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COMPUTING FUNCTIONS ON JACOBIANS AND THEIR QUOTIENTS

JEAN-MARC COUVEIGNES AND TONY EZOME

ABSTRACT. We show how to efficiently evaluate functions on jacobian varieties and their quo-
tients. We deduce a quasi-optimal algorithm to compute (l, l) isogenies between Jacobians of
genus two curves.
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1. INTRODUCTION

We consider the problem of computing the quotient of the jacobian variety JC of a curve C
by a maximal isotropic subgroup V in its l-torsion for l an odd prime integer. The genus one
case has been explorated a lot since Vélu [27, 28]. A recent bibliography can be found in [3].
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In this work we first study this problem in general, showing how to quickly design and evaluate
functions on the quotient JC/V . We then turn to the specific case when the dimension g of JC
equals two. In that case, the quotient is, at least generically, the Jacobian of another curve D.
The quotient isogeny can then be described in a compact form: a few rational fractions of degree
O(l). We explain how to computeD and the embedding ofC in the Jacobian ofD in quasi-linear
time in #V = l2.

Plan In Section 2 we bound the complexity of evaluating standard functions on Jacobians,
including Weil functions and algebraic Theta functions. We deduce in Section 3 a bound for
the complexity of computing a basis of sections for the bundle associated with a multiple of
the natural polarization of JC . We recall the algebraic definition of canonical Theta functions
in Section 4 and bound the complexity of evaluating such a function at a given point in JC .
Section 5 bounds the complexity of evaluating functions on the quotient of JC by a maximal
isotropic subgroup V in JC[l] when l is an odd prime different from the characteristic of K.
Specific algorithms for genus two curves are given in Section 6. A complete example is treated
in Section 7.

Context The algorithmic aspect of isogenies was explorated by Vélu [27, 28] in the context
of elliptic curves. He exhibits bases of linear spaces made of Weil functions, then finds invariant
functions using traces. Vélu considers the problem of computing the quotient variety once given
some finite subgroup. The problem of computing (subgroups of) torsion points is independent
and was solved in a somewhat optimal way by Elkies [10] in the genus one case, using modular
equations. It is unlikely that modular equations will be of any use to accelerate the computation of
torsion points for higher genera, since they all are far too big. Torsion points may be computed by
brute force (torsion polynomials), using the Zeta function when it is known [6], or because they
come naturally as part of the input (modular curves). We shall not consider this problem and will
concentrate on the computation of the isogeny, once given its kernel. The genus one case has been
surveyed by Schoof [24] and Lercier-Morain [16]. The genus two case was studied by Dolgachev
and Lehavi [9], and Smith [26], who provide a very elegant geometric description. However
the complexity of the resulting algorithm is not given (and is not optimal anyway). Lubicz
and Robert [17, 18] provide general methods for quotienting abelian varieties (not necessarily
Jacobians) by maximum isotropic subgroups in the l-torsion. Their method has quasi-optimal
complexity lg(1+o(1)) when l is a sum of two squares. Otherwise it has complexity lg(2+o(1)). The
case of dimension two is treated by Cosset and Robert [5]. They reach complexity l2+o(1) when
l is the sum of two squares and l4+o(1) otherwise. However, the input and mainly the output of
these methods is quite different from ours. In the dimension two case, we can, and must provide
a curve D of which JC/V is the Jacobian, and an explicit map from C into the symmetric square
of D. We achieve this goal in quasi-optimal time l2+o(1) for every odd prime l /= p.

Notation Let K be a field, K̄ an algebraic closure of K, andC a projective, smooth, absolutely
integral curve over K. Let g be the genus of C. We assume that g ≥ 2 and we call JC the Jacobian
ofC. The linear equivalence class of a divisorD is denotedD also if there is no risk of confusion.
The canonical class is denoted KC ∈ Pic2g−2(C). We call W ⊂ Picg−1(C) the algebraic set of
classes of effective divisors of degree g − 1. The pullback [−1]∗W ⊂ Pic1−g(C) is equal to the
translate W −KC of W by −KC . If there exists a K-rational point Θ in Picg−1(C) such that 2Θ
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is the canonical class, then we translate W into JC by subtracting Θ to every class in it. The
resulting divisor is denotedW = W −Θ. One has

[−1]∗W =W.
Such a Θ is called a Theta characteristic. Given a K-rational point O on C, we translate W into
JC by subtracting (g − 1)O to every class in it. The resulting algebraic subset of JC is denoted
W = W − (g − 1)O. We call κ ∈ JC the class of KC − 2(g − 1)O. For every u in JC we call

tu ∶ JC → JC

the translation by u and Wu = tu(W ) =W + u the translation of W by u. We have

[−1]∗W =W−κ.

We let ϑ be the class of Θ − (g − 1)O in JC and we check that

W =W−ϑ.

Given D a divisor on C we write L(D) for the linear space H0(C,OC(D)) and `(D) for its
dimension.

Aknowledgements We thank Damien Robert for his comments on an early version of this
work and Qinq Liu for interesting discussions about holomorphic differentials. This research is
supported by the “Agence Nationale de la Recherche” (project PEACE) and by the cluster of
excellence CPU (Numerical certification and reliability).

2. FUNCTIONS ON JACOBIANS

Constructing functions on abelian varieties using zero-cycles and divisors is classical [30, 31].
In this section, we bound the complexity of evaluating such functions in the special case of
jacobian varieties. Let u = ∑1≤i≤I ei[ui] be a zero-cycle in JC , where (e1, e2, . . . , eI) ∈ ZI and
(u1, . . . , uI) ∈ J IC . Set

s(u) = ∑
1≤i≤I

eiui ∈ JC and deg(u) = ∑
1≤i≤I

ei ∈ Z.

The divisor ∑1≤i≤I eiWui
−Ws(u) − (deg(u)− 1)W is principal. Let y be a point on JC not in the

support of this divisor. Call ηW [u, y] the unique function on JC having divisor

(ηW [u, y]) = ∑
1≤i≤I

eiWui
−Ws(u) − (deg(u) − 1)W

and such that
ηW [u, y](y) = 1.

This definition is additive in the sense that

(1) ηW [u + v, y] = ηW [u, y] × ηW [v, y] × ηW [[s(u)] + [s(v)], y]
whenever it makes sense, and in particular for y a generic point on JC . This relation allows us
to evaluate Eta functions by pieces: we first treat a few special cases and then explain how to
combine them to efficiently evaluate any Eta function. We write ηW [u] ∈ K(JC)∗/K∗ when we
consider an Eta function up to a multiplicative scalar.
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2.1. An easy special case. To every non-zero function f on C one can naturally [7] associate a
function α[f] on JC in the following way. We assume that f has degree d and divisor

(f) = ∑
1≤i≤d

Zi − ∑
1≤i≤d

Pi.

