
HAL Id: hal-01088889
https://hal.science/hal-01088889

Submitted on 12 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Usual Approximations to the Equations of Atmospheric
Motion: A Variational Perspective

Marine Tort, Thomas Dubos

To cite this version:
Marine Tort, Thomas Dubos. Usual Approximations to the Equations of Atmospheric Motion: A Vari-
ational Perspective. Journal of the Atmospheric Sciences, 2014, 71 (7), pp.2452-2466. �10.1175/jas-d-
13-0339.1�. �hal-01088889�

https://hal.science/hal-01088889
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Usual Approximations to the Equations of Atmospheric Motion:
A Variational Perspective

MARINE TORT AND THOMAS DUBOS

IPSL/Laboratoire de M�et�eorologie Dynamique, Ecole Polytechnique, Palaiseau, France

(Manuscript received 25 October 2013, in final form 25 February 2014)

ABSTRACT

The usual geophysical approximations are reframed within a variational framework. Starting from the

Lagrangian of the fully compressible Euler equations expressed in a general curvilinear coordinates system,

Hamilton’s principle of least action yields Euler–Lagrange equations of motion. Instead of directly making

approximations in these equations, the approach followed is that of Hamilton’s principle asymptotics; that is,

all approximations are performed in the Lagrangian. Using a coordinate system where the geopotential is the

third coordinate, diverse approximations are considered. The assumptions and approximations covered are

1) particular shapes of the geopotential; 2) shallowness of the atmosphere, which allows for the approximation

of the relative and planetary kinetic energy; 3) small vertical velocities, implying quasi-hydrostatic systems;

and 4) pseudoincompressibility, enforced by introducing a Lagangian multiplier.

This variational approach greatly facilitates the derivation of the equations and systematically ensures their

dynamical consistency. Indeed, the symmetry properties of the approximated Lagrangian imply the conser-

vation of energy, potential vorticity, and momentum. Justification of the equations then relies, as usual, on

a proper order-of-magnitude analysis. As an illustrative example, the asymptotic consistency of recently

introduced shallow-atmosphere equations with a complete Coriolis force is discussed, suggesting additional

corrections to the pressure gradient and gravity.

1. Introduction

Numerical models for weather prediction and global

climate seek to simulate the behavior of the atmosphere

by using accurate representations of the governing equa-

tions of motion, thermodynamics, and continuity. The

governing equations ofmotion can be approximated using

geometrical or dynamical order-of-magnitude arguments

but the retained equation set has also to be dynamically

consistent in the sense that it possesses conservation

principles for mass, energy, absolute angular momentum

(AAM), and potential vorticity. For instance, the widely

used hydrostatic primitive equations (HPE) make use of

the following approximations:

d the spherical geopotential approximation, whereby the

small angle between the radial direction and the local

vertical is neglected;

d the shallow-atmosphere approximation, whereby the

distance to the center of the earth is assumed constant,

simplifying many metric terms arising when express-

ing the equations of motion in spherical coordinates;
d the traditional approximation, which neglects those

components of the Coriolis force that vary as the cosine

of the latitude; and
d the hydrostatic approximation, which neglects some

terms in the vertical momentum budget, turning verti-

cal velocity into a diagnostic quantity.

The HPE describe quite accurately large-scale atmo-

spheric and oceanic motions. Furthermore, they filter out

the acoustic waves supported by the fully compressible

Euler equations, which avoids certain numerical diffi-

culties. For certain applications like high-resolution

global weather forecasting, the use of the hydrostatic

approximation becomes inappropriate.Hence, less drastic

approximations have been sought to filter out the acoustic

waves: the soundproof approximations share the feature

that the relationship between density and pressure is

suppressed, while a more or less accurate representation

of the relationship between density and entropy/potential
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temperature is retained (see Ogura and Phillips 1962;

Lipps and Hemler 1982; Durran 1989, 2008; Klein and

Pauluis 2012; Cotter and Holm 2013).

As more accurate equations sets are sought, it be-

comes desirable to also relax the spherical-geopotential

approximation in order to take into account the flattening

of the planet, which also implies a latitudinal variation

of the gravity acceleration g between the poles and the

equator. The flattening at the pole of the giant gas planets

Saturn and Jupiter could have important dynamical ef-

fects on the large-scale atmospheric motion because of

their high speed rotation rate. It may be worthwhile, then,

to include this effect by allowing a nonspherical geo-

potential. Gates (2004) first derived such equations of mo-

tion using oblate spheroidal coordinates. Unfortunately,

this coordinate system leads to the wrong sign for the

variation of g between the poles and the equator. Richer

coordinate systems were suggested to overcome this

problem. White et al. (2008) have introduced a similar

oblate spheroid geometry that allows qualitatively cor-

rect, but quantitatively incorrect variations of g between

the poles and the equator. White and Inverarity (2012)

have proposed a quasi-spheroidal geometry for which the

resulting ratio of g between the poles and the equator is

unity and, in that sense, will not be useful to model me-

ridional gravity variation.Nevertheless, it could be relevant

to quantify geometric differences comparing to purely

spherical geometry.Very recently,B�enard (2014) presented

a ‘‘fitted oblate spheroid’’ coordinate system relevant for

global numerical weather prediction. This coordinate sys-

tem has the advantage of being defined analytically and

allowing a realistic horizontal variation of g. Last, White

and Wood (2012) have derived the equations of motion

using a general orthogonal coordinate system, subject

only to the assumption of zonal symmetry, extending

their previous work (White et al. 2005) to zonally sym-

metric (i.e., axisymmetric) geopotential.

Moreover, while the dynamical effects of the non-

traditional Coriolis force are not fully understood, several

studies have demonstrated its important role for certain

geophysical and astrophysical applications (Gerkema

et al. 2008). Particularly, oceanic equatorial flows are

subjected to nontraditional dynamical effects (Hua et al.

1997; Gerkema and Shrira 2005). Closely related, the

large depth of the atmosphere should be taken into ac-

count to specificallymodel other planets such as Jupiter or

Saturn (or Saturn’s planet-like moon Titan) (Gerkema

et al. 2008).

Thus, for certain applications some of the usual ap-

proximations may not be satisfactory, which raises the

question of whether and how they can be relaxed, fully

or partially, and combined together, without compro-

mising the model consistency.

The dynamical consistency of a model can be checked

by explicitly deriving the relevant budgets. Within the

approximation of a spherical geopotential, four dynami-

cally consistent approximated models correspond to

whether the shallow-atmosphere and hydrostatic ap-

proximations are individually made or not made (Phillips

1966; White and Bromley 1995; White et al. 2005). These

authors use a combination of intuition and ingenuity to

identify the terms that need to cancel each other in the

various budgets.

