtration under a condition (B) relative to a subfiltration F
of G. In Sect. 3 we study a stronger condition (A) also involving a changed probability
measure P and we characterize the Radon-Nikodym density dP

dQ in terms of the Azéma
supermartingale of θ. In Sect. 4 invariant times are formally introduced and studied based
on the condition (A). We compare invariant times with pseudo-stopping times (Sect. 4.1)
and we characterize the positivity of the Doléans-Dade exponential involved in a tentative
measure change density dP

dQ (Sect. 4.2). Appendix A provides a self-contained proof of
Theorem 3.1, first proven using some auxiliary results of Song (2014) in Sect. 3. An index
of symbols is provided after the bibliography.
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1.1 Standing Assumptions and Notation

The real line, half-line and the nonnegative integers are respectively denoted by R, R+ and
N; 0

0 = 0; B(Rk) is the Borel σ algebra on Rk (k ∈ N); λ is the Lebesgue measure on R+. We
work on a space Ω equipped with a σ-field A, a probability measure Q on A and a filtration
G = (Gt)t∈R+ of sub-σ-fields of A, satisfying the usual conditions. We use the terminology
of the general theory of processes and of filtrations as given in the books by Dellacherie
and Meyer (1975) and He, Wang, and Yan (1992). Footnotes are used for referring to
comparatively standard results. We denote by P(F) and O(F) the predictable and optional
σ-fields with respect to a filtration F. The continuous and discontinuous components of a
local martingale are denoted by ·c and ·d. For any semimartingale Y and predictable, Y
integrable process L, the stochastic integral process of L with respect to Y is denoted by∫ ·

0 LtdYt =
∫

(0,·] LtdYt = L � Y , with the usual precedence convention KL � Y = (KL) � Y if
K is another predictable process such that KL is Y integrable. The stochastic exponential
of a semimartingale X is denoted by E(X). For any càdlàg process Y , for any random time
τ (nonnegative random variable), ∆τY represents the jump of Y at τ. As Dellacherie and
Meyer (1975) or He et al. (1992), we use the convention that Y0− = Y0 (hence ∆0Y = 0)
and we write Y τ and Y τ− for the process Y stopped at τ and at τ− (“right before τ”), i.e.,
respectively,

Y τ = Y 1[0,τ) + Yτ1[τ,+∞), Y
τ− = Y 1[0,τ) + Yτ−1[τ,+∞). (1.1)

In particular, if τ ′ is another random time, one can check from the definition that

(Y τ−)τ
′− = Y τ∧τ ′−. (1.2)

We also work with semimartingales on a predictable set of interval type I as of He et al.
(1992, Sect. VIII.3) and, occasionally, with stochastic integrals on I, where Z = L � Y on
I, for semimartingales Y and Z on I, means that

Zτn = L � (Y τn) (1.3)

holds for at least one, or equivalently any, nondecreasing sequence of stopping times such
that ∪[0, τn] = I (the existence of at least one such sequence is ensured by He et al. (1992,
Theorem 8.18 3))). We call compensator of a stopping time τ the compensator of 1[τ,∞).
For A ∈ Gτ , we denote τA = 1Aτ + 1Ac∞, a G stopping time1. Unless otherwise stated, a
function (or process) is real-valued; order relationships between random variables (respec-
tively processes) are meant almost surely (respectively in the indistinguishable sense); a
time interval is random (in particular, the graph of a random time τ is simply written [τ ]).
We don’t explicitly mention the domain of definition of a function when it is implied by
the measurability, e.g. we write “a B(Rk) measurable function h (or h(x))” rather than “a
B(Rk) measurable function h defined on R”. For a function h(ω, x) defined on a product
space Ω× E, we usually write h(x) without ω (or ht in the case of a stochastic process).

2 Condition (B)

Throughout the paper θ denotes a G stopping time with J = 1[0,θ), hence J− = 10<θ1[0,θ].
Let F be a subfiltration of G satisfying the usual conditions. We consider the following:

1Cf. Theorem 3.9 in He et al. (1992).
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Condition (B). For any G predictable process L, there exists an F predictable process K,
called the F predictable reduction2 of L, such that 1(0,θ]K = 1(0,θ]L.

Note that the equality 1(0,θ]K = 1(0,θ]L is in the sense of indistinguishability. But, as
F satisfies the usual condition, we can find a version of K such that the equality holds
everywhere3. The condition (B) is a relaxation of the classical progressive enlargement
of filtration setup, where the bigger filtration G is simply the smaller reference filtration
F progressively enlarged by θ, which implies (B). As an immediate consequence of this
condition4,

{0 < θ <∞} ∩ Gθ− = {0 < θ <∞} ∩ Fθ−.

But we can say more. The result that follows establishes the connection between the
condition (B) and a classical condition in the theory of enlargement of filtrations, stated in
terms of the auxiliary right-continuous5 filtration F = (F t)t∈R+ , where

F t = {B ∈ A : ∃A ∈ Ft, A ∩ {t < θ} = B ∩ {t < θ}} (2.1)

(see Dellacherie, Maisonneuve, and Meyer (1992)).

Lemma 2.1 The subfiltration F satisfies the condition (B) if and only if G is a subfiltration
of F.

Proof. Suppose the condition (B). For any t ∈ R+, for any B ∈ Gt, 1B1(t,∞) is a G pre-
dictable process, with F predictable reduction K such that 1(0,θ]1B1(t,∞) = 1(0,θ]K1(t,∞).
Then 1B1{t<s≤θ} = Ks1{t<s≤θ}, hence lim infs↓t 1B1{t<s≤θ} = lim infs↓tKs1{t<s≤θ}. But
lim infs↓t 1B1{t<s≤θ} = 1B1{t<θ} and lim infs↓tKs1{t<s≤θ} = (lim infs↓tKs)1{t<θ}, which

proves B ∈ F t. Conversely (cf. Lemma 1 in Jeulin and Yor (1978)), suppose that G is a
subfiltration of F. For any t > 0, for any B ∈ Gt, let A ∈ Ft satisfy B∩{t < θ} = A∩{t < θ},
so that

1(0,θ]1B1(t,∞) = 1(0,θ]1A1(t,∞).

Note that 1A1(t,∞) is an F predictable process. For any B ∈ G0, 1(0,θ]1B1{0} = 0, again an
F predictable process. Since the processes 1B1(t,∞), for t > 0 and B ∈ Gt, and 1B1{0}, for
B ∈ G0, generate the G predictable σ-algebra6, this proves the condition (B).