Let x be a point on JC such that x /∈ WPi
for every 1 ≤ i ≤ d. In particular `(x + gO) = 1. Let

Dx be the unique effective divisor of degree g such that Dx − gO belongs to the class x. Write
Dx =D1 +D2 + ⋅ ⋅ ⋅ +Dg and set

(2) α[f](x) = f(D1) × f(D2) × ⋅ ⋅ ⋅ × f(Dg).

The divisor of α[f] is

(α[f]) = ∑
1≤i≤d

WZi
− ∑

1≤i≤d
WPi

where the Zi and the Pi are seen as points in JC via the Jacobi integration map with origin O.
Let y be a point in JC such that y /∈WPi

and y /∈WZi
for every 1 ≤ i ≤ d. Then

α[f](x)/α[f](y) = ηW [ ∑
1≤i≤d

[Zi] − ∑
1≤i≤d

[Pi], y](x).

2.2. Algorithmic considerations. Having described in Section 2.1 a first method to evaluate
Eta functions in some special case, we bound the complexity of this method. We take this
opportunity to set some notation and convention.

2.2.1. Notation. In this text, the notation O stands for a positive absolute constant. Any state-
ment containing this symbol becomes true if the symbol is replaced in every occurrence by some
large enough real number. Similarly, the notation e(x) stands for a real function of the real
parameter x alone, belonging to the class o(1).

2.2.2. Operations in K. The time needed for one operation in K is a convenient unit of time.
Let L be a monogene finite K-algebra of degree d. We will assume that L is given as a quotient
K[x]/f(x) where f(x) is a polynomial in K[x]. Every operation in L requires d1+e(d) opera-
tions in K. When K is a finite field with cardinality q, every operation in K requires (log q)1+e(q)

elementary operations.

2.2.3. Operations in JC(K). Elements in JC(K) are classically represented by divisors on C.
We can also use Makdisi’s representation [14] which is more efficient. For our purpose it will be
enough to know that one operation in JC(K) requires gO operations in K that is gO×(log q)1+e(q)

elementary operations when K is a field with q elements. Given two effective divisors D and
E with respective degrees d and e, we are able to compute a basis of L(D − E) at the expense
of (gde)O operations in K. Possible references for these classical algorithms are Diem [8],
Volcheck [29], Poonen [23], or the quick account at the beginning of [6].
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2.2.4. Evaluating α[f]. We are given a function f on C. We are given a class x in JC , repre-
sented by Dx − gO where Dx is effective with degree g. We may see Dx as a zero-dimensional
scheme over K, and call K[Dx] the associated affine K-algebra. We assume that Dx does not
meet the poles of f . Let P be the generic point on Dx. Then f(P ) belongs to K[Dx] and its
norm over K is α[f](x) according to the definition given in Equation (2). Thus we can compute
α[f](x) at the expense of (gd)O operations in K, where g is the genus of C and d is the degree
of f .

2.3. Determinants. The evaluation method presented in Section 2.2 only applies to Alpha func-
tions introduced in Section 2.1. These Alpha functions form a subfamily of Eta functions. Mascot
[19] introduced an efficient evaluation method that applies to another interesting subfamily.

One can also define and evaluate [1, 11, 25] functions on JC using determinants. We shall see
that every Eta function can be expressed as a combination of Alpha functions, as in Section 2.1,
and determinants. Let D be a divisor on C with degree d ≥ 2g − 1. Set

n = `(D) = d − g + 1.
Let f = (fk)1≤k≤n be a basis of L(D). For P = (Pl)1≤l≤n in Cn disjoint from the positive part of
D we set

β[f](P ) = det(fk(Pl))k,l
and thus define a function β[f] on Cn. We call jn ∶ Cn → Picn(C) the Jacobi integration map.
We call πl ∶ Cn → C the projection onto the l-th factor. We call ∆ ⊂ Cn the full diagonal. The
divisor of β[f] is

(β[f]) = ∆ + (jn)∗([−1]∗W +D) + ∑
1≤l≤n

π∗l (−D)

where [−1]∗W +D = W −KC +D ⊂ Picn(C) is the translate of [−1]∗W by the class of D.
We now assume that we have a collection of divisors D = (D(i))1≤i≤I . We assume that all D(i)

have degree d = 2g − 1. So n = `(D(i)) = g. We are given a vector of integers e = (ei)1≤i≤I such
that ∑1≤i≤I ei = 0. For every i we choose a basis f (i) = (f (i)k )1≤k≤g of L(D(i)). We assume that
∑1≤i≤I ei ×D(i) is the (principal) divisor of some function h on C. We call α[h] the function on
JC associated with h, as constructed in Section 2.1. We set f = (f (i))1≤i≤I . Define the function

β[D,e, f] = ∏
1≤i≤I

β[f (i)]ei

on Cg. It has divisor

(β[D,e, f]) =∑
i

ei × (jg)∗(W +D(i) −KC) − ∑
1≤i≤I
1≤l≤g

ei × π∗l (D(i)).

There exists a function β′[D,e, f] on Picg(C) such that β[D,e, f] = β′[D,e, f]○jn. Indeed, per-
muting the g points (Pi)1≤i≤g multiplies each factor β[f (i)] by the same sign. We call γ[D,e, f]
the function on JC = Pic0(C) obtained by composing β′[D,e, f] with the translation by gO.
The product γ[D,e, f] × α[h] has divisor

(γ[D,e, f]) + (α[h]) =∑
i

eiWui
,
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where
ui =D(i) −KC −O ∈ JC .

We deduce that γ[D,e, f] × α[h] is equal to ηW [u] in K(JC)∗/K∗ where u = ∑i ei[ui].

2.4. Evaluating Eta functions. We explain how to evaluate Eta functions, using the product
decomposition given in Section 2.3. We are given u = ∑1≤i≤I ei[ui] a zero-cycle in JC . We can
and will assume without loss of generality that deg(u) = ∑i ei = 0 and s(u) = ∑i eiui = 0. We
are given two classes x and y in JC(K). The class x is represented by a divisor Dx − gO where
Dx is effective with degree g. The class y is represented similarly by a divisor Dy − gO. We
assume that y does not belong to the support of the divisor ∑1≤i≤I eiWui

. We want to evaluate
ηW [u, y](x).