However, it can be more straightforward to derive the

approximated equations following the approach of

Hamilton’s principle asymptotics (Holm et al. 2002): all

approximations are performed in the Lagrangian, then

Hamilton’s principle of least action produces the equa-

tions of motion following standard variational calculus

(Morrison 1998). The desired conservation properties

are ensured by the symmetry properties of the approx-

imated Lagrangian. This approach was used recently to

derive nontraditional shallow-atmosphere equations,

that is, shallow-atmosphere equations with a complete

Coriolis force representation (Tort and Dubos 2013). In

addition to the nontraditional cosf Coriolis force part,

extra terms need to be taken into account in the equa-

tions of motion to restore the angular momentum bud-

get. The physical origin of those terms is not trivial and,

in fact, arises from the vertical dependence of planetary

angular momentum, of which the cosf Coriolis force is

only one aspect.

Although many known approximate systems have

been shown to derive from Hamilton’s principle, this

has typically been done in hindsight (M€uller 1989;

Roulstone and Brice 1995; Cotter and Holm 2013). For

example, the variational formulation of the anelastic

and pseudoincompressible approximations has only re-

cently been obtained (Cotter and Holm 2013).

The overarching goal of the present work is to frame

the above-mentioned approximations within a systematic

framework starting from the unapproximated compress-

ible Euler equations, with very mild assumptions re-

garding the geopotential field. Hamilton’s principle of

least action, despite its perceived technicality, is the ideal

tool for this. Fortunately, for the purpose just stated, it is

possible to invoke Hamilton’s principle just once with

a simple, but sufficiently general, form of the Lagrangian.

This leads to the Euler–Lagrange equations of motion

in (13). This sufficiently general form relies on general

curvilinear coordinates, in order to be able to use the

geopotential later as a vertical coordinate.

The necessary notations are introduced in section 2,

and the conservation laws are obtained from the Euler–

Lagrange equations in (13) without further variational

calculus. The next step is to actually construct a curvilinear
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system where the geopotential is a vertical coordinate.

This problem is addressed in section 3. Then, the domi-

nant force—gravity—acts only in an accurately defined

vertical direction, and it becomes possible to simplify the

equations of motion without jeopardizing the conserva-

tion laws by approximating directly the Lagrangian itself.

This is done in section 4. Many well-known approximate

systems of equations are ‘‘rediscovered’’ this way, a

number of which had already been formulated from a

variational principle. Nevertheless, we still obtain new

variational formulations for recently derived approxi-

mate systems (White and Wood 2012; Klein and Pauluis

2012). Furthermore, a new set of shallow-atmosphere

nontraditional equations in a zonally symmetric, non-

spherical geopotential is derived, combining White and

Wood (2012) and Tort and Dubos (2013). As in Tort and

Dubos (2013), the derivation is based on an asymptotic

expansion of kinetic energy and planetary terms. In sec-

tion 5, a more general discussion addresses the asymp-

totic consistency of the complete Lagrangian, especially

between the terms retained–neglected in the kinetic and

Coriolis terms, and those retained–neglected in potential

and internal energy. The main results are then summa-

rized in section 6.

2. Euler–Lagrange equations of motion in general
curvilinear coordinates

a. The action functional

Hamilton’s principle of least action states that flows

satisfying the equations of motion render the action

stationary; that is, d
Ð L dt5 0, where the LagrangianL is

defined as the mass-weighted integral of a Lagrangian

density L(r, r, s, _r):

L5

ð
V
L(r, r, s, _r) dm, dm5 rd3r , (1)

where r is the positionwithin aCartesian frame attached to

the planet, V is the spatial domain containing the fluid of

density r, and [t0, t1] is the time domain. Notice that L is

a function of r, r, s, and _r only. This is a restriction to the

family of equations that can be considered.Aswill become

apparent, a wide-ranging family of approximated equa-

tions can be derived from this restricted form of the action.

We follow Morrison (1998) and adopt the Lagrangian

point of view. Fluid parcels are identified by their

Lagrangian labels a 5 (a1, a2, a3). We use r(a, t) as the

position of a fluid parcel and _r5 ›r(a, t)/›t as its three-

dimensional velocity; they are both functions of labels

a and time t. The variable t is used to emphasize

that partial time derivatives ›/›t are taken at fixed

particle labels a, not at fixed spatial coordinates, so that

›/›t 5 D/Dt is in fact the Lagrangian time derivative.

Furthermore, the mass of an infinitesimal volume sur-

rounding a fluid parcel is dm 5 md3a 5 rd3r, where m 5
rdet(›r/›a) does not depend on time and is therefore

determined by the initial value of r and r. When invoking

Hamilton’s principle,
Ð Ldt is considered to be a func-

tional of the label-time field r(a, t). Variations duk and dr

can be expressed in terms of variations dr taken at fixed

Lagrangian labels. Variations dr vanish at t 5 t0, t1.

Letting e(a, s) be the specific internal energy with

a 5 1/r (specific volume), s is the specific entropy,

p52›e/›a (pressure), andT5 ›e/›s (temperature), the

compressible Euler equations with Coriolis force result

from the Lagrangian density L(r, _r, s; r, t):

L(r, _r, s; r, t)5
1

2
_r2 1 _r �R(r)2 e(r, s)2F(r) , (2)

whereR(r)5V3 r is the solid-body velocity due to the

planetary rotation V and the geopotential F(r) is the

sum of the gravitational and centrifugal potentials. In

this section, (2) is expressed in a general curvilinear

coordinate system. Hamilton’s principle of least action

then yields the equations of motion.

b. Motion and transport in general curvilinear
coordinates

We now consider general curvilinear coordinates jk,

that is, a mapping (jk) 1 r(jk). The chain rule shows

that motion in the curvilinear system jk is described by

the Lagrangian derivatives:

uk 5
Djk

Dt
, (3)

_r5 uk›kr, and (4)

Ds

Dt
5

›s

›t
1uk›ks , (5)

where s is some scalar field, ›k is the partial derivative of

a space–time field with respect to jk, and we use Ein-

stein’s summation convention (unless explicitly stated

otherwise), with indices k, l5 1, 2, 3. Later, we will need

to distinguish between horizontal (k5 1, 2) and vertical

directions (k5 3), and use indices i, j5 1, 2 instead of k,

l. Equation (4) shows that (uk) are the contravariant

components of velocity _r. Squaring (4) yields

_r � _r5Gklu
kul with Gkl 5 ›kr � ›lr (k, l5 1, 2, 3).

The metric tensor associated with coordinates jk is Gkl.