The proofs of the progressive of enlargement results in Jeulin and Yor (1978) or Chapitre
XX in Dellacherie, Maisonneuve, and Meyer (1992) only require that G be a subfiltration
of F. Hence, in view of Lemma 2.1, all their results and proofs apply under the condition
(B), which we postulate henceforth. Let o· and p· denote the F optional and predictable
projections. In particular, S = oJ represents the F Azéma supermartingale of θ, with
canonical Doob-Meyer decomposition S = Q − D, where Q denotes the martingale part
(with Q0 = S0) and D represents the F drift of S (also the F dual predictable projection of
1{0<θ}1[θ,∞)). We recall the classical identities

p(J−) = S− on (0,∞) (2.2)

2Also known as pre-default process in the credit risk literature such as Bielecki and Rutkowski (2001).
3Cf. He et al. (1992, Theorem 4.26)).
4Cf. He et al. (1992, Corollary 3.23 2)).
5And complete under our assumption that F satisfies the usual conditions.
6Cf. Theorem 3.21 in He et al. (1992).
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(see Jeulin (1980, page 63)) and (by predictable projection of the Doob-Meyer decomposition
of S)

pS = Q− − D = S− −∆D = S−∆Q. (2.3)

In particular, if θ has an intensity, then ∆D = 0 and pS = S−. Let

ς = inf{s > 0;Ss = 0} = inf{s > 0;Ss− = 0} (2.4)

(since S is a nonnegative supermartingale7). Beyond ς, one has S = S− = pS = 0 (see
Dellacherie and Meyer (1975, Chap. 6 no 17) regarding S and S− and see Jacod (1979,
Corollary 6.28) for the case of pS). Moreover, one has

{S > 0} ⊆ {pS > 0} ⊆ {S− > 0} (2.5)

and

Sθ− > 0 on {0 < θ} (2.6)

(cf. Yor (1978, page 63)). Let

ςn = inf

{
s > 0;Ss ≤

1

n

}
(n > 0), (2.7)

so that (using the definitions)

ς = sup
n
ςn, {S− > 0} ∪ [0] = ∪n[0, ςn]. (2.8)

In particular,

on {S0 > 0} , we have 0 ∈ {S− > 0} , hence ∪n [0, ςn] = {S− > 0},
on {S0 = 0} (hence {S− > 0} = ∅), all the ςn are equal to 0, hence ∪n [0, ςn] = [0].

(2.9)

The next lemma assembles the main results that we need under the condition (B). In par-
ticular, the Jeulin formula (2.10) yields the (G,Q) martingale part of an (F,Q) martingale
Q, in a classical spirit of enlargement of filtration (studying in an enlarged filtration objects
defined in a reference filtration). For the reduction of filtration studied in this paper, the
part 4) of the lemma addresses the inverse problem of knowing when an F semimartingale
K is such that Kθ− is a G local martingale. On other multiplicative decompositions of
the Azéma supermartingale S such as the one of part 5), see Nikeghbali and Yor (2006),
Kardaras (2014) or Penner and Reveillac (2014).

Lemma 2.2 Under the condition (B):

1) For any G stopping time τ , there exists an F stopping time σ, which we call the F
reduction of τ , such that {τ < θ} = {σ < θ} ⊆ {τ = σ}.

2) Let (E, E) be a measurable space. Any P(G) ⊗ E (respectively O(G) ⊗ E) measurable
function gt(ω, x) admits a P(F) ⊗ E (respectively O(F) ⊗ E) reduction, i.e. a P(F) ⊗ E
(respectively O(F) ⊗ E) measurable function ft(ω, x) such that 1(0,θ]f = 1(0,θ]g (respec-
tively 1[0,θ)f = 1[0,θ)g, i.e. Jf = Jg) everywhere.

7Cf. n◦17 Chapitre VI in Dellacherie and Meyer (1975).

5



3) For any F martingale Q with integrable
√

[Q,Q]∞, the process

Qθ− − J−
S−

� 〈Q,Q〉 (2.10)

is a G uniformly integrable martingale, where 〈Q,Q〉 is computed with respect to (F,Q).

4) Let M be a G local martingale on R+ with ∆θM = 0. For any F optional reduction K
of M , K is an F semimartingale on {S− > 0}, 1{S−>0}K− is an F predictable reduction
of M− and S− �K + [S,K] is an F local martingale on {S− > 0}. Conversely, for any
F semimartingale K on {S− > 0} such that S− �K + [S,K] is an F local martingale on
{S− > 0}, Kθ− is a G local martingale on R+.

5) The Azéma supermartingale S admits the multiplicative decomposition

S = S0E(− 1

S−
� D)E(

1
pS

� Q) on {pS > 0},

where E(·) stands for the stochastic exponential of a semimartingale.

Proof. 1) is proven in Chapitre XX, n◦75 a), in Dellacherie, Maisonneuve, and Meyer
(1992); 2) is a consequence of Chapitre XX, n◦75 d) of the same reference in the case of
processes, the parameterized extension being deduced by monotone class theorem; 3) is
proven in Chapitre XX, n◦77 b), in Dellacherie et al. (1992); 4) is proven in Song (2014,
Lemmas 6.5 and 6.8); 5) is Song (2014, Lemma 3.5) (in particular, 1

S−
�D is well defined on

{S− > 0}, by (2.9), and, by Jacod (1979, Corollary 6.28), 1
pS �Q is well defined on {pS > 0}).

In view of Lemma 2.2 3) and 4), the transform ·θ− is more natural than ·θ in the context
of reduction of filtration, i.e. when the problem is, given a stopping time θ relative to a
full model filtration G, to separate the information that comes from θ from a reference
information F in order to simplify the computations. By contrast, ·θ is more commonly
used in the progressive enlargement of filtration literature, i.e. for constructing a stopping
time in a larger filtration G given a reference filtration F. Note that Lemma 2.2 3) and 4)
are progressive enlargement analogs of formally similar results regarding the transformation
of martingales through measure change, the Azéma supermartingale S playing the role of
the measure change density. Specifically, the Jeulin formula (2.10) is a counterpart to the
Girsanov formula and Lemma 2.2 4) is a counterpart to He et al. (1992, Theorem 12.18
4)). This analogy can be pushed further by effectively representing S as a subdensity (see
Yoeurp (1985) and Song (1987,2013)).

Lemma 2.3 Two F predictable (resp. optional) processes K and K ′ undistinguishable until
θ (resp. before θ) are undistinguishable on {S− > 0} (resp. {S > 0}).

Proof. Otherwise, the optional section theorem would imply the existence of an F stopping
time σ such that E[1Kσ 6=K′σSσ−] 6= 0 (resp. E[1Kσ 6=K′σSσ] 6= 0), in contradiction with

E
[
1Kσ 6=K′σSσ−

]
= E

[
1K 6=K′S− � 1[σ,+∞)

]
= E

[
1K 6=K′J− � 1[σ,+∞)

]
= E

[
1Kσ 6=K′σJσ−

]
= 0

(resp.

E
[
1Kσ 6=K′σSσ

]
= E

[
1K 6=K′S � 1[σ,+∞)

]
= E

[
1K 6=K′J � 1[σ,+∞)

]
= E

[
1Kσ 6=K′σJσ

]
= 0, )

where Theorems 5.4 and 5.16 1) (resp. 2)) in He et al. (1992) and the formula (2.2) (resp.
the definition S = oJ) were used in the next-to-last equality.
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3 Condition (A)

Let

η = inf{s > 0; pSs = 0, Ss− > 0} = inf{s > 0;Ss− = ∆sD > 0}, (3.1)

by (2.3).