The algorithm goes as follows.
(1) For every 1 ≤ i ≤ I , find an effective divisor D(i) of degree 2g − 1 such that D(i) does no

meet Dx nor Dy, and D(i) −KC −O belongs to the class ui.
(2) Find a non-zero function h in K(C) with divisor ∑1≤i≤I eiD

(i).
(3) For every 1 ≤ i ≤ I , compute a basis f (i) = (f (i)k )1≤k≤g of L(D(i)).
(4) Write Dx =X1 +X2 + ⋅ ⋅ ⋅ +Xg and Dy = Y1 + Y2 + ⋅ ⋅ ⋅ + Yg where Xk and Yk are points in

C(K̄) for 1 ≤ k ≤ g. For every 1 ≤ i ≤ I , compute

δ
(i)
x = det(f (i)k (Xl))1≤k,l≤g and δ(i)y = det(f (i)k (Yl))1≤k,l≤g.

(5) Compute α[h](x) and α[h](y).
(6) Return

α[h](x)
α[h](y) × ∏

1≤i≤I
(δ(i)x /δ(i)y )ei .

We now precise every step. In step (1) we assume that the class ui is given by a divisor
Ui − gO where Ui is effective with degree g. We proceed as in [6, Lemmata 13.1.7-8-9]. We
compute L(Ui − (g − 1)O +KC). To every non-zero function f in this linear space is associated
a candidate divisor (f) + Ui − (g − 1)O +KC for D(i). We eliminate the candidates that meet
either Dx or Dy. The corresponding functions f belong to a union of at most 2g strict subspaces
of L(Ui − (g − 1)O +KC). If the cardinality of K is bigger than 2g we find a decent divisor D(i)
by solving inequalities. If K is too small, we can replace K by a small extension of it. In any
case, we find some D(i) at the expense of gO operations in K.

Step (2) is effective Riemann-Roch. It requires (g × ∣e∣)O operations in the base field, where

∣e∣ = ∑
1≤i≤I

∣ei∣

is the `1-norm. Step (3) is similar to step (2) and requires I×gO operations in K. Step (4) requires
some care. Brute force calculation with the Xk and Yk may not be polynomial time in the genus
because the degree over K of the decomposition field ofDx andDy may be very large. However,
if Dx is irreducible over K, then this decomposition field has degree g, which is fine with us. In
general, we write Dx = ∑1≤l≤L alRl where the Rl are pairwise distinct irreducible divisors and
the al are positive integers. We compute a new basis (φk)1≤k≤g for L(D(i)) which is adapted to
the decomposition of Dx in the following sense: we start with a basis of L(D(i) − ∑l≥2 alRl),



COMPUTING FUNCTIONS ON JACOBIANS AND THEIR QUOTIENTS 7

we continue with a basis of L(D(i) −∑l≥3 alRl)/L(D(i) −∑l≥2 alRl), we continue with a basis
of L(D(i) − ∑l≥4 alRl)/L(D(i) − ∑l≥3 alRl), and so on. The matrix (φ(i)k (Xl))1≤k,l≤g is block-
triangular, so its determinant is a product of L determinants (one for each Rl). We compute each
of these L determinants by brute force and multiply them together. We multiply the resulting
product by the determinant of the transition matrix between the two bases.

For step (5) we use the method described in Section 2.2.4. Step (6) seems trivial, but it hides
an ultimate difficulty. If Dx is not simple, then all δ(i)x are zero and there appear artificial inde-
terminacies in the product ∏i(δ(i)x )ei . We use a deformation to circumvent this difficulty. We
introduce a formal parameter t and consider the field L = K((t)) of formal series in t with co-
efficients in K. Consider for example the worst case in which Dx is g times a point A. We fix a
local parameter zA ∈ K(C) at A. We fix g pairwise distinct scalars (am)1≤m≤g in K. In case the
cardinality of K is < g, we replace K by a small degree extension of it. We denote X1(t), X2(t),
. . . , Xg(t), the g points in C(L ) associated with the values a1t, . . . , agt, of the local parameter
zA. We perfom the calculations described above withDx replaced byDx(t) =X1(t)+⋅ ⋅ ⋅+Xg(t),
and set t = 0 in the result. Since we use a field of series, we care about the necessary t-adic ac-
curacy. This is the maximum t-adic valuation of the β[f (i)](Dx(t)). Assuming that x does not
belong to the support of the divisor (ηW [u]) = ∑1≤i≤I eiWui

, these valuations all are equal to
g(g − 1)/2. So the complexity remains polynomial in the genus g. In case K is a finite field we
obtain the theorem below.

Theorem 1 (Evaluating Eta functions on the Jacobian). There exists a deterministic algorithm
that on input a finite field K with cardinality q, a curve C of genus g ≥ 2 over K, a zero-cycle
u = ∑1≤i≤I ei[ui] on the jacobian variety JC of C, and two points x, y ∈ JC , not in ∪1≤i≤IWui

,
computes ηW [u, y](x) in time (g × ∣e∣)O × (log q)1+e(q), where ∣e∣ = ∑1≤i≤I ∣ei∣ is the `1-norm of e.

Remark 1. Using fast exponentiation and Equation (1) in the algorithm above, we obtain an
algorithm that evaluates Eta functions in time gO × I × log ∣e∣ × (log q)1+e(q). However this algo-
rithm may fail when the argument x belongs to the support of the divisor of some intermediate
factor. According to Lemma 2 below, the proportion of such x in JC(K) is ≤ gOg × I × log(∣e∣)/q.
Fast exponentiation for evaluating Weil functions on abelian varieties first appears in work by
Miller [20] in the context of pairing computation on elliptic curves.

3. BASES OF LINEAR SPACES

Beeing able to evaluate Eta functions ηW [u, y] we find a basis for H0(JC ,OJC
(lW )). It suf-

fices to pick random functions in this linear space. In order to justify this approach, at least when
the base field is finite, we use rough consequences of Weil bounds. We recall these estimates in
Section 3.1. We explain in Section 3.2 how to pick random functions in H0(JC ,OJC

(lW )) with
close enough to uniform probability.