At this point no orthogonality is assumed. For a vector

field wk›kr, the Lagrangian derivative is
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D

Dt
(wk›kr)5

��
›

›t
1 umDm

�
wk

�
›kr ,

where the covariant derivative Dm is defined via the

Christoffel symbol Gk
ml:

Dmw
k 5 ›mw

k 1Gk
mlw

l ,

2GklG
k
ml 5 ›mGkl 1 ›lGkm 2 ›kGlm .

Noting J5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGkl

p
the Jacobian such that d3r5 Jd3j,

the divergence operator is

div(uk›kr)5
1

J
›k(Ju

k) .

Hence, the budget for the pseudodensity r̂5 Jr, where r

is the mass per unit volume, is

›r̂

›t
1 ›k(r̂u

k)5 0,
Dr̂

Dt
1 r̂›ku

k 5 0. (6)

Finally, we will note Rk and Rk, the contravariant and

covariant components of R, respectively, as

V3 r5Rk›kr, Rk 5 (V3 r) � ›kr5GklR
l .

c. Euler–Lagrange equations in a general curvilinear
coordinate system

With the above definitions the Lagrangian can be re-

written as

L5

ð
L̂(r̂, jk, uk, s) dm, dm5 r̂d3j , (7)

L̂5K1C2F(jk)2 e

"
J(jk)

r̂
, s

#
, (8)

K5
1

2
Gklu

kul, and (9)

C5Gklu
kRl 5 ukRk . (10)

In what follows, we will need to distinguish between

›kL̂ and ›L̂/›jk. The latter retains only the explicit de-

pendence of L̂ on jk, and not its indirect dependence

through the fields uk, r̂, and s. For instance, ›K/›jk 5
›kGlmu

lum/2, and we have the chain rule:

›kL̂5
›L̂

›jk
›kj

l 1
›L̂

›ul
›ku

l 1
›L̂

›r̂
›kr̂1

›L̂

›s
›ks . (11)

The action
Ð L dt is now considered as a functional of

the label-time field jk(a, t). By requiring the stationarity

of the action
Ð L dt5 0, we obtain

ðt
1

t
0

 ð
V
›L̂

›uk
� duk 1 ›L̂

›jk
� djk 1 ›L̂

›r̂
dr̂

!
dmdt5 0,

where ds5 0 due to Lagrangian conservation of specific

entropy s. The integral involving dr̂ can be expressed as

ð
V
›L̂

›r̂
dr̂ dm5

ð
A
1

r̂
›k

 
›L̂

›r̂
r̂2

!
djk dm , (12)

by using dr̂/r̂2 dm52(›kdj
k)d3j and integrating by

parts with respect to jk (see Morrison 1998). In (12), we

have omitted boundary terms that vanish with appro-

priate boundary conditions (see Morrison 1998). Using

(12), expressing duk as duk 5 (›/›t) djk and integrating

by parts with respect to t yields

ðt
1

t
0

ð
V

"
2

›

›t

›L̂

›uk
1

›L̂

›jk
1

1

r̂
›k

 
›L̂

›r̂
r̂2

!#
djk dmdt5 0.

Requiring that
Ð Ldt5 0 for arbitrary variations djk

yields the Euler–Lagrange equations of motion:

D

Dt

›L̂

›uk
2

›L̂

›jk
5

1

r̂
›k

 
›L̂

›r̂
r̂2

!
. (13)

d. Interpretation of Euler–Lagrange equations

To decipher (13), we first note that the terms K and C

produce the covariant components of acceleration

(D/Dt) _r and the Coriolis force curl R3 _r, respectively:

�
D

Dt

›

›uk
2

›

›jk

�
K5Gkl

�
›

›t
1 umDm

�
ul ,

�
D

Dt

›

›uk
2

›

›jk

�
C5 (›mRk2 ›kRm)u

m .

Moreover, ›F/›jk are the covariant components of $F
and r̂2›L̂/›r̂52pJ.

›

›jk
e(J/r̂, s)52

p

r̂
›kJ ,

which partially cancel with ›k(Jp)/r̂ to leave only the

covariant components of 2$p on the right-hand side:
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Gkl

�
›

›t
1umDm

�
ul 1 (›mRk 2 ›kRm)u

m

52›kF2
1

r
›kp . (14)

Therefore, (13) is, as expected, nothing other than the

covariant components of the Euler equation

D

Dt
_r1 curl R3 _r52$F2

1

r
$p . (15)

e. Vector-invariant form

Expanding D/Dt 5 ›t 1 ul›l in (13), we obtain

›yk
›t

1 ul›lyk 2
›L̂

›jk
5 ›k

 
›L̂

›r̂
r̂

!
1

›L̂

›r̂
›kr̂ , (16)

where yk 5 ›L̂/›uk. Introducing the Bernoulli function,

B̂5 ylu
l 1 s

›L̂

›s
2

›L̂

›r̂
r̂2 L̂ , (17)

and using the chain rule (11) in (16), the vector-invariant

form of (13) is finally obtained:

›yk
›t

1 ul(›lyk2 ›kyl)1 ›kB̂2 s›k

 
›L̂

›s

!
5 0. (18)

Notice that yk are the covariant components of absolute

velocity R1 _r, and ›L̂/›s52T. The thermodynamic

contribution to the Bernoulli function (17) is Gibbs’ free

energy: s›L̂/›s2 r̂›L̂/›r̂1 e5 e1ap2Ts. For an ideal

perfect gas this simplifies if one uses potential entropy

u(s) instead of s as a prognostic variable. Indeed, (18)

and (17) become

›yk
›t

1 ul(›lyk 2 ›kyl)1 ›kB̂2 u›k

 
›L̂

›u

!
5 0,

where now

B̂5 ylu
l 1 u

›L̂

›u
2

›L̂

›r̂
r̂2 L̂ .

The thermodynamic contribution to B̂ is then e1ap2 up,

which vanishes in the particular case of an ideal perfect gas,

e1 ap5 cpT5 up, where cp is the specific heat at constant

pressure and p 5 ›e/›u is the Exner function. Then,

B̂5 ylu
l 2K2C1F5 (1/2)Gklu

kul 1F. One recovers

therefore the well-known vector-invariant form of (15):

›t _r1 curl(R1 _r)3 _r1$

 
_r2

2
1F

!
1 u$p5 0.

This form is often derived from the advective form

(15) by algebraic manipulations and using adp 5 udp.

However, it is important to stress that adp 5 udp holds

for an ideal perfect gas only and that, for a general

equation of state, thermodynamics will contribute to

the Bernoulli function. There is then no obvious ad-

vantage to using potential temperature instead of en-

tropy. The vector-invariant form can also be obtained

directly and naturally from Hamilton’s principle of least

action using the Lie derivative formulation of Holm

et al. (2002).

f. Conservation laws

We now briefly state the conservation properties of

(13). Due to Noether’s theorem and the invariance

of the Lagrangian L̂ with respect to time, conservation

of energy is expected. Due to the restricted form (2) that

we consider for L̂, the action is invariant under parcel

relabeling, which implies the conservation of Ertel’s po-

tential vorticity (Newcomb 1967; Salmon 1988; M€uller

1995; Padhye and Morrison 1996). If the geopotential is

zonally symmetric, conservation of AAM should hold.