Lemma 3.1 We have

η = inf{s ∈ {S− > 0}; E(− 1

S−
� D)s = 0}. (3.2)

Proof. The stochastic exponential E(− 1
S−

� D) cancels at t ∈ {S− > 0} if and only if

∆t

(
− 1

S−
� D
)

=
−1

St−
∆tD = −1, i.e. St− = ∆tD.

Hence,

inf{s ∈ {S− > 0}; E(− 1

S−
� D)s = 0} = inf{s ∈ {S− > 0};Ss− = ∆sD}

= inf{s ∈ {S− > 0};Ss− = ∆sD > 0} = inf{s > 0;Ss− = ∆sD > 0} = η.

Using the results of Jacod (1979, Chapter 6), we check that

{S− > 0} \ {pS > 0} = [η] (3.3)

and
η = ς on {η <∞} , hence η ≥ ς. (3.4)

In addition, the interval {pS > 0} is predictable and there exists a nondecreasing sequence
(ζn)n∈N of F stopping times such that (cf. the formula (6.24) in Jacod (1979))

{pS > 0} ∪ [0] = ∪n[0, ζn] and pS is bounded away from 0 on [0, ζn] for every n. (3.5)

In particular (note S0 = pS0),

on {S0 > 0} , we have 0 ∈ {pS > 0}, hence ∪n [0, ζn] = {pS > 0},
on {S0 = 0} (hence {pS > 0} = ∅), it holds that ∪n [0, ζn] = [0].

(3.6)

Letters of the “m” family are used to denote G local martingales, which are all defined
in reference to the original probability measure Q. Regarding F, we will also deal with
another probability measure P, so that letters of the “q” (including Q that was introduced
above as the (F,Q) martingale part of S) and “p” family are used to denote (F,Q) and
(F,P) local martingales, respectively. Given a probability measure P equivalent to Q on

FT , we denote by q the (F,Q) martingale of the density functions dP
dQ

∣∣∣
Ft∧T

, t ∈ R+. We

also introduce p = 1
q and the stochastic logarithms p and q such that

p = p0E(p), q = q0E(q), p0 = q0 = 0, (3.7)

so that p and p (resp. q and q) are (F,P) (resp. (F,Q)) local martingales on [0, T ]. Recall
that all our stochastic integrals start from 0 at time 0.
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Lemma 3.2 For any probability measure P equivalent to Q on FT , we have

1{pS>0} � (
q

q0
) = E(1{pS>0} � q)− 1 on [0, T ]. (3.8)

In addition, we have

q = q0E(1{pS>0}
1
pS

� Q) on {pS > 0} ∩ [0, T ] (3.9)

if and only if

1{pS>0} � q = 1{pS>0}
1
pS

� Q on [0, T ] (3.10)

if and only if

1{pS>0} � (
q

q0
) = E(1{pS>0} � q)− 1 = E(1{pS>0}

1
pS

� Q)− 1 on [0, T ] (3.11)

if and only if

pS � q = Q− Q0 on [0, T ]. (3.12)

Proof. The F predictable and bounded process 1{pS>0} integrates any (F,Q) local martin-
gale on [0, T ]. Therefore, by the dominated convergence theorem for stochastic integrals8,
the identity

1[0,ζn] �
q

q0
=
qζn

q0
− 1 = E(qζn)− 1 = E(1[0,ζn] � q

ζ)− 1 (n ∈ N)

passes to the limit, as n→∞, into (3.8). Next we prove that (3.9), i.e.

q =
1
pS

� Q on {pS > 0} ∩ [0, T ], (3.13)

is not only obviously implied (cf. (1.3)) by (3.10), but is actually equivalent to it. By
definition, (3.13) means that (cf. (3.6))

1[0,ζn∧T ] � q = 1[0,ζn∧T ]
1
pS

� Q (n ∈ N). (3.14)

For t ∈ [0, T ], we have by monotone convergence in [0,+∞]√∫ t

0
1{pSs>0}

1
pS2
s

d[Q,Q]s = lim
n→∞

√∫ t∧ζn

0

1
pS2
s

d[Q,Q]s ≤
√

[q, q]t,

by (3.14). Since the process
√

[q, q] is integrable in R+, so is in turn
√
1{pS>0}

1
pS2

� [Q,Q],

i.e. 1{pS>0}
1
pS is Q integrable in F on [0, T ] (see He et al. (1992, Theorem 9.2)), which implies

(3.10), obviously equivalent to the right-hand side identity in (3.11), where the left-hand
side identity is simply (3.8). Last, (3.10) is equivalent to

1{pS>0}
pS � q = 1{pS>0} � Q on [0, T ]. (3.15)

8Cf. He et al. (1992, Theorem 9.30).
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Moreover,

1{pS=0}
pS � q = 0 = 1{pS=0} � Q on [0, T ], (3.16)

because Q is constant on {pS = 0} ⊆ {S = 0} (cf. (2.5)). Hence, (3.15) is equivalent to
(3.12).

Definition 3.1 Given a positive constant T , we say that (F,P) is a reduced stochastic basis
of (G,Q) if F is a subfiltration of G satisfying the usual conditions and the condition (B)
and if P is a probability measure equivalent to Q on FT .

We introduce the following:

Condition (A). (F,P) is a reduced stochastic basis of (G,Q) such that for any (F,P) local
martingale P , P θ− is a (G,Q) local martingale on [0, T ].

If θ is G predictable, the reduced stochastic basis (F,P) = (G,Q) obviously satisfies the
condition (A). But we are mostly interested in the case where θ has a nontrivial totally
inaccessible component. The condition (A) is nonstandard in the enlargement of filtration
literature. This condition raises questions such as the materiality of stopping at (θ−) rather
than at θ in its definition (in other words, can the condition (A) be satisfied in cases where
(F,P) martingales really jump at θ). Another natural question is the connection between
the condition (A) and the notion of pseudo-stopping time in Nikeghbali and Yor (2005).
Our next result provides a characterization of the condition (A) in terms of the Azéma
supermartingale S of θ. Here we provide a short proof using auxiliary results of Song (2014)
and Jacod (1979, Chapter 6). A self-contained proof is given in Appendix A.

Theorem 3.1 1) A reduced stochastic basis (F,P) of (G,Q) satisfies the condition (A) if
and only if (3.9) (i.e. (3.10), (3.11) or (3.12)) holds.

2) Given a subfiltration F of G satisfying the usual conditions and the condition (B), there
exists a probability measure P equivalent to Q on FT such that the reduced stochastic
basis (F,P) of (G,Q) satisfies the condition (A) if and only if

1{pS>0}
1
pS is Q integrable on [0, T ] with respect to (F,Q) and

E(1{pS>0}
1
pS � Q) is a positive true martingale on [0, T ] with respect to (F,Q).

(3.17)

In this case, a probability measure P such that (F,P) satifies the condition (A) is given
by the Q density E(1{pS>0}

1
pS � Q)T on FT .

Proof. 1) The condition (A) says that, for any (F,P) local martingale P , (P θ−)T = (P T )θ−

is a (G,Q) local martingale. By Lemma 2.2 4), this property holds if and only if

S− � P T + [S, P T ] is an (F,Q) local martingale on {S− > 0}.