3.1. Number of points on Theta divisors. We recall a rought but very general and convenient
upper bound for the number of points in algebraic sets over finite fields. It is due [12, Proposition
12.1] to Lachaud and Ghorpade.
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Lemma 1 (Rough bound for the number of points). Let K be a field with q elements. Let X be
a projective algebraic set over K. Let n be the maximum of the dimensions of the K-irreducible
components of X . Let d be the sum of the degrees of the K-irreducible components of X . Then

∣X(K)∣ ≤ d(qn + qn−1 + ⋅ ⋅ ⋅ + q + 1).
Let K be a finite field with cardinality q and C a curve over K and O a K-rational point

on C and JC the Jacobian of C. Let W be the algebraic susbet of JC consisting of all classes
A − (g − 1)O where A is an effective divisor with degree g − 1. Let D be an algebraic set of
codimention one in JC . We assume that D is algebraically equivalent to kW . Set l = max(3, k).
The divisor E = D + (l − k)W is algebraically equivalent to lW . After base change to K̄ it
becomes linearly equivalent to a translate of lW . Since every translate of W is ample [22,
Chapter II, §6] and l ≥ 3 we deduce [22, Chapter III, §17] that E is very ample. We now
apply Lemma 1 to the hyperplane section E. Its dimension is n = g − 1 and its degree d is
Eg = lgW g = lg ×g! so ∣D(K)∣ ≤ ∣E(K)∣ ≤ lg ×g!×(qg−1+qg−2+⋅ ⋅ ⋅+q+1) ≤ g×g!× lg ×qg−1. On
the other hand [15, Théorème 2] the cardinality of JC(K) is at least qg−1(q−1)2(q+1)−1(g+1)−1.
So the proportion D(K)/JC(K) is ≤ gOglg/q.
Lemma 2 (Number of points in hyperplane sections). Let K be a finite field, JC a Jacobian
of dimension g ≥ 1 over K, and D ⊂ JC an algebraic subset of codimension one, algebraically
equivalent to kW for k ≥ 1. Set l = max(3, k). The number of K-rational points onD is bounded
from above by g × g! × lg × qg−1. The ratio ∣D(K)∣/∣JC(K)∣ is bounded from above by gOglg/q.
3.2. Random Weil functions. Fix two positive integers a and b such that a + b = l. For every u
and y in JC such that y /∈W ∪Wau ∪W−bu call τ[u, y] the unique function with divisor

(τ[u, y]) = bWau + aW−bu − lW
such that τ[u, y](y) = 1. So

τ[u, y] = ηW [b[au] + a[−bu], y].
Let τ[u] be the class of τ[u, y] in K(JC)∗/K∗. The collection of all τ[u] when u runs over

the set JC[l](K̄) is a generating set for P(H0(JC ,OJC
(lW ))). So the map u ↦ τ[u] from JC

to P(H0(JC ,OJC
(lW ))) is non-degenerate. Hyperplane sections for this map are algebraically

equivalent to ablW .
We pick a random element u in JC(K), using the Monte Carlo probabilistic algorithm given in

[6, Lemma 13.2.4]. This algorithm returns a random element u with uniform probability inside
a subgroup of JC(K) with index ι ≤ OgO. We then consider the function τ[u, y] where y is
any point in JC(K) not in W ∪Wau ∪W−bu. According to Lemma 2, for every hyperplane H in
P(H0(JC ,OJC

(lW ))), the proportion of u ∈ JC(K) such that τ[u] belongs to H is ≤ (lg)Og/q.
We assume that q is large enough to make this proportion smaller than ≤ 1/(2ι). The probability
that τ[u] belongs to H is then ≤ 1/2.

Proposition 1 (Random Weil functions). There exists a constant O such that the following is
true. There exists a probabilisitic Las Vegas algorithm that takes as input three integers l ≥ 2,
a ≥ 1, and b ≥ 1, such that a+ b = l, a curve C of genus g ≥ 1 over a field K with q elements, such
that q ≥ (lg)Og, and returns a pair (u, y) in JC(K)2 such that ηW [u, y] is a random function in
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H0(JC ,OJC
(lW )) with probability measure µ such that µ(H) ≤ 1/2 for every hyperplane H in

H0(JC ,OJC
(lW )). The algorithm runs in time O × gO × (log l) × (log q)1+e(q).

In order to find a basis of H0(JC ,OJC
(lW )) we take I ≥ O × lg × log(lg) and pick I random

elements (ui)1≤i≤I in JC(K) as explained above. For every i we find a yi in JC(K) such that
yi /∈ W ∪Waui

∪W−bui
. We pick another I elements (wj)1≤j≤I such that wj /∈ W . We compute

τ[ui, yi](wj) for every pair (i, j). We put the corresponding I × I matrix in echelon form. If the
rank is lg we deduce a basis for both H0(JC ,OJC

(lW )) and its dual all at a time.

Proposition 2 (Basis of H0(JC ,OJC
(lW ))). There exists a constant O such that the following

is true. There exists a probabilisitic Las Vegas algorithm that takes as input three integers l ≥ 2,
a ≥ 1, and b ≥ 1, such that a + b = l, a curve C of genus g ≥ 1 over a field K with q elements,
such that q ≥ (lg)Og, and returns lg triples (ui, yi,wi) ∈ JC(K) such that (τ[ui, yi])1≤i≤lg is
a basis of H0(JC ,OJC

(lW )) and (wi)1≤i≤lg is a basis of its dual. The algorithm runs in time
O × gO × (lg)ω(1+e(lg)) × (log q)1+e(q) where ω ≤ 2.4 is the exponent in matrix multiplication.

If the condition q ≥ (lg)Og is not met, we work with a small extension L of K, then make a
descent from L to K on the result. The resulting basis will consist of traces of Tau functions.

4. CANONICAL THETA FUNCTIONS

Let l ≥ 3 be an odd prime. We assume that l is different from the characteristic p of K. Let
L = OJC

(lW) be the line bundle associated to the divisor lW . The Theta group G(L) fits in the
exact sequence

1→Gm → G(L)→ JC[l]→ 0.
In this section we recall the definition of algebraic Theta functions. Restriction to the case when
l is odd allows us to be slightly more effective than [21]. We bound the complexity of evaluating
these Theta functions. Theta functions are useful to define descent data. We shall need them in
Section 5.

4.1. Canonical Theta functions. We recall the properties of canonical Theta functions as de-
fined e.g. in [2, 3.2] or [21, §3]. We shall see that canonical Theta functions can be characterized
more easily when the level l is odd. For u in JC[l] we let θu be a function on JC with divisor
l(Wu −W). We call

au ∶H0(JC ,OJC
(lW))→H0(JC ,OJC

(lW))

the endomorphism that maps every function f onto θu × f ○ t−u. For the moment θu and au are
only defined up to a multiplicative scalar. We now normalize both of them. We want the l-th
iterate of au to be the identity. So θu×θu ○ tu×⋅ ⋅ ⋅×θu ○ t(l−1)u should be one. We therefore divide
θu by one of the l-th roots of the above product to ensure that au has order dividing l. Now θu
and au are defined up to an l-th root of unity. We compare [−1] ○ au ○ [−1] and a−1

u . They differ
by an l-th root of unity ζ . Since l is odd, ζ has square root ζ(l+1)/2. Dividing au and θu by this
square root we complete their definition.
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Proposition 3 (Canonical Theta functions). For every u in JC[l] there is a unique function θu
with divisor l(Wu −W) such that

(3) θu × θu ○ tu × ⋅ ⋅ ⋅ × θu ○ t(l−1)u = 1
and

(4) θu ○ [−1] = (θu ○ tu)−1
.