We now provide explicit derivations of these expected

results.

The absolute and potential vorticities are defined as

Jvk5 �klm›lyk, h5
Jvk›ks

r̂
,

where �klm is totally antisymmetric. Using the vector-

invariant form (18), an expression for ›t(Jv
k) is derived.

Combining this expression with the evolution equation

for ›ks obtained by differentiating (4) and with the mass

budget (6) yields the Lagrangian conservation of po-

tential vorticity:

Dh/Dt5 0.

These algebraic manipulations are strictly identical to

the Cartesian case (Vallis 2006).

The local energy budget is

›Ê

›t
1

›

›jk
[(Ê1 Jp)uk]5 0, (19)

where Ê5 r̂E,

E5 ukyk 2 L̂5K1F(jk)1 e

�
J

r̂
, s

�
.
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Indeed, using the chain rule,

DE

Dt
5 uk

Dyk
Dt

1 yk
Duk

Dt
2

›L̂

›jk
uk 2

›L̂

›uk
Duk

Dt
2

›L̂

›r̂

Dr̂

Dt
,

and using the Euler–Lagrange equations of motion, (19)

follows.

To derive the AAM budget, we multiply (13) by r̂ to

obtain

›

›t
(r̂yk)1 ›l(r̂u

lyk)1 ›k(Jp)5 r̂
›L̂

›jk
. (20)

Therefore, apart from boundary terms,
Ð
yk dm is con-

served provided the source term on the r.h.s of (20)

vanishes. If the coordinate system is zonally symmetric,

that is, j1 is longitude, ›1Gkl5 0, and ›1Rk5 0, the source

term for
Ð
y1 dm reduces to r̂›1F. Hence,

Ð
y1 dm is

conserved if the geopotential is zonally symmetric.

Not much seems to have been achieved at this point,

since (13) only restates the well-known compressible

Euler equations, together with their conservation prop-

erties. However, we are now in a position to make ap-

proximations without jeopardizing the conservation

properties. Indeed, the vector-invariant form (18) and the

conservation laws for energy, potential vorticity, and

AAMdepend only on the equations of motion taking the

Euler–Lagrange form (13), but not on the details of the

Lagrangian L̂. We can therefore approximate L̂ as we

wish. In particular, the metric tensor Gkl, the covariant

components of planetary velocity Rk 5 GklR
l, and the

Jacobian J can be approximated, and these approxima-

tions can be made independently.

Useful and accurate approximations will take place in

a coordinate system adapted to the dominance of the

gravitational force in geophysical flows. Such a co-

ordinate system, where the geopotential depends only

on j3, is constructed in the next section.

3. Geopotential-based curvilinear coordinates

With a nonspherical geopotential one must distin-

guish between the radial direction parallel to r and the

vertical direction along $F. Similarly, one distinguishes

between the tangential directions, orthogonal to r, and the

horizontal directions, orthogonal to$F. In this section we

examine the construction of curvilinear coordinates j1, j2,

and j3, where

d the geopotential depends only on j3 and, therefore,

the third direction is vertical and
d furthermore the directions j1, j2 are horizontal; hence,

G13 5 G23 5 0.

We now need to distinguish between the horizontal

(k 5 1, 2) and vertical directions (k 5 3), and we use

indices i, j51, 2 instead ofk, l. The problemboils down to

finding a mapping (j1, j2, j3)1 r such that ›3r k$F and

›ir � ›3r 5 0. We first show how a construction can

be found in principle with a general geopotential F(r).

Then, an approximate but explicit construction is

sketched, and implemented for a specific, zonally sym-

metric geopotential, taking into account the leading

aspherical corrections of the earth’s geopotential.

a. General geopotential field

Let F(j3) be the desired dependence of F on j3, and

Fref 5F(j3ref) be a reference geopotential. It is generally

possible, although not necessarily simple, in practice to

find a system of curvilinear coordinates j1, j2 on the

geoid F 5 Fref, that is, a mapping (j1, j2) 1 rref such

that F[rref(j
1, j2)] 5 Fref. Notice that such a coordinate

systemmust have singularities, like the pole for standard

latitude–longitude coordinates. Rigorously, one must

consider several such curvilinear systems and patch them

together to cover the whole sphere/spheroid. This pro-

cedure is unambiguous provided one manipulates only

expressions that transform properly under a change of

curvilinear coordinates. This is what we do in sections 4

and 5. In fact, although we do not do it here, it is possible

to adopt an intrinsic formulation of all that follows by

replacing the coordinates j1 and j2 by a vector n be-

longing to the unit sphere. Now, let us follow the vertical

curve passing through rref(j
1, j2); that is, we integrate

›3r5
$F

k$Fk2
dF

dj3
, r(j1, j2, j3ref)5 rref(j

1, j2) . (21)

Then,

›

›j3
F[r(jk)]5

dF

dj3
0F[r(jk)]5F(j3) ,

which implies ›ir � ›3r 5 0.

Notice that even if (j1, j2) is orthogonal on the reference

surface, nothing can be said when j3 6¼ j3ref. In the sequel

we do not assumeG125 0, although it is possible to obtain

G12 5 0 when the geopotential is zonally symmetric.

Furthermore, (21) does not guarantee that the map-

ping (jk) 1 r(jk) is invertible. Since it clearly is for

a spherical geopotential, and the actual geopotential is

close to spherical, we assume that a breakdown does not

occur in the spatial domain of interest.

b. A perturbative approach for nearly spherical
geopotential

In section 3a, a general shape of the geopotential was

considered. However, since the earth and more generally
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telluric planets are quite well described by a sphere, it

can be sufficient and more explicit to construct r(jk) by

a perturbative procedure starting from a spherical

geometry.

Let us recall that geopotential F(r) is defined as the

sum of the gravitational and centrifugal potentials:

F(r)5V(r)2
1

2
kV3 rk2 . (22)

Assuming r 5 krk is of order O(a) with a a suitably de-

fined planetary radius, V is of order g0a, where k$Vk 5
O(g0) at r 5 O(a). The nondimensional parameter

g5
aV2

g0
(23)

is typically small (g ; 1/300 for the earth). Since g

measures the relative strength of centrifugal and gravi-

tational accelerations, it also defines the order of mag-

nitude of the planetary ellipticity and, therefore, the

deviation of V(r) from spherical symmetry. Therefore,

one can decompose F/(ag0) as

F

ag0
5F0(r/a)1 gF1(r/a)1 � � � , (24)

whereF0(r/a)5 (r/a)21 andF1 collects the nonspherical

part of the gravitational potential and the centrifugal

potential. We can now explicitly construct a correspond-

ing expansion of r(jk) in powers of g,

r(jk)5R(j3)r0(j
i)1gr1(j

k)1 � � � , (25)

satisfying, order by order,

F[r(jk)]5F(j3), ›3r � ›ir5 0.