By the integration by parts formula, this is equivalent to

P TS + P T− � D is an (F,Q) local martingale on {S− > 0}. (3.18)
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Note that P is an (F,P) local martingale on [0, T ] if and only if there exists an (F,Q) local
martingale Q such that P = Qp on [0, T ]. Hence, (3.18) is equivalent to QT (pTS+pT− �D) =
(Qp)TS+(Qp)T− �D+(pT− �D) �QT (by integration by parts) being an (F,Q) local martingale
on {S− > 0}, for any (F,Q) local martingale Q. As a consequence, the condition (A) is
equivalent to pS + p− � D being an (F,Q) local martingale on {S− > 0} ∩ [0, T ] orthogonal
to all the others, i.e.

pS + p− � D constant on {S− > 0} ∩ [0, T ]. (3.19)

Noting that pS + p− � D = pS + (pS)−
1
S−

� D, (3.19) is equivalent to

pS = p0S0E(− 1

S−
� D) on {S− > 0} ∩ [0, T ]. (3.20)

Recall (3.1) through (3.4). If η is finite, then Sη = 0, by (3.4), whereas (3.2) yields E(− 1
S−

�

D)η = 0, so that one has the trivial equality (pS)η = p0S0E(− 1
S−

� D)η = 0, independent of

the condition (A). Hence, the identity (3.20) is equivalent to the identity on the “smaller”
set (cf. (3.3))

pS = p0S0E(− 1
S−

� D) on {pS > 0} ∩ [0, T ], (3.21)

i.e. in view of Lemma 2.2 5)

pS0E(− 1

S−
� D)E(

1
pS

� Q) = p0S0E(− 1

S−
� D) on {pS > 0} ∩ [0, T ],

i.e. (3.9) since η, the first zero of E(− 1
S−

� D) on {S− > 0}, does not belong to {pS > 0} (if

η <∞; cf. (3.2) and (3.3)).

2) We use E? as shorthand notation for E(1{pS>0}
1
pS � Q). Assuming the existence of a

probability measure P equivalent to Q on FT such that (F,P) satisfies (A), then (3.9) holds
(by part 1)), meaning by definition that, for each n ∈ N (cf. (1.3) and (3.6)),

1[0,ζn] �
q

q0
=
qζn

q0
− 1 = (E?)ζn − 1 = 1[0,ζn] � E?.

By the dominated convergence theorem for stochastic integrals, for each s ≥ 0:

lim
n
1[0,ζn] � qs = 1{pS>0} � qs.

Hence 1[0,ζn] � E?s converges, so that 1{pS>0} is E? integrable on R+ and

lim
n
1[0,ζn] � E?s = 1{pS>0} � E?s = E?s − 1. (3.22)

Moreover, since q is a true martingale, these convergences hold not only almost surely, but
also in L1. Therefore, by taking Ft conditional expectations for t ≤ s in (3.22), we obtain:

E[q0 + q01{pS>0} � E?s |Ft] = limn E[q0 + q01[0,ζn] � E?s |Ft] = q0 limn E[E?ζn∧s|Ft]
= q0 limn E?ζn∧t = q0(1 + limn 1[0,ζn] � E?t ) = q0E?t ,

where the true martingality of q0(E?)ζn = qζn was used for passing to the second line. Hence,
E? is an (F,Q) true martingale. In addition, (3.11) yields

E? = 1 + 1{pS>0} � (
q

q0
) = E(1{pS>0} � q) > 0 on [0, T ],
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where the inequality holds because, for any t ≥ 0, E(1{pS>0} � q)t = 0 if and only if
1{pSt>0}∆tq = −1, i.e. ∆tq = −1, in contradiction with qt = E(q)t > 0. In conclusion,
(3.17) holds. Conversely, assuming (3.17), defining a probability measure P by the Q den-
sity E?T on FT , then (F,P) satifies the condition (A), by part 1).

Note that supposing (3.17), unless {pS > 0} is a positive process, there is no uniqueness of
P such that (F,P) satisfies the condition (A). In fact, for any (F,Q) local martingale Q such
that E(1{pS=0} �Q) is a positive (F,Q) true martingale on [0, T ],

E(1{pS>0}
1
pS

� Q)TE(1{pS=0} �Q)T

yields the density of another probability measure P such that (F,P) satisfies the condition
(A).

Corollary 3.1 Let there be given a subfiltration F of G satisfying the usual conditions and
the condition (B).

1) If θ has an intensity and Q(θ ≤ T ) > 0, then (F = G,P) doesn’t satisfy the condition
(A), whatever the probability measure P equivalent to Q on FT .

2) (F,P = Q) satisfies the condition (A) for all T > 0 if and only if Q = S0.

Proof. 1) In the case where F = G and θ has an intensity, we have:

S = J, D = Dθ continuous , pS = J−, Q = J + D.

Hence

E(1{pS>0}
1
pS

� Q)t = E(Q)t = eQt−Q0
∏
s≤t

(1 + ∆sQ)e−∆sQ = eJt+Dt−1Jte
(1−Jt) = eDtJt,

which vanishes at θ on {θ ≤ T}. Therefore, in view of Theorem 3.1 2), the condition (A)
cannot hold unless Q(θ ≤ T ) = 0.
2) In the case where P = Q, we have q = 1. Hence, in view of Theorem 3.1 1), the condition
(A) holds for all T > 0 if and only if Q is constant on {pS > 0}. But, as a general fact,
if Q is constant on {pS > 0}, then pS = S and Q is constant. In fact, if Q is constant
on {pS > 0}, then pS = S holds on {pS > 0}, therefore {pS > 0} ∩ {S > 0} = {pS > 0},
i.e. {pS > 0} ⊆ {S > 0}, whereas the converse inclusion holds in general (cf. (2.5)). Hence,
{pS > 0} = {S > 0} and pS = S. Therefore, Q = Q0 = S0 on {S > 0}. In addition, Q (like
D) is constant on {S = 0}. In view of the continuity of Q that follows from (2.3) in case
pS = S, we conclude that Q = Q0 = S0 everywhere.

Corollary 3.2 Assume the condition (A).

1) A process P is an (F,P) local martingale on {pS > 0} ∩ [0, T ] if and only if pS�P + [Q, P ]
is an (F,Q) local martingale on {pS > 0} ∩ [0, T ],

2) In the special case where θ has an intensity, this condition reduces to S−�P +[S, P ] being
an (F,Q) local martingale on {S− > 0}∩ [0, T ]. In addition, we have ςn < ς (n ∈ N) and

{S > 0} = {pS > 0} = {S− > 0} = [0, ς). (3.23)

11



Proof. 1) On {pS > 0} ∩ [0, T ],

qP = P−�q + q−�P + [q, P ]
= P−�q + q−�P + q−

1
pS �[Q, P ],

where the second equality comes from Theorem 3.1 1) and (3.12). Hence, qP is an (F,Q)
local martingale on {pS > 0}∩ [0, T ], i.e. P is an (F,P) local martingale on {pS > 0}∩ [0, T ],
if and only if q−�P + q−

1
pS �[Q, P ] is an (F,Q) local martingale on {pS > 0}∩ [0, T ]. Recalling

the sequence ζn introduced in (3.5) and introducing a nondecreasing sequence of F stopping
times σn tending to infinity and reducing q− and its inverse to bounded processes on [0, T ],
this means that q−�P ζn∧σn+q−

1
pS �[Q, P ]ζn∧σn is an (F,Q) local martingale on [0, T ] for every

n, i.e. (recalling from (3.5) that pS is bounded away from 0 on [0, ζn]) pS�P ζn∧σn+[Q, P ]ζn∧σn

is an (F,Q) local martingale on [0, T ] for every n, i.e. pS�P + [Q, P ] is an (F,Q) local mar-
tingale on {pS > 0} ∩ [0, T ].