Further θ−u = θu ○ [−1]. The map u ↦ θu is Galois equivariant: for every σ in the absolute
Galois group of K we have

σθu = θσ(u).
Let au be the endomorphism

au ∶ H0(JC ,OJC
(lW)) // H0(JC ,OJC

(lW))

f � // θu × f ○ t−u.

we have alu = 1 and [−1] ○ au ○ [−1] = a−u = a−1
u . The map u↦ au is Galois equivariant.

Proof. There only remains to prove the equivariance property. It follows from the equivariance
of conditions (3) and (4). �

For u and v in JC[l] we write

el(u, v) = auava−1
u a−1

v ∈ µl
for the commutator pairing and

fl(u, v) =
√
el(u, v) = (el(u, v))

l+1
2

for the half pairing. We check that

(5) θu+v = fl(u, v)θv × θu ○ t−v = fl(v, u)θu × θv ○ t−u,
and

au+v = fl(u, v)avau = fl(v, u)auav,
and

au(θ[v]) = fl(u, v)θ[u + v].

4.2. Evaluating canonical Theta functions. We relate the canonical Theta functions to the Eta
functions introduced in Section 2 and show how to evaluate them. We assume that we are given
u and x in JC(K) with lu = 0, and we want to evaluate θu(x). We assume that x /∈W . Since l is
odd we set

v = l + 1
2 × u ∈ JC(K).

We deduce from Equation (5) that

θu(x) = θv(x) × θv(x − v)
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provided that x /∈Wv. On the other hand we deduce from Equation (4) that

θv(x) × θv(v − x) = 1
provided that x /∈W ∪Wv. So

θu(x) = θv(x − v)/θv(v − x)
= ηW [l[v], v − x + ϑ](x − v + ϑ)(6)

provided that x /∈W ∪Wv. Thanks to Equation (6), evaluating a canonical Theta function θu(x)
reduces to the evaluation of one Eta functions. This can be done as explained in Section 2.4.

Proposition 4 (Evaluating canonical Theta functions). There exists a deterministic algorithm
that takes as input a finite field K with cardinality q, a curve C of genus g ≥ 1 over K, a Theta
characteristic Θ defined over K, an odd prime integer l /= p, and two points u and x in JC(K)
such that lu = 0, and

x /∈W ∪Wv,

where

v = l + 1
2 × u ∈ JC(K).

The algorithm computes θu(x) in time (gl)O × (log q)1+e(q).

According to Remark 1 we can accelerate the computation using fast exponentiation. The
resulting algorithm will fail when the argument x belongs to the support of the divisor of some
intermediate factor.

Proposition 5 (Fast evaluation of canonical Theta functions). There exists a deterministic algo-
rithm that takes as input a finite field K with cardinality q, a curve C of genus g ≥ 1 over K, a
Theta characteristic Θ defined over K, an odd prime integer l /= p, and two points u and x in
JC(K) such that lu = 0. The algorithm computes θu(x) in time gO × (log q)1+e(q) × log l. The
algorithm may fail, in which case it returns no answer. For each u, the proportion of x in JC(K)
for which the algorithm fails is ≤ gOg × log(l)/q.

5. QUOTIENTS OF JACOBIANS

Let V ⊂ JC[l] be a maximal isotropic subgroup for the commutator pairing, let A = JC/V ,
and let f ∶ JC → A be the quotient map. Let L = OJC

(lW). The map v ↦ av is a homomorphism
V → G(L) lifting the inclusion V ⊂ JC[l]. This canonical lift provides a descent datum for
L onto A. We call M the corresponding line bundle on JC/V . This is a symmetric principal
polarization. In particular h0(M) = 1 and there is a unique effective divisor Y on A associated
with M . We set X = f∗Y . This is an effective divisor linearly equivalent to lW and invariant by
V . Let u = ∑1≤i≤I ei[ui] be a zero-cycle in JC . Let y be a point on JC . We assume that y does
not belong to the support of the divisor ∑1≤i≤I eiXui

−Xs(u) − (deg(u) − 1)X . Call ηX[u, y] the
unique function on JC having divisor

(ηX[u, y]) = ∑
1≤i≤I

eiXui
−Xs(u) − (deg(u) − 1)X
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and such that
ηX[u, y](y) = 1.

This definition is additive in the sense that

ηX[u + v, y] = ηX[u, y] × ηX[v, y] × ηX[[s(u)] + [s(v)], y]
whenever it makes sense. We write ηX[u] ∈ K(JC)∗/K∗ when we consider an Eta function up to
a multiplicative scalar. Set vi = f(ui) ∈ JC/V for every 1 ≤ i ≤ I and let v = f(u) = ∑1≤i≤I ei[vi]
be the image of u in Z0(JC/V ). There is a function with divisor ∑1≤i≤I eiYvi

− Ys(v) − (deg(v) −
1)Y on JC/V . Composing this function with f we obtain a function on JC having the same
divisor as ηX[u, y]. So ηX[u, y] is invariant by V and can be identified with the unique function
on A = JC/V with divisor∑1≤i≤I eiYvi

−Ys(v)−(deg(v)−1)Y , and taking value 1 at f(y). When
dealing with the quotient A = JC/V it will be useful to represent a point z on A by a point x
on JC such that f(x) = z. Such an x is in turn represented by a divisor Dx − gO on C. It is
then natural to evaluate functions like ηX[u, y] at such an x. For example, taking u = l[u] for
u an m-torsion point, the function ηX[u, y] is essentially a Theta function of level m for the
quotient JC/V . Evaluating such functions at a few points, we find projective equations for A.
This will show very useful in Section 6. Section 5.1 provides an expression of ηX[u, y] as a
product involving a function ΦV defined as an eigenvalue for the canonical lift of V in G(L).
The complexity of evaluating ΦV is bounded in Section 5.2.