The leading order is satisfied if r0 defines curvilinear

coordinates on the unit sphere and ag0F0[R(j
3)]5F(j3);

that is, R(j3)5 g0a
2/F(j3). At order g,

F

ag0
5

a

R
2 gr0 � r1

a

R2
1 gF1(Rr0) ,

hence, the condition F[r(jk)]5F(j3) determines the

radial part of the correction r1,

r0 � r15
R2

a
F1(Rr0) , (26)

while a tangential correction is required to maintain

orthogonality ›3r � ›ir 5 0:

R›3r1 � ›ir052
dR

dj3
r0 � ›ir1 5

dR

dj3
[r1 � ›ir02 ›i(r0 � r1)] .

Differentiating (26),

r0 � ›3r15 ›3

�
R2

a
F1(Rr0)

�
,

so that all of the covariant components of ›3r1 in the

basis (›1r0, ›2r0, r0) are known as a function of r1 and j3.

Therefore, at fixed j1, j2, we face a simple ordinary

differential equation for r1(j
3). IfF1 is given as a sum of

spherical harmonics, each with a power-law dependence

on r, an explicit solution can be found. We provide an

example in the next subsection.

c. A simple set of nearly spherical coordinates

We now apply the procedure outlined in section 3b to

the dominant terms considered by White et al. (2008):

F

g0a
5

a

r
1 g

�
a1

�a
r

�3�
sin2x2

1

3

�
1a2

�r
a

�2
cos2x

�
,

(27)

where a1, a2 are O(1) constants and x is the geocentric

latitude such that

r5 r(cosl cosxex1 sinl cosxey1 sinxez) .

This geopotential is zonally symmetric. To define r0
and express r1, we use longitude–latitude coordinates;

that is, j1 5 l, j2 5 f, j3 5 j and

r05 eR 5 cosl cosfex1 sinl cosfey 1 sinfez,

›fr05 ef 52cosl sinfex2 sinl sinfey 1 cosfez,

r15 af(f, j)ef 1 aR(f, j)eR . (28)

Now, neglecting terms O(g2) and using expansion (25),

›r

›j
5

dR

dj
r0 1 g

�
›af

›j
ef 1

›aR
›j

eR

�
,

›r

›f
5Ref 1 g

�
›af
›f

ef 1
›aR
›f

eR 2 afeR1 aRef

�
,

›r

›j
� ›r
›f

5 g
dR

dj

�
›aR
›f

2 af

�
1 gR

›af

›j
,

5 gR2

�
›

›j

�
af
R

�
2

›

›f

�
R22dR

dj
aR

��
,

(29)
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and a way to satisfy (›r/›j) � (›r/›f) 5 0 is to introduce

the nondimensional potential c(f, R) such that

af 5R
›c

›f
, aR 5R2›c

›R
. (30)

Finally, c is determined by the condition that

F[r(l, f, j)]5F(j). At leading order this implies

F(j)5 ag0F0[R(j)], while at order g we obtain

›c

›R
52R22aR 52R22

�
dF0

dR

�21

F1 ,

a
›c

›R
5a1

�a
R

�3�
sin2f2

1

3

�
1a2

�
R

a

�2

cos2f ,

c52
a1

2

�a
R

�2�
sin2f2

1

3

�
1

a2

3

�
R

a

�3

cos2f . (31)

Notice that the coordinate system defined by (25),

(28), (30), and (31) is horizontally orthogonal; that is,

(›r/›f) � (›r/›l) 5 0. As noted above, this seems to be

allowed only by a zonally symmetric geopotential.

4. Approximations

In (13) no approximation has been made to the fully

compressible Euler equations. However, if we use a

geopotential-based coordinate system as defined and

constructed in section 3 (i.e., ›iF5 0 andGi3 5 0), the

kinetic energy and Euler–Lagrange equations in (14)

become

K5
1

2
Giju

iuj 1
1

2
G33u

3u3,�
D

Dt

›

›ui
2

›

›ji

�
K1 (›mRi 2 ›iRm)u

m 52
1

r
›ip , (32)

�
D

Dt

›

›u3
2

›

›j3

�
K1 (›mR32 ›3Rm)u

m52›3F2
1

r
›3p ,

(33)

where we remind that i, j51, 2 whilem5 1, 2, 3. Notice

that, for the sake of completeness, we keep R3 6¼ 0.

However, R3 5 0 as soon as the geopotential is zonally

symmetric, which seems a good enough approximation

for the vast majority of applications. Equations of mo-

tion (32) and (33) are written in terms of relative kinetic

energy K, Coriolis force, and the pressure gradient. In

what follows, we emphasize for each kind of approxi-

mation how they approximate each of these three terms.

The main improvement is that gravity, ›3F, enters

only the third equation of motion. This will simplify the

derivation of the usual approximations, and allow the

derivation of new ones, while preserving dynamical

consistency. We first show how the introduction of a

hydrostatic switch dNH into the exact Lagrangian yields

quasi-hydrostatic equations in a general, nonaxisymmetric

geopotential. Turning then to the shallow-atmosphere

approximation, we recover and generalize previously ob-

tained equation sets (White and Wood 2012; Tort and

Dubos 2013).

a. Quasi-hydrostatic approximation

A defining feature of quasi-hydrostatic systems (White

and Bromley 1995; White and Wood 2012) is that the

vertical balance loses its prognostic character and be-

comes a diagnostic equation. Equation (13) shows that

this will be the case if ›L̂/›u3 5 0. In the Lagrangian

density (7), only K and C depend on u3. We therefore

introduce a hydrostatic switch dNH and redefine the K

and C as

K5
1

2
Giju

iuj 1
dNH

2
G33u

3u3, and

C5 uiRj 1 dNHu
3R3 .

Setting dNH 5 1 gives the full equation set while setting

dNH5 0 modifies the vertical momentum balance. From

the energetic point of view, the total energy is now

E5
1

2
Giju

iuj 1
dNH

2
G33u

3u3 1F1 e .

Hence, by setting dNH 5 0, the vertical kinetic energy

is neglected from the energy budget, which is a feature of

hydrostatic systems (Holm et al. 2002). From a physical

point of view, neglecting vertical kinetic energy is

equivalent to setting the inertia of the fluid to zero for

vertical motion, which imposes that vertical forces bal-

ance each other. As is well known, the ratio of vertical to

horizontal velocity scales like the ratio of the vertical to

horizontal characteristic scales of the flow, so that those

terms should be retained to model small-scale flows.