2) In the special case where θ has an intensity, then D is continuous, hence [·,D] = 0 and
(2.3) implies pS = S−. so that the equivalence of part 1) is rewritten as in part 2). Let
P = 10<ςn=ς<C1[ς,∞) (C constant positive). We compute

S−�P + [S, P ] = Sς−10<ςn=ς<C1[ς,∞) + ∆ςS10<ςn=ς<C1[ς,∞) = 0

(for Sς = 0). In particular, by application of the just proven equivalence, P is an (F,P) local,
hence true (as bounded), martingale. Therefore, noting P0 = 0 and PC = 10<ςn=ς<C1C≥ς =
10<ςn=ς<C ,

0 = EP[PC ] = P[0 < ςn = ς < C],

for every positive constant C. Hence P[0 < ςn = ς] = 0, thus ςn < ς a.s., under P as under
Q. Hence, in view of (2.9), on {S0 > 0}, we have

{S− > 0} = ∪n[0, ςn] ⊆ [0, ς) ⊆ {S− > 0}

(where the last inclusion holds by (2.4)), whereas on {S0 = 0}, we have

{S− > 0} = ∅ = [0, ς).

In both cases, {S− > 0} = [0, ς) and (3.23) follows in view of (2.5).

4 Invariant Times

The condition (A) is stated relative to a fixed reduced stochastic basis (F,P) of (G,Q). In
applications (see e.g. Crépey and Song (2014b)), the choice of a reduced stochastic basis
(F,P) is a degree of freedom of the modeler. Thus, we are interested in the stopping times
θ such that the condition (A) holds for at least one reduced stochastic basis (G,Q). This
motivates the following:

Definition 4.1 A G stopping time θ is called invariant if there exists a reduced stochastic
basis (F,P) of (G,Q) satisfying the condition (A).

Beyond the obvious reference to the martingale invariance property defined by the condition
(A), this terminology also fits the invariance by reduction of filtration of certain backward
stochastic differential equations with random terminal time given as an invariant time that
appear in the study of counterparty risk in finance (see Crépey and Song (2014a,2014b)).
We can restate Theorem 3.1 in the form of the following characterization of invariant times.
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Corollary 4.1 A G stopping time θ is invariant if and only if there exists a filtration F
satisfying the usual conditions, the inclusions F ⊆ G ⊆ F and the integrability and positivity
conditions (3.17). In this case, a probability measure P on (Ω,FT ) such that (F,P) satisfies
the condition (A) is defined by the Q density E(1{pS>0}

1
pS � Q)T .

This section is devoted to the study of invariant times. The proof of Theorem 3.1 (or
Corollary 4.1) given in Sect. 3 uses auxiliary results of Song (2014) and Jacod (1979, Chapter
6). A self-contained proof is given in Appendix A. The core of the argument is to combine
the Jeulin formula (2.10) with the Girsanov formula (A.1), so that the change of measure
“compensates” the enlargement of filtration (the interaction between them is directly visible
in the formula (A.9)).

4.1 Avoidance Property and Pseudo-Stopping Times

According to Nikeghbali and Yor (2005), a random time θ is called an (F,Q) pseudo-stopping
time if and only if θ is finite and, for any bounded F martingale X,

E[Xθ] = E[X0].

This section studies some connections between the notions of invariant time and pseudo-
stopping time. Let A denote the F dual optional projection of 1[θ,∞) and

N = (1− S0) + A + S. (4.1)

Pseudo-stopping times admit several equivalent characterizations, e.g. (F,Q) local martin-
gales stopped at θ are (G,Q) local martingales, or A∞ = 1, or N = 1 (see Nikeghbali and
Yor (2005)). Consistent with the obvious fact that a pseudo-stopping time θ that avoids F
stopping times (hence A = D continuous as well known) satisfies (P2) below, we have:

Theorem 4.1 Let there be given a subfiltration F of G satisfying the usual conditions and
the condition (B). Suppose 0 < θ <∞. We consider the two following properties:
(P1) θ is an F pseudo-stopping;
(P2) (F,P = Q) satifies the condition (A) for any positive constant T .

1) One property being satisfied, the other also holds if and only if A = D.

2) Both properties hold simultaneously if and only if

Q = S0 and A = D. (4.2)

Proof. 2) follows immediately from 1) that we show. (P1) is equivalent to N = 1 and, in
view of Corollary 3.1, (P2) is equivalent to Q = S0. Assuming (P1), (4.1) yields

1 = (1− S0) + A + S , hence (Q− S0) + (A− D) = 0,

so that (P2) is equivalent to A = D. Conversely, assuming (P2), we have

N = (1− S0) + A + S = 1 + A− D,

so that (P1) is equivalent to A = D.
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Theorem 4.1 2) shows that, letting aside times θ with the avoidance property, the times
θ for which (F,P = Q) satisfies the condition (A) are in a sense “orthogonal” to pseudo-
stopping times. But avoidance typically holds in applications (see Crépey and Song (2014b))
and a pseudo-stopping time θ with the avoidance property is such that (F,P = Q) satisfies
the condition (A). But, with respect to (F,Q) pseudo-stopping times that are defined with
respect to the fixed probability measure Q, the additional flexibility of invariant times lies
in the possibility to use a changed measure P on top of a reduced filtration F. For instance,
a pseudo-stopping time without the avoidance property can still be invariant in view of a
probability measure P 6= Q in the condition (A). This is illustrated in the following examples,
which also address the first issue that was raised after the condition (A) was introduced,
i.e. the materiality or not of stopping at (θ−) rather than θ in its definition. In fact, we
construct examples of invariant times θ (also a pseudo-stopping time in the first case but
not in the second one) that do intersect F stopping times in a reduced basis (F,P) satisfying
(A). Hence, the “−”is material in (θ−).

Example 4.1 Fix a filtration F satisfying the usual conditions. For i = 1, 2, let σi > 0
be a finite F stopping time with bounded compensator vi. Assuming σ2 > T , define
θ = 1Aσ1+1Acσ2, for some random event A independent of F∞ such that α = Q(A) ∈ (0, 1).
Let G be the progressive enlargement of F with θ. Hence, θ intersects the F stopping times
σi. By independence of A, on [0, T ],

S = 1[0,σ1]α+ 1[0,σ2](1− α),

D = αv1 + (1− α)v2,
Q = α(1[0,σ1) + v1) + (1− α)(1[0,σ2) + v2).