5.1. Explicit descent. We need a function with divisor X − lW on JC . Let V D = Hom(V,Gm)
be the dual of V . For every character χ in V D we denote Hχ the 1-dimensional subspace of
H0(JC ,OJC

(lW)) where V acts through multiplication by χ. Then

aV = ∑
v∈V

av

is a surjection from H0(JC ,O(lW)) onto H1. We pick a random function in H0(JC ,O(lW))
as explained in Proposition 1, and apply aV to it. With probability ≥ 1/2 the resulting function
is a non-zero function in H1. We call ΦV this function. We shall explain in Section 5.2 how to
evaluate ΦV at a given point on JC . We now explain how to express any ηX[u] as a multiplicative
combination of ΦV and its translates. Without loss of generality we can assume that s(u) = 0
and deg(u) = 0. We assume that y /∈ ⋃iWui

∪ ⋃iXui
. The composition ΦV ○ t−ui

has divisor
Xui

− lWui
. The composition ηW [u, y + ϑ] ○ tϑ has divisor ∑i eiWui

. So

ηX[u, y](x) = (ηW [u, y + ϑ](x + ϑ))l × ∏
1≤i≤I

(ΦV (x − ui))ei × ∏
1≤i≤I

(ΦV (y − ui))−ei .

5.2. Evaluating functions on JC/V .
We now bound the cost of evaluation ΦV at a given point x ∈ JC . We assume that l is odd and

prime to the characteristic p of K. We are given two integers a and b such that a + b = l, and two
elements u and y in JC(K) such that y /∈ W ∪Wau ∪W−bu. The function ΦV is the image by
aV of some function τ in H0(JC ,OJC

(lW)). We choose τ to be the function τ[u, y + ϑ] ○ tϑ =
ηW [b[au] + a[−bu], y + ϑ] ○ tϑ. The K-scheme V is given by a collection of field extensions
(L i/K)1≤i≤I and a point wi ∈ V (L i) for every i such that V is the disjoint union of the K-
Zariski closures of all wi. In particular ∑i di = lg where di is the degree of L i/K and the L i are
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the minimum fields of definition for the wi. Equivalently we may be given a separable algebra
L = K[V ] of degree lg over K and a point w in V (L ) ⊂ JC(L ). We are given an element x in
JC(K) such that x /∈W + V . The value

aw(τ)(x) = θw(x) × τ(x −w) = θw(x) × ηW [b[au] + a[−bu], y + ϑ](x −w + ϑ)
of aw(τ) at x is an element of the affine algebra K[V ]. Its trace over K is equal to ΦV (x).

Theorem 2 (Evaluating functions on quotients JC/V ). There exists a deterministic algorithm
that takes as input a finite field K with characteristic p and cardinality q, a curve C of genus
g ≥ 2 over K, a zero-cycle u = ∑1≤i≤I ei[ui] on the Jacobian JC of C, a Theta characteristic Θ
defined over K, an odd prime integer l /= p, a maximal isotropic K-subgroup scheme V ⊂ JC[l],
two classes x and y in JC(K) such that y /∈ ⋃iWui

∪⋃iXui
. The algorithm computes ηX[u, y](x)

in time I × log ∣e∣ × gO × (log q)1+e(q) × lg(1+e(lg)), where ∣e∣ = ∑1≤i≤I ∣ei∣ is the `1-norm of e. The
algorithm may fail, in which case it returns no answer. For each triple (V,u, y), the proportion
of x in JC(K) for which the algorithm fails is ≤ I × log ∣e∣ × gOg × lg2 × log l/q.

6. CURVES OF GENUS TWO

In this section we assume that the characteristic p of K is odd. We bound the complexity of
computing an isogeny JC → JD between two Jacobians of dimension two. We give in Section 6.1
the expected form of such an isogeny. We give a differential characterization of it in Section 6.2.
As a consequence of these differential equations we can compute such an isogeny in two steps:
we first compute the image of a (K[t]/t3)-point on C by the isogeny, then lift to K[[t]]. We
explain in Section 6.3 how to compute images of points. This finishes the proof of Theorem 3
below.

6.1. Algebraic form. Let C be a curve of genus 2 over K. We assume that C is given by the
affine singular model

(7) v2 = hC(u)
where hC is a polynomial of degree 5. Let OC be the unique place at infinity. Let JC be the
Jacobian of C and let jC ∶ C → JC be the Jacobi map with origin OC . Let D be another curve of
genus 2 over K. We assume that D is given by the affine singular model y2 = hD(x) where hD
is a polynomial of degree 5 or 6. Let KD be a canonical divisor on D. Call D(2) the symmetric
square of D and let j(2)D ∶ D(2) → JD be the map sending the pair {Q1,Q2} onto the class
z = j(2)D ({Q1,Q2}) of Q1 +Q2 −KD. This is a birational morphism. We define the Mumford
coordinates

s(z) = x(Q1) + x(Q2),
p(z) = x(Q1) × x(Q2),
q(z) = y(Q1) × y(Q2),
r(z) = (y(Q2) − y(Q1))/(x(Q2) − x(Q1)).

The function field of JD is K(s,p,q, r). The function field of the Kummer variety of D is
K(s,p,q). We assume that there exists an isogeny f ∶ JC → JD with kernel V , a maximal
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isotropic group in JC[l], where l is an odd prime different from the characteristic p of K. We
define F ∶ C → JD to be the composite map f ○ jC . The exists a unique morphism G ∶ C →D(2)

such that the following diagram commutes.

D(2)

j
(2)
D

��

C

G
==

F !!
JD.

For every point P = (u, v) on C we have F ((u,−v)) = −F (P ). We deduce the following
algebraic description of the map F

s(F (P )) = S(u),(8)
p(F (P )) = P(u),
q(F (P )) = Q(u),
r(F (P )) = vR(u),

where S, P, Q, R are rational fractions in one variable. Let OD be a point on D. Let Z be the
algebraic subset of D(2) consisting of pairs {OD,Q} for some Q in D. Let T ⊂ JD be the image
of Z by j(2)D . This is a divisor with self intersection

T.T = 2.

The image F (C) of C by F is algebraically equivalent to lT . The divisors of poles of the
functions s, p, q, and r, are algebraically equivalent to 2T , 2T , 6T , and 4T , respectively. Seen
as functions on C, the functions S(u), P(u), Q(u), and vR(u), thus have degrees bounded by
4l, 4l, 12l, and 8l, respectively. So the rational fractions S, P, Q, and R, have degrees bounded
by 2l, 2l, 6l, and 4l + 3, respectively. The four rational fractions S, P, Q, R provide a compact
description of the isogeny f from which we can deduce any desirable information about it.

6.2. Differential system. The morphism F ∶ C → JD induces a map

F ∗ ∶H0(Ω1
JD/K)→H0(Ω1

C/K).