To compare with White and Wood (2012), we now

obtain the evolution equations for the physical com-

ponents of velocity. For this the coordinates jk need to

be orthogonal, that is, G12 5 0, which seems to require

a zonally symmetric geopotential. We therefore as-

sume for the remainder of this section that the geo-

potential is zonally symmetric; hence, R3 5 0. Then, it

makes sense to define the metric factors hk 5
ffiffiffiffiffiffiffiffiffi
Gkk

p
.

The physical components of velocity are then uk5 hku
k

(the reader will note the absence of summation in the

expressions of hk and uk and also that the notation uk
does not refer to the covariant components of relative

velocity) and
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D

Dt

›K

›ui
2
›K

›ji
5 hi

Dui
Dt

1 uj(uihi›jhi 2 ujhj›ihj)

1 uiu3hi›3hi 2 dNHu
3u3h3›ih3,

D

Dt

›K

›u3
2

›K

›j3
5 dNHh3

�
Du3
Dt

1 u3uj›jh3

�
2 ujujhj›3hj .

Assuming now zonally symmetric coordinates (i. e.;

R1 5Vh21, R2 5R3 5 0, ›1hk 5 0), the Euler–Lagrange

equations simplify to

h1
Du1
Dt

1 u2u1h1›2h11 u1u3h1›3h1

1 2Vh1(u
2›2h1 1 u3›3h1)52

1

r
›1p ,

h2
Du2
Dt

2 u1u1h1›2h11 u2u3h2›3h22 dNHu
3u3h3›2h3

2 2Vh1u
1›2h152

1

r
›2p ,

dNHh3

�
Du3
Dt

1 u3u2›2h3

�
2 ujujhj›3hj 2 2Vh1›3h1u

1

52
1

r
›3p2 ›3F .

(34)

When dNH 5 1, (34) are precisely the nonhydrostatic

(A.10)–(A.12) from White and Wood (2012), while

when dNH 5 0, the quasi-hydrostatic (A.13)–(A.15) are

recovered. Notice that we have also checked that

equations from Gates (2004) are recovered with oblate

spheroidal coordinates with (j1, j2, j3) 5 (l, f, j):

r5 c(coshj cosf coslex1 coshj cosf sinley

1 sinhj sinfez) . (35)

Compared to the derivation byWhite andWood (2012),

we arrive here straightforwardly at several nontrivial

results:

d the necessity to neglect u3u2›2h3 in the quasi-hydrostatic

equations follows from the neglect of vertical kinetic

energy in the Lagrangian, whileWhite andWood (2012)

needed to utilize the energy budget to justify it;
d the expression of the Coriolis force in terms of ›2h1
and ›3h1 derives naturally from the expression of the

covariant component of planetary velocity R1 5Vh21,

while a geometric reasoning was used in White and

Wood (2012); and
d the nontraditional Coriolis termexists because ›3R1 6¼ 0;

an approximate systemneglecting the vertical variations

of R1 necessarily makes the traditional approximation.

b. Soundproof approximations

Generally speaking, acoustic waves are suppressed if

the feedback of pressure on density is suppressed. This

can be achieved by constraining the value of r. The

simplest soundproof approximation is the Boussinesq

approximation, whereby r 5 rr 5 cst, but density

modifications dr due to entropy s are taken into account

only in the potential energy [i.e., F(dr)]. In this section

we omit for brevity the kinetic (K), Coriolis (C), and

geopotential (F) terms of the Lagrangian as they are

left untouched. One should bring these terms back into

the Lagrangian in order to obtain the complete equa-

tions of motion.While the Boussinesq approximation is

adequate for oceanic applications, it is important for

atmospheric applications to allow for large variations

of r. This can be achievedwith r’ r*(s, jk)5 r[s, p*(jk)],

where p*(jk) is a background pressure, often taken

to be hydrostatically balanced. Within a variational

principle, such a constraint is enforced by augment-

ing the Lagrangian through the introduction of a La-

grangian multiplier l. The corresponding augmented

Lagrangian is

L̂(r̂, s, l, jk)52e

�
J

r̂
, s

�
1l

"
J

r̂
2

1

r*(s, j
k)

#
, (36)

r̂2
›L̂

›r̂
52J(p*1 l), and (37)

›L̂

›jk
5

1

r̂

�
(p*1 l)›kJ1 lr*22›r*

›jk

�
. (38)

In (36), l enforces the condition that the expression that

it multiplies vanishes; that is, r5 r̂/J5 r*. The specific

form chosen here gives l the dimension of a pressure.

Inserting the above into (13), one obtains the adiabatic

equations of motion. It turns out that they coincide with

those derived in Cartesian coordinates by Klein and

Pauluis (2012) by letting p 5 p* 1 l with l � p* and

expanding up to first order in l:

r21›kp ’
�
r*212 lr*22›r

›p

�
›kp*1 r*21›kl .

Hence, the Lagrange multiplier has the physical inter-

pretation of a deviation of total pressure from p*. The

variational derivation of the equations obtained by

Klein and Pauluis (2012) directly shows that they con-

serve potential vorticity. Conservation of energy holds if

the background state p* is stationary and conservation of

angular momentum holds for a zonally symmetric back-

ground state.
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Equation (36) simplifies for an ideal perfect gas be-

cause e/u 5 kp and a/u 5 p/p depend only on pressure.

Using u as a prognostic variable and taking into account

the constraint p 5 p*, p 5 p* in e 5 kup yields

L̂(r̂, u,l, jk)52kup*1 lu

 
J

ur̂
2

p*
p*

!
. (39)

Variations of density with potential temperature are

neglected (i.e., r* ’ p*u/p*) if

L̂(r̂, u,l, jk)52kup*1 l

"
J

r̂
2

1

r*(j
k)

#
. (40)

Cotter andHolm (2013) have shown that the Lagrangian

in (39) generates the pseudoincompressible equations

where l0 5 lu is their Lagrangian multiplier and (40)

generates the Lipps–Hemler anelastic equations, re-

spectively. The more general Lagrangian in (36) is, to

the best of our knowledge, new.

c. Shallow-atmosphere approximation

To analyze the shallow-atmosphere approximation,

we first need to define quantitatively the shallowness

of the atmosphere. For this, we let DF be the order of

magnitude of the geopotential difference between the

top and bottom of the atmosphere, both supposed to be

close to a geopotential surface F 5 Fref 5 F(j3 5 0).