Hence, since σ2 ≥ T, we have S ≥ 1 − α, pS ≥ 1 − α on [0, T ] and, by Theorem I.8 in
Lepingle and Mémin (1978), E(1{pS>0}

1
pS � Q) is an (F,Q) true martingale on [0, T ]. It is

also positive because ∆Q
pS = S

pS − 1 > −1 on [0, T ]. Hence the conditions of Corollary 4.1 are
fulfilled and θ is an invariant time. In addition, for every bounded F optional process K,
by independence of A,

E[Kθ] = E[1AKσ1 + 1AcKσ2 ] = E[αKσ1 + (1− α)Kσ2 ],

hence
A = (1[θ,∞))

o = α1[σ1,∞) + (1− α)1[σ2,∞).

As the σi are finite, A∞ = 1 and, by application of Theorem 1 (3) in Nikeghbali and Yor
(2005), θ is a pseudo-stopping time.

Example 4.2 To obtain an invariant time θ intersecting F stopping times without being a
pseudo-stopping time, we set

θ = 1A1σ1 + 1A2σ2 + 1A3σ3,

for a non pseudo-stopping time σ3 and a partition Ai, i = 1, 2, 3, independent of F∞ and of
σ3. With αi = Q(Ai) > 0, we have

A = (1[θ,∞))
o = α11[σ1,∞) + α21[σ2,∞) + α3(1[σ3,∞))

o,

where (1[σ3,∞))
o
∞ 6= 1, hence A∞ 6= 1, with positive Q probability. Thus, by the converse

part in Theorem 1 (3) in Nikeghbali and Yor (2005), θ is not a pseudo-stopping time. But
the Azéma supermartingale of θ is given by

S = 1[0,σ1]α1 + 1[0,σ2]α2 +o(1[0,σ3))α3 ≥ α2 on [0, T ].
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The reasoning in the example 4.1 remains valid to prove that θ is an invariant time.

4.2 Positivity of the Doléans-Dade exponential

In Theorem 3.1 2) and Corollary 4.1 the strongest requirements are the true martingality
and positivity conditions on E(1{pS>0}

1
pS �Q) on the interval [0, T ]. This section studies the

role of the positivity condition in these results, i.e. the role of the equivalence between P
and Q on FT in the condition (A).

Example 4.3 We take for G the augmentation of the natural filtration of a Poisson process
stopped at its first time of jump θ relative to some probability measure Q.

For F = G (so that the condition (B) holds trivially), Corollary 3.1 1) shows that the
condition (A) doesn’t hold, whatever the probability measure P equivalent to Q on FT .
In the present Poisson case, this can also be recovered directly from the definition of the
condition (A). In fact, for any probability measure P equivalent to Q on FT , any (G,P)
local martingale P can be represented as a (G,Q) local martingale minus some continuous
bracket deterministic until θ. Thus, P θ− = P θ is a nonconstant finite variation continuous
process, hence not a (G,P) local martingale. Therefore, (F = G,P) does not satisfy the
condition (A), whatever the probability measure P.

For F trivial, any G predictable process coincides with a Borel function before θ, hence
the condition (B) is satisfied. The constants are the only (F = {∅,Ω},Q) local martingales,
so that the condition (A) is satisfied by (F,P) = ({∅,Ω},Q) (hence θ is an invariant time).
Consistent with this conclusion in regard of Theorem 3.1 1), S is deterministic (equal to the
survival function of θ), Q is constant and q = 1, hence (3.9) is satisfied.

In the sequel, we show that the positivity of E(1{pS>0}
1
pS �Q) (assuming that 1{pS>0}

1
pS �Q

is Q integrable on [0, T ] with respect to (F,Q)) reduces to the predictability of the stopping
time ς{ς≤T} (in F), where ς is the first zero of S in (2.4).

Lemma 4.1 Let σ be an F predictable stopping time. Then pSσ = 0 if and only if σ ≥ ς.

Proof. By definition of the predictable projection and nonnegativity of S,

pSσ = 0⇔ E[Sσ|Fσ−] = 0⇔ Sσ = 0⇔ σ ≥ ς on the set {σ <∞}.

Lemma 4.2 ς{pSς=0} is a predictable stopping time.

Proof. Since pS = S− −∆D, therefore Sς− = ∆ςD > 0 on {ς <∞, pSς = 0,∆ςD > 0}. The
set

Θ = {pS = 0,∆D > 0}

is thin and predictable. Let Θω = {s > 0; (s, ω) ∈ Θ}, so that {Θ· 6= ∅} = π(Θ), the
projection of Θ onto Ω. If Q[π(Θ)] > 0, then, by predictable section theorem, there exists
a sequence of predictable stopping times σn such that [σn] ⊆ Θ and limn→∞Q[σn < ∞] =
Q[π(Θ)] > 0. Since ∆D = 0 on (ς,∞), σn(ω) < ∞ implies σn(ω) ≤ ς(ω). But, by Lemma
4.1, σn(ω) ≥ ς(ω). We conclude that σn = ς on {σn <∞}, i.e. [σn] ⊆ [ς]. Set σ∞ = infn σn.
Since σn(ω) can only take two values (∞ and ς(ω)), σ∞ is a stationary infimum of predictable
stopping times, hence a predictable stopping time9. Clearly, ∆σ∞D > 0 on {σ∞ < ∞},

9Cf. He et al. (1992, Theorem 3.29).
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[σ∞] ⊆ [ς], {σ∞ <∞} ⊆ π(Θ) and Q[σ∞ <∞] = Q[π(Θ)]. Therefore,

ς <∞, pSς = 0,∆ςD > 0 ⇒ ς <∞,Θ· 6= ∅, pSς = 0,Sς− > 0
⇒ ς <∞, σ∞ <∞, pSς = 0, Sς− > 0
⇒ ς = (σ∞){ς<∞,pSς=0,Sς−>0} <∞

and
ς <∞, pSς = 0,∆ςD = 0 ⇒ ς <∞, pSς = 0, Sς− = 0

⇒ ς = ς{ς<∞,pSς=0,Sς−=0} <∞.

Therefore,
ς{ς<∞,pSς=0} = (σ∞){ς<∞,pSς=0,Sς−>0} ∧ ς{ς<∞,pSς=0,Sς−=0}.

As ς ≤ σ∞, therefore {ς <∞, pSς = 0, Sς− > 0} ∈ Fσ∞−, hence (σ∞){ς<∞,pSς=0,Sς−>0} is pre-
dictable, like σ∞, by Theorem 3.29 in He et al. (1992). The stopping time ς{ς<∞,pSς=0,Sς−=0}
is predictable by the proof of Theorem 9.41 in He et al. (1992). Hence, ς{ς<∞,pSς=0} is pre-
dictable as the minimum of two predictable stopping times.