A consequence of this is that the vector (S,P,Q,R) satisfies a first order differential system.
This system can be given a convenient form using local coordinates. A basis for H0(Ω1

C/K) is
made of du/v and udu/v. We identify H0(Ω1

JD/K
) with the invariant subspace of H0(Ω1

D×D/K)
by the permutation of the two factors. We deduce that a basis for this space is made of dx1/y1 +
dx2/y2 and x1dx1/y1 +x2dx2/y2. Let M = (mi,j)1≤i,j≤2 be the matrix of F ∗ with respect to these
two bases. So

F ∗(dx1/y1 + dx2/y2) = (m1,1 +m2,1 × u) × du/v,(9)
F ∗(x1dx1/y1 + x2dx2/y2) = (m1,2 +m2,2 × u) × du/v.
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Let P = (uP , vP ) be a point on C. We assume that vP /= 0. Let Q1 and Q2 be two points on D
such that F (P ) is the class of Q1 +Q2 −KD. We assume that F (P ) /= 0, so the divisor Q1 +Q2
is non-special. We also assume that Q1 /= Q2 and either of the points are defined over K. Let t
be a formal parameter. Set L = K((t)). We call

P (t) = (u(t), v(t))
the point on C(L ) corresponding to the value t of the local parameter u − uP at P . The image
of P (t) by F is the class of Q1(t)+Q2(t)−KD where Q1(t) and Q2(t) are two L -points on D.

(10) Spec K[[t]] t↦(Q1(t),Q2(t)) //

t↦P (t)

��

D ×D

��
C

F // JD.

From Equations (9) and the commutativity of diagram (10) we deduce that the coordinates
(x1(t), y1(t)) and (x2(t), y2(t)) ofQ1(t) andQ2(t) satisfy the following non-singular first order
system of differential equations.

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t)
y1(t)

+ ẋ2(t)
y2(t)

= (m1,1+m2,1×u(t))×u̇(t)
v(t) ,

x1(t)×ẋ1(t)
y1(t)

+ x2(t)×ẋ2(t)
y2(t)

= (m1,2+m2,2×u(t))×u̇(t)
v(t) ,

y1(t)2 = hD(x1(t)),
y2(t)2 = hD(x2(t)).

So we can recover the complete description of the isogeny, namely the rational fractions S, P,
Q, R, from the knowledge of the image by F of a single formal point on C. More concretely,
we compute the image {Q1(t),Q2(t)} of P (t) by G with low accuracy, then deduce from Equa-
tion (11) the values of the four scalars m1,1, m1,2, m2,1, m2,2. Then use Equation (11) again to
increase the accuracy of the formal expansions up to O(tOl) and recover the rational fractions
from their expansions using continued fractions. Coefficients of x1(t) and x2(t) can be com-
puted one by one using Equation (11). Reaching accuracy Ol then requires Ol2 operations in
K. We can also use more advanced methods [4, 3] with quasi-linear complexity in the expected
accuracy of the result. Both methods may produce zero denominators if the characteristic is
small. In that case we use a trick introduced by Joux and Lercier [13] in the context of elliptic
curves. We lift to a p-adic field having K as residue field. The denominators introduced by (11)
do not exceed pO log(l). The required p-adic accuracy, and the impact on the complexity are thus
negligible.

6.3. Computing isogenies. Given a curve C of genus two and a maximal isotropic subspace V
in JC[l] we set A = JC/V and call Y the polarization introduced in Section 5. We use the meth-
ods given in Sections 3 and 5 to find nine functions η0 = 1, η1, . . . , η8, such that (η0, η1, η2, η3)
is a basis of H0(A,OA(2Y )) and (η0, . . . , η8) is a basis of H0(A,OA(3Y )). We thus define two
maps e2 ∶ A→ P3 and e3 ∶ A→ P8. Denoting π ∶ P8 P3 the projection

π(Z0 ∶ Z1 ∶ ⋅ ⋅ ⋅ ∶ Z8) = (Z0 ∶ Z1 ∶ Z2 ∶ Z3)
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we have π ○ e3 = e2. Evaluating the (ηi)0≤i≤8 at enough points we find equations for e3(A) and
e2(A). The intersection of e3(A) with the hyperplane H0 with equation Z0 = 0 in P8 is e3(Y )
counted with multiplicity 3. We now assume that Y is a smooth and absolutely integral curve of
genus two. This is the generic case, and it is true in particular whenever the Jacobian JC of C is
absolutely simple. The intersection of e2(A) with the hyperplane with equation Z0 = 0 in P3 is
e2(Y ) counted with multiplicity 2. The map Y → e2(Y ) has degree two. Its image e2(Y ) is a
plane curve of degree two. The map Y → e2(Y ) is the hyperelliptic quotient. We deduce explicit
equations for a hyperelliptic curve D and an isomorphism D → Y .

We now define a rational map ϕ from JC into the symmetric square of D ≃ Y by setting, for z
a generic point on JC ,

(12) ϕ(z) = Yf(z) ∩ Y,

where Yf(z) is the translate of Y by f(z). Let OC be a Weierstrass point on C. We define a
map ψ from C into the symmetric square of D ≃ Y by setting, for P ∈ C un generic point,
ψ(P ) = ϕ(P − OC). We check that ψ(OC) is a canonical divisor KY on Y . The difference
ψ(P ) − ψ(OC) is a degree 0 divisor on Y and belongs to the class f(P −OC). So ψ ∶ C → Y (2)

is the map G introduced in Section 6.1. We explain how to evaluate the map ϕ at a given z in
JC . The main point is to compute the intersection in Equation (12). This is a matter of linear
algebra. We pick two auxiliary classes z1 and z2 in JC . We set z′1 = −z − z1 and z′2 = −z − z2. We
assume that ϕ(z1), ϕ(z2), ϕ(z′1), ϕ(z′2) are pairwise disjoint. Seen as a function on A = JC/V ,
the function ηX[[z1] + [z′1] + [z]] belongs to H0(A,OA(3Y )). Evaluating it at a few points we
can express it as a linear combination of the elements (ηi)0≤i≤8 of our basis:

ηX[[z1] + [z′1] + [z]] = ∑
0≤i≤8

ci × ηi.

The hyperplane section H1 with equation ∑i ciZi = 0 intersects e3(A) at Yf(z1) + Yf(z′1) + Yf(z).
We similarly find an hyperplane section H2 with equation ∑i diZi = 0 intersecting e3(A) at
Yf(z2) + Yf(z′2) + Yf(z). So

ϕ(z) = Yf(z) ∩ Y =H1 ∩H2 ∩H0 ∩ e3(A),

is computed by linear substitutions. Altogether we have proven the theorem bellow.

Theorem 3 (Computing isogenies for genus two curves). There exists a probabilistic (Las Vegas)
algorithm that takes as input a finite field K of odd characteristic p, an odd prime l different from
p, a genus two curve C as in Equation (7), and a maximal isotropic subgroup V in JC[l] as in
Section 5.2, such that the curve Y introduced in Section 5 is smooth and absolutely integral. The
algorithm returns a genus two curve D and a map F ∶ C → JD as in Equation (8). The running
time is l2+e(l) × (log q)1+e(q).