Since $F 5 O(g0) where the reference gravity g0 has

been introduced in section 3, an order of magnitude of

the atmospheric thickness is H 5 DF/g0 and a measure

of its shallowness is

«5
H

a
5

DF

g0a
. (41)

Then, r(jk) can be expanded in powers of «:

r(jk)5 r(ji, j3ref)1 j3›3r(j
i, j3ref)1O(a«2) , (42)

where the first two terms areO(a) andO(H5 «a). Using

expansion (42) to approximate the metric tensor Gkl

implies at leading order that the vertical dependence of

Gkl is neglected:

Gkl(j
i, j3) ’ Gref

kl (j
i),

K ’ 1

2
Gref

ij uiuj 1 dNH

�
1

2
Gref

33 u
3u3
�
, (43)

where Gref
ij 5Gij(j

1, j2, j3 5 0).

Similarly, F(j3) can be expanded as

F5Fref 1 j3›3Fref 1O(«2ag0) . (44)

Notice that ›3Fref is a constant (independent from ji);

hence, (44) is equivalent to using an affine function of F
as a vertical coordinate. With (43) and (44), gravity

›3F/h3 ’ ›3Fref/h
ref
3 becomes independent from j3 but

can still depend on ji.

Regarding the Coriolis term C5 uiRi 1 dNHu
3R3, it is

tempting to simply evaluate it at j3 5 0. However, this

would neglect both the vertical dependence of themetric,

which is justified by «� 1, and the vertical dependence of

the planetary velocity. As argued by Tort and Dubos

(2013), the latter approximation requires more care and

may not be justified if the planetary velocity is large

compared to the fluid velocity, as measured by the

smallness of the planetary Rossby number m:

m5
U

aV
, (45)

where U is a characteristic velocity scale. Indeed,

K5 _r � _r5O(U2), whileC5 _r �R5O(UVa). Ifm; «, or

more generally if m � « does not hold, an approximation

to C should retain terms of order O(U2). Explicitly,

C5 ujRj 1 dNHu
3R3,

’ ujRref
j 1 dNTj

3ui›3R
ref
j

1 dNH(u
3Rref

3 1 dNTj
3u3›3R

ref
3 ) .

where the switch dNT (nontraditional) is used to tag the

terms that retain a dependence on j3. At this point we

have retained the terms proportional to R3 for com-

pleteness. However, since they vanish for a zonally

symmetric geopotential, they are likely small in the vast

majority of applications. Therefore, for the sake of

simplicity, we now drop them to finally retain only

C5 ui(Rref
j 1 dNTj

3›3R
ref
j ) . (46)

The first term isO(UVa) and the second one isO(UVH)

and can be safely neglected only ifVH�U (i.e., «�m).

This condition is not met by typical oceanic flows and is

marginally met by typical atmospheric flows (Tort and

Dubos 2013).

To compare the equations resulting from (43), (44),

and (46) with White and Wood (2012), we assume again

that the coordinate system is orthogonal and zonally

symmetric and we derive the evolution equations for the

physical velocity components. For this, starting from

(34), it suffices to let ›3hk 5 0, except for R1:
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›2R15V›2[(11 dNTj
3›3)h

2
1],

5 2V

�
h1›2h1 1 dNT

j3

2
›23h

2
1

�
,

›3R15V›3[(11 dNTj
3›3)h

2
1]5 2dNTVh1›3h1 ,

where it is implied that h1 and ›3h1 are evaluated at j35
0. Hence, (34) become

h1
Du1
Dt

1 u2u1h1›2h1 1 2Vu2
�
h1›2h11 dNT

j3

2
›32h

2
1

�

1 dNT2Vu3h1›3h152
1

r
›1p ,

(47)

h2
Du2
Dt

2 u1u1h1›2h1 2 dNHu
3u3h3›2h3

2 2Vu1
�
h1›2h11 dNT

j3

2
›32h

2
1

�
52

1

r
›2p, and

(48)

dNHh3

�
Du3
Dt

1 u3u2›2h3

�
2 dNT2Vu1h1›3h1

52
1

r
›3p2 ›3F . (49)

If dNT 5 0, the traditional shallow-atmosphere (A16)–

(A21) fromWhite and Wood (2012) are recovered. On

the other hand, if one makes the spherical-geoid

approximation and uses as coordinates (j1, j2, j3) 5
(l, f, z) with z5 (F2Fref)/g, then h3 ’ 1, h1 ’ (a1 z)

cosf leading at z 5 0 to h1 5 a cosf, ›3h1 5 cosf,

›32h
2
1 524a sinf cosf, so that

h1›2h11 dNT

j3

2
›32h

2
152a2 sinf cosf

�
11 dNT

2z

a

�
,

and (14) from Tort and Dubos (2013) is recovered. As in

Tort and Dubos (2013), the reintroduction of the non-

traditional Coriolis terms (proportional to Vu3 for Du1/

Dt and Vu1 for Du3/Dt) must be accompanied by a cor-

rection of the traditional Coriolis terms (proportional to

Vu2 forDu1/Dt andVu1 forDu2/Dt) in order to retain all

conservation laws.

d. Nonspherical geopotential corrections

Although the spherical geometry is relevant to describe

our planet, under specific circumstances and for some

other planets, the flattening at the poles, which induces

a latitudinal variation for g, may have significant effects

and should be taken into account to estimate those effects.

The nonspherical corrections from a spherical model at

the leading order described in section 3b allow us to

consider nearly spherical geometry and geopotential.

In this section, we assume an axisymmetric geopotential

but one slightly flattened at the poles. Flattening is

characterized by the small parameter g and the set of

nearly spherical coordinates defined in section 3c is used.

In addition to (29), we have

›lr5 [R cosf1 g(2af sinf1 aR cosf)]el .

The coordinate system is horizontally orthogonal (G12 5
0) and we neglect coefficients Gi3 because they are

O(g2). Hence, themetric tensor is diagonal withGii5 h2i ,

such as

h2l 5R cosf(R cosf1 2gH) ,

h2f 5R(R1 2gG) ,

h2j 5 djR(djR1 2g›jaR) , (50)

whereH(f, j)52af sinf1 aR cosf andG(f, j)5 aR1
›faf. To obtain the nonhydrostatic deep equations

of motion with nonspherical corrections at leading or-

der, the corrections to K and C at order O(g) are being

retained:

K5
1

2
(h2l

_l21 h2f
_f
2
1 dNHh

2
j
_j2) , (51)

C5Vh2l
_l , (52)

where the expressions of (h2l, h
2
f, h

2
j) are given in (50). In

terms of the scaling used in section 4c, K and C are as-

ymptotically correct up toO(mg) andO(g), respectively.