The next result characterizes the positivity of the Doléans-Dade exponential E(1{pS>0}
1
pS �Q)

(whenever well defined). Note that it is consistent with the findings of the example 4.3,
where, in the first considered case F = G, ς = θ is the first time of jump of a Poisson process
(hence, ς{ς≤T} is not predictable) and E(1{pS>0}

1
pS � Q) vanishes at θ on {θ ≤ T}.

Theorem 4.2 Assuming that 1{pS>0}
1
pS is Q integrable on [0, T ] with respect to (F,Q), we

have: E(1{pS>0}
1
pS � Q) > 0 on [0, T ] ⇐⇒ pSς = 0 on {ς ≤ T} ⇐⇒ ς{ς≤T} is a predictable

stopping time.

Proof. E(1{pS>0}
1
pS � Q) is positive on [0, T ] if and only if

1{pSt>0}∆t

( 1
pS

� Q
)

= 1{pSt>0}
1
pSt

∆tQ > −1, t ∈ [0, T ]. (4.3)

Since S− pS = ∆Q (cf. (2.3)), for t ∈ [0, ς),

1
pSt

∆tQ =
St − pSt

pSt
=

St
pSt
− 1 > −1.

If ς is finite with pSς > 0, then the same computation at ς yields

1
pSς

∆ςQ = −1.

If ς is finite with pSς = 0, then ∆ςQ = Sς − pSς = 0. For t > ς, ∆tQ = 0. Putting together
these observations, the condition (4.3) is equivalent to

pSς = 0 on {ς ≤ T}. (4.4)

If so, then {ς ≤ T} = {ς{pSς=0} ≤ T} is F(ς{pSς=0})− measurable. Therefore, by Lemma 4.2

and He et al. (1992, Theorem 9.41 7)), ς{ς≤T} = (ς{pSς=0}){ς≤T} is predictable. Conversely,
if ς{ς≤T} is predictable, as it is ≥ ς, the condition (4.4) holds by Lemma 4.1.
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5 Conclusion

Given a subfiltration F of G satisfying the condition (B) with respect to a G stopping time
θ, the results of this paper reduce the question of the existence of a probability measure P
such that (F,P) satisfies the condition (A), i.e. the question of the invariance of the time
θ, to suitable integrability conditions (essentially; see Theorem 3.1 and Corollary 4.1). The
results of this paper are used in Crépey and Song (2014a, 2014b) to study the well posedness
and numerical solution of a backward stochastic differential equation that appears in the
modeling of counterparty risk in finance. From a broader mathematical finance perspective,
this paper is a contribution to the question of reduction of filtration, or separability of a
full model filtration G in which a stopping time θ is given, i.e., given a stopping time θ
relative to a full model filtration G, when and how one can separate the information that
comes from θ from a reference information (filtration) in order to simplify the computations
(the inverse problem of progressive enlargement of filtration). Our results say that this is
possible whenever θ is an invariant time, switching if need be from the original probability
measure Q to a changed probability measure P such that the change of measure compensates
in some sense the change of filtration. The additional degree of freedom provided by the
possibility of changing the measure makes invariant times more flexible than Cox times
or pseudo-stopping times that are commonly used to model default times. To complete
this study it would be interesting to compare invariant times with other classical classes of
random times, such as honest times or initial times satisfying Jacod’s density hypothesis.

A A Direct Proof of Theorem 3.1

In this section we provide a self-contained proof of Theorem 3.1, independent of the results
of Song (2014). The computations of this section rely a lot on the properties of projections,
e.g. pM = M− in the case of a martingale M . Superscripts o and p are used for the
(F,Q) projections; EQ represents the Q expectation, whereas the P expectation is denoted
by EP. All our predictable brackets are computed with respect to F. The (F,Q) and
(F,P) predictable brackets are respectively denoted by 〈·, ·〉Q (as in (2.10)) and 〈·, ·〉P. By
definition, if one argument is continuous (resp. discontinuous), then brackets reduce to
the brackets of the continuous (resp. discontinuous) parts. Predictable brackets coincide
with the square bracket and are continuous if one argument is continuous; in this case
〈·, ·〉Q = 〈·, ·〉P and we simply denote 〈·, ·〉. Finite variation predictable processes don’t
contribute to predictable brackets against local martingales (this can be seen as consequence
of Yoeurp’s formula). Given a probability measure P equivalent to the probability measure
Q on FT , we use the notation p, p, q, q introduced in (3.7). In particular, for any bounded
(F,P) martingale P null at the origin,

P̃ = P − q− � 〈p, P 〉P = P − 〈p, P 〉P (A.1)

is an (F,Q) local martingale on [0, T ], by the Girsanov theorem. The next lemma expresses
the denseness of the class of such Girsanov transform martingales among all the (F,Q)
martingales.

Lemma A.1 Let Q be an (F,Q) uniformly integrable martingale null at the origin such that
P̃Q is an (F,Q) local martingale, for any bounded (F,P) martingale P null at the origin.
Then Q = 0 on [0, T ].
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Proof. For any F stopping time σ ≤ T reducing the concerned processes to integrability,

0 = EQ[P̃σQσ] = EP[P̃σQσpσ] = EP[(P − q− � 〈p, P 〉P)σQσpσ]

= EP[[Qp, P ]σ −Q− � 〈p, P 〉Pσ] = EP[[Qp−Q− � p, P ]σ],
(A.2)

where the (F,P) martingale properties of P σ and (Qp)σ were used to pass to the second line
(in combination with the predictable projection formula, yielding EP[q− � 〈p, P 〉PσQσpσ] =
EP[Q− � 〈p, P 〉Pσ]). By optional section theorem, (A.2) shows that [Qp − Q− � p, P ] = 0 on
[0, T ], for any bounded (F,P) martingale P null at the origin. Hence

0 = Qp−Q− � p = Qp− (Qp)− � (q− � p) on [0, T ].

By uniqueness of the solution to an exponential stochastic differential equation, we conclude
that Q = 0 on [0, T ].

Lemma A.2 For any bounded (F,P) martingale P null at the origin, P̃ c and P̃ d are a
continuous (F,Q) martingale and a purely discontinuous (F,Q) martingale on [0, T ], re-

spectively. Hence, P̃ c = (P̃ )c and P̃ d = (P̃ )d.

Proof. We prove the first assertion regarding P̃ d (the first assertion regarding P̃ c is obvious
and the last statement is then clear). Let Q be any continuous (F,Q) martingale null at
the origin, hence an (F,P) continuous semimartingale on [0, T ]. For any F stopping time
σ ≤ T reducing the concerned processes to integrability, as in the proof of Lemma A.1, we
can write:

EQ[P̃ dσQσ] = EP[[Qp−Q− � p, P d]σ],

where, by the integration by parts formula on [0, T ],

[Qp−Q− � p, P d] = [p− �Q+ [Q, p], P d] = 0,

because p− �Q+ [Q, p] is continuous.

Note that, for any bounded F predictable process K and F predictable stopping time
σ ≤ T ,

EQ[Kσqσ∆σp] = EP[Kσ∆σp] = 0,

so that, by Theorem 7.42 in He et al. (1992), there exists an (F,Q) purely discontinuous
local martingale q on [0, T ] such that ∆sq = qs∆sp.