In case Y is not smooth and absolutely integral, it is a stable curve of genus two. The calcula-
tion above will work just as well and produce one map from C onto either of the components of
Y . We do not formalize this degenerate case.



COMPUTING FUNCTIONS ON JACOBIANS AND THEIR QUOTIENTS 17

7. AN EXAMPLE

Let K be a field with 1009 elements. Let

hC(u) = u(u − 1)(u − 2)(u − 3)(u − 85) ∈ K[u]
and let C be the genus two curve given by the singular plane model with equation v2 = hC(u).
Let OC be the place at infinity. Let T1 be the effective divisor of degree 2 defined by the ideal

(u2 + 247u + 67, v − 599 − 261u) ⊂ K[u, v]/(v2 − hC(u)).
Let T2 be the effective divisor of degree 2 defined by the ideal

(u2 + 903u + 350, v − 692 − 98u) ⊂ K[u, v]/(v2 − hC(u)).
The classes of T1 − 2OC and T2 − 2OC generate a totally isotropic subspace V of dimension 2
inside JC[3]. Let A = JC/V . Let W ⊂ JC be the set of classes of divisors P −OC for P a point
on C. Since OC is a Weierstrass point, we have [−1]∗W =W . Let X ⊂ JC and Y ⊂ A be the two
divisors introduced at the beginning of Section 5. Let B ⊂ C be the effective divisor of degree 2
defined by the ideal (u2 + 862u + 49, v − 294 − 602u). Let b ∈ JC be the class of B − 2OC . For i
in {0,1,2,3,85} let Pi be the point on C with coordinates u = i and v = 0. The class of Pi −OC

in JC is also denoted Pi. We set P∞ = OC and P+ = P0 + P1 ∈ JC .
For i in {∞,0,1,+,2,3,85} let ηi be the unique function on JC with divisor 2(XPi

−X) and
taking value 1 at b. These functions are invariant by V and may be seen as level two Theta
functions on A. Evaluating these functions at a few points we check that (η∞, η0, η1, η+) form a
basis of H0(A,OA(2Y )) and

η2 = 437η∞ + 241η0 + 332η1,

η3 = 294η∞ + 246η0 + 470η1,

η85 = 639η∞ + 827η0 + 553η1.

Call Z∞, Z0, Z1, Z+ the projective coordinates associated with (η∞, η0, η1, η+). The Kummer
surface of A is defined by the vanishing of the following homogeneous form of degree four

597Z2
∞Z

2
0 + 14Z2

∞Z0Z1 + 781Z2
∞Z0Z+ + 819Z2

∞Z1Z+ + 835Z2
∞Z

2
1 + 615Z2

∞Z
2
+

+401Z∞Z2
0Z1 + 833Z∞Z2

0Z+ + 553Z∞Z0Z1Z+ + 843Z∞Z0Z
2
1 + 206Z∞Z0Z

2
+ + 418Z∞Z2

1Z+

+321Z∞Z1Z
2
+ + 796Z2

0Z1Z+ +Z2
0Z

2
1 + 1000Z2

0Z
2
+ + 856Z0Z

2
1Z+ + 655Z0Z1Z

2
+ + 555Z2

1Z
2
+.

This equation is found by evaluating all four functions at forty points. We set Z∞ = 0 in this form
and find the square of the following quadratic form

(13) 611Z0Z+ + 581Z1Z+ −Z0Z1

which is an equation for e2(Y ) in the projective plane Z∞ = 0. Recall e2 ∶ A → P3 is the map
introduced in Section 6.3. Set

Z2 = 437Z∞ + 241Z0 + 332Z1

Z3 = 294Z∞ + 246Z0 + 470Z1

Z85 = 639Z∞ + 827Z0 + 553Z1.
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We find an affine parameterization of the conic e2(Y ) in Equation (13) by setting

Z+ = 1 and Z1 = xZ0.

For i in {0,1,+,2,3,85} call Di the line with equations {Z∞ = 0, Zi = 0}. There are six in-
tersection points between e2(Y ) and one of the Di. These are the six branched points of the
hyperelliptic cover Y → e2(Y ). They correspond to the values

{0,∞,513,51,243,987}
of the x parameter. We set

hD(x) = x(x − 513)(x − 51)(x − 243)(x − 987) ∈ K[x]
and let D be the genus two curve given by the singular plane model with equation y2 = hD(x).
Let OD be the unique place at infinity on D. Let P = (u, v) be a point on C. Using notation
introduced in Section 6.1 we call F (P ) the image of P −OC in JD andG(P ) an effective divisor
such that F (P ) = G(P ) − 2OD. This divisor is defined by the ideal

(x2 − S(u)x +P(u), y − v(T(u) + xR(u)) ⊂ K(u, v)[x, y]/(y2 − hD(x))
where

S(u) = 354u
5 + 647u4 + 931u3 + 597u2 + 73u + 361
u5 + 832u4 + 811u3 + 215u2 + 420u ,

P(u) = 50u
5 + 262u4 + 812u3 + 770u2 + 868u + 314
u5 + 832u4 + 811u3 + 215u2 + 420u ,

R(u) = 304 u6 + 437u5 + 623u4 + 64u3 + 194u2 + 3u + 511
u8 + 239u7 + 983u6 + 800u5 + 214u4 + 489u3 + 191u2 ,

T(u) = 678 u6 + 697u5 + 263u4 + 895u3 + 859u2 + 204u + 130
u8 + 239u7 + 983u6 + 800u5 + 214u4 + 489u3 + 191u2 .

We note that the fraction Q(u) introduced in Section 6.1 is

Q = hC × (T2 +R2 ×P + S ×R ×T).
We now explain how these rational fractions were computed. We consider the formal point

P (t) = (u(t), v(t)) = (832 + t,361 + 10t + 14t2 +O(t3)) ∈ C.
We compute G(P (t)) = {Q1(t),Q2(t)} and find

Q1(t) = (x1(t), y1(t)) = (973 + 889t + 57t2 +O(t3),45 + 209t + 39t2 +O(t3)),
Q2(t) = (x2(t), y2(t)) = (946 + 897t + 252t2 +O(t3),911 + 973t + 734t2 +O(t3)).

Using Equation (11) we deduce the values

m1,1 = 186,m1,2 = 864,m2,1 = 853,m2,2 = 640.

Using Equation (11) again we increase the accuracy in the expansions for x1(t), x2(t), y1(t),
and y2(t) then deduce the rational fractions S, P, R, and T.
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