Lemma A.3 We have

qc = −p̃c, qd = −q. (A.3)

For any bounded (F,P) martingale P null at the origin,

〈p, P 〉P = 〈pc, P c〉+ p− � 〈q, P d〉Q. (A.4)

Proof. We prove (A.4) first. For any bounded F predictable process K, for any F stopping
time σ ≤ T reducing the concerned processes to integrability,

EP[K � 〈p, P 〉Pσ] = EP[K � [p, P ]σ] = EQ[K � [p, P ]σ qσ]

= EQ[Kq � [p, P ]σ] = EQ[K � (q � [p, P ])pσ] = EP[K � (q � [p, P ])pσ pσ]

= EP[Kp− � (q � [p, P ])pσ] = EP
[
Kp− �

(
q− � 〈pc, P c〉σ + (

∑
0<s≤·

qs∆sp∆sP )pσ
)]
,
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where the optional (resp. predictable) projection formula and the smoothing property of
projections were used to pass to the second line (resp. third) line. By predictable section
theorem, this implies

〈p, P 〉P = 〈pc, P c〉+ p− �
( ∑

0<s≤·
qs∆sp∆sP

)p
,

which yields (A.4).
By Lemma 3.4 in Karatzas and Kardaras (2007), we have the following relation between

q and p:

q = −p + 〈pc, pc〉+
∑
s≤·

(∆sp)2

1 + ∆sp
. (A.5)

Moreover, on the time interval [0, T ],

∆tq =
∆tp

pt
=

pt−∆tp

pt− + ∆tp
=

∆tp

1 + ∆tp
, hence [q, pd] =

∑
s≤·

(∆sp)2

1 + ∆sp
. (A.6)

Using (A.5) and (A.6),

q = −p + 〈pc, pc〉+ [q, pd] = −pc + 〈pc, pc〉 − pd + [q, pd] = −p̃c − pd + [q, pd],

by the Girsanov formula (A.1). As a consequence, qc = −p̃c. In addition, by (A.5),

∆tq
d = ∆tq = −∆tp +

(∆tp)2

1 + ∆tp
= − ∆tp

1 + ∆tp
= −∆tq,

by (A.6). Since qd and (−q) are both (F,Q) purely discontinuous local martingales, they
coincide by Corollary 7.23 in He et al. (1992). This proves (A.3).

Lemma A.4 For any bounded (F,P) martingale P null at the origin, the (G,Q) compen-
sator of the process J � 〈p, P 〉P is given by

J− � 〈pc, P c〉+ J−
pS

S−
� 〈q, P d〉Q. (A.7)

The process P θ− is a (G,Q) local martingale if and only if

S− � 〈pc, P c〉+ pS � 〈q, P d〉Q + 〈Q, P 〉Q = 0 (A.8)

on [0, T ].

Proof. First we compute the (G,Q) compensator of J � 〈q, P d〉Q on [0, T ]. For any bounded
G predictable process L null outside of [0, T ], with F predictable reduction denoted by K,
and for any F stopping time σ,

EQ[LJ � 〈q, P d〉Qσ ] = EQ[KJ � 〈q, P d〉Qσ ]
= EQ[KS � 〈q, P d〉Qσ ]
= EQ[KpS � 〈q, P d〉Qσ ]

= EQ[KJ−
pS
S−

� 〈q, P d〉Qσ ] = EQ[LJ−
pS
S−

� 〈q, P d〉Qσ ],
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where the optional (resp. predictable) projection formula was used to pass to the second line
(resp. third and fourth lines, in combination with (2.2) in the second case). By definition,
this shows that the (G,Q) compensator of J � 〈q, P d〉Q is given by

J−
pS

S−
� 〈q, P d〉Q

on [0, T ], from which the formula (A.7) follows through (A.4). Combining the Jeulin formula
(2.10) with the Girsanov formula (A.1), we obtain that

P θ− − J � 〈p, P 〉P − J−
1
S−

� 〈Q, P 〉Q (A.9)

is a (G,Q) local martingale on [0, T ]. If P θ− is a (G,Q) local martingale on [0, T ], so is in
turn the G optional process with finite variation

J � 〈p, P 〉P + J−
1

S−
� 〈Q, P 〉Q, (A.10)

the (G,Q) compensator of which must therefore vanish, i.e., given the formula (A.7) for the
(G,Q) compensator of J � 〈p, P 〉P:

J− � 〈pc, P c〉+ J−
pS

S−
� 〈q, P d〉Q + J−

1

S−
� 〈Q, P 〉Q = 0

on [0, T ]. By (F,Q) predictable projection using (2.2)10, we obtain (A.8).

We are now in a position to prove Theorem 3.1 1) (which implies Theorem 3.1 2) in
the way already established in Sect. 3). In view of the second assertion in Lemma A.4,
the condition (A) holds if and only if any bounded (F,P) martingale P null at the origin
satisfies (A.8) on [0, T ], or, equivalent to (A.8),

0 = S− � 〈p̃c, P̃ c〉+ pS � 〈q, P̃ d〉Q + 〈Qc, (P̃ )c〉+ 〈Qd, (P̃ )d〉Q

= S− � 〈p̃c, P̃ c〉+ pS � 〈q, P̃ d〉Q + 〈Qc, P̃ c〉+ 〈Qd, P̃ d〉Q,
(A.11)

by Lemma A.2. For any bounded (F,P) local martingale P null at the origin, the formula
(A.11) applied with P c instead of P is rewritten as

0 = S− � 〈p̃c, P̃ c〉+ 〈Qc, P̃ c〉 = 〈S− � p̃c + Qc, P̃ c〉 = 〈S− � p̃c + Qc, (P̃ )c〉 = 〈S− � p̃c + Qc, P̃ 〉Q,

by Lemma A.2, i.e. the (F,Q) local martingales S− � p̃c + Qc and P̃ are Q orthogonal on
[0, T ]. In view of Lemma A.1, this holding for any bounded (F,P) local martingale P null
at the origin is equivalent to

S− � p̃c + Qc − Qc0 = 0 on [0, T ]. (A.12)

Likewise, the formula (A.11) applied with P d instead of P is rewritten as

0 = pS � 〈q, P̃ d〉Q + 〈Qd, P̃ d〉Q = 〈pS � q + Qd, P̃ d〉Q = 〈pS � q + Qd, (P̃ )d〉Q = 〈pS � q + Qd, P̃ 〉Q,
10The formula (2.2) is an identity on (0,+∞) (only), but our stochastic integrals in this paper, starting

from 0 at time 0, only use values of their integrands at positive times.
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by Lemma A.2, i.e. the (F,Q) local martingales pS � q + Qd and P̃ are Q orthogonal on
[0, T ]. By Lemma A.1 again, this holding for any bounded (F,P) local martingale P null at
the origin is equivalent to

pS � q + Qd − Qd0 = 0 on [0, T ]. (A.13)

Finally, in view of the identities (A.3) in Lemma A.3, (A.12) and (A.13) can be rewritten
as

S− � qc = Qc − Qc0 and pS � qd = Qd − Qd0 on [0, T ],

which is (3.12).
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