Therefore, if m � 1, it is asymptotically consistent to

retain only the nonspherical corrections toC and neglect

those to K. To usefully retain corrections O(mg) to K,

the expansion of C should be more accurate and the

expansion sketched in section 3b should be pursued to

order O(g2). It is of course possible to retain the cor-

rectionsO(mg) toK and expand C only toO(g), but the

resulting model would not be more accurate than the

simpler model whereK is not corrected for nonspherical

effects.

Notice that if the atmosphere is shallow (« � 1), re-

taining the full dependence of R and F on j3 in the

Lagrangian amounts to retaining terms of all orders in «n

in the expansion of the Lagrangian in powers of «. For

large-scale atmospheric motion on the earth, the orders

of magnitude of the dimensionless parameters are typ-

ically equal to

g; 3:43 1023, m; 2:13 1022, «; 1:63 1023 .
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Because of the fast planetary rotation of Saturn (index s)

and Jupiter (index j), the flattening is quite important; in

fact, it is larger than (m, «):

gs ; 1:83 1021, ms ; 3:13 1022, «s ; 6:73 1024 ,

and

gj ; 9:63 1022, mj; 4:03 1023, «j; 2:83 1024 .

In the above regimes it would be consistent to neglect

the O(m«) and O(mg) corrections to K while retaining

the O(«) and O(g) corrections to C. The leading-order

corrections to K 1 C are therefore those of C. Com-

pared to a spherical-geopotential, shallow-atmosphere

model, the corrections O(«) are those of Tort and

Dubos (2013) and restore a complete Coriolis force,

while corrections O(g) modify slightly the traditional

Coriolis term.

5. Discussion: Full asymptotic consistency

Invoking Hamilton’s principle of least action from an

approximated Lagrangian will systematically lead to

a dynamically consistent equation set with the appro-

priate conserved quantities, no matter how carefully

the Lagrangian is approximated. Hence, dynamical

consistency is not dependent on asymptotic consistency,

which is understood as the condition that the smallest

terms retained are larger than the largest terms ne-

glected. Depending on the dynamical regime consid-

ered, it is still desirable to check the asymptotic

consistency of the model in order not to overestimate

its accuracy.

Tort and Dubos (2013) have derived equations re-

sulting from a consistent asymptotic development of

kinetic energy K 1 C in the approximated Lagrangian.

However, no asymptotic expansion was performed for

geopotential F nor internal energy e, and only the

leading-order term was retained for them. Until such an

expansion has been completed, it is not known whether

themodel obtained by Tort andDubos (2013) is actually

more accurate at orderO(«) than would be a traditional

shallow-atmosphere model. We now investigate this

point as an illustrative example of the issue of asymp-

totic consistency. Hence, we expand the potential and

internal energy terms to include a O(«) correction, and

we analyze whether the additional terms appearing in

the equations of motion can be consistently neglected

compared to all other retained terms. The dependence

of internal energy on « comes from the ratio r2cosf

between density and pseudodensity.

a5
r2 cosf

r̂
’ a2 cosf

r̂
1

2az cosf

r̂
5as 1a0,

e(a, s) ’ e(as, s)2psa
0,

p(a, s) ’ p(as, s)2

�
c

as

�2

a05 ps 1 p0 ,

where a0 � as and p0 � ps are O(«) corrections to the

shallow-atmosphere expressions as and ps, respectively,

and we have used (›p/›a)jas
52(c/as)

2 with c the sound

speed. Regarding potential energy,

F(z)5 a2g0

�
1

a
2

1

a1 z

�
’ g0z

�
12

z

a

�
, (53)

which results in a O(«) correction to g 5 dF/dz in the

vertical momentum balance.

To proceed and compare these corrections to the

other terms retained in the equations ofmotion, we need

to make an assumption on the order of magnitude of the

pressure terms. Assuming a nearly geostrophic regime,

the horizontal pressure gradient is of the same order of

magnitude as the traditional Coriolis term. Since the

latter has been expanded to the next order in «, theO(«)

corrections to the pressure gradient should be retained

also.Having retained these corrections in theLagrangian,

they will appear in the vertical balance as O(«) correc-

tions to ›zps, whose order of magnitude is rg0. Hence,

O(«) corrections to F(z) should be included in the La-

grangian, with the effect of taking into account small

vertical variations of gravity. Finally, the dynamically and

asymptotically consistent density Lagrangian will be

L̂5
1

2
a[a cos2f _l1 a _f1 2 cos2fV(a1 2z)]

2 g0z
�
12

z

a

�
2 e

"
a cos2f(a1 2z)

r̂
, s

#
. (54)

The first term in (54) corresponds to the nontraditional

shallow-atmosphere kinetic energy of Tort and Dubos

(2013) for which only the vertical dependence of the

planetary part is retained. The second term is the po-

tential energy where the vertical variation of gravity ac-

celeration is retained at order O(«). The last term is the

internal energy and takes into account the slightly conical

shape of an atmospheric columns at order O(«).

A consistent asymptotic development is then obtained

at leading order in an expansion in «, retaining vertical

variations of planetary velocity, of the Jacobian and of

the gravity acceleration. Note that in a different dynam-

ical regime (e.g., near the equator where geostrophic

balance breaks down) it may be asymptotically consistent
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to neglect the above corrections to the internal and po-

tential energy. Furthermore,

d using the vertical coordinate Z introduced by Dellar

(2011), such as r2dr5 a2dZ andZjr5a5 0, will give the

exact pressure gradient without any approximation,

because J 5 a2 cosf, while on the other hand, the

geopotential and planetary velocity will take a non-

trivial form as a function of the vertical coordinate Z,

and
d using the geopotential as vertical coordinate j3 5F
will give the exact geopotential term in the verti-

cal balance, that is, dFF 5 1, but will give a non-

trivial form of the planetary velocity and pressure

gradient.

The above discussion may be generalized to all other

approximations. If one wants to add a nonzero vertical

acceleration, one may check its order of magnitude by

introducing a horizontal scaleL� a and comparing with

all the other terms in the equations. Taking into account

nonspherical corrections in the geopotential as in the

previous section, the Jacobian J has to be developed at

O(g) order for asymptotic consistency.

White et al. (2005) pointed out that taking into ac-

count a latitudinal variation of gravity acceleration g,

within the spherical geopotential approximation, will

produce spurious sources of potential vorticity and then

will lead to a dynamically inconsistent model. Our anal-

ysis confirms this: latitudinal variations of gwill arise only

if at leastO(g) corrections to the Jacobian J are included

in the expressions for internal and potential energy (as

done above with O(«) corrections).

6. Conclusions

In this paper, we have described a general variational

framework that allows a systematic derivation of equa-

tions of motion, for a large panel of approximations. The

derivation highlights the essence of usual geophysical

approximations and provides dynamically consistent

systems in the sense that all physical properties of con-

servation are ensured.

We first considered a general class of Euler–Lagrange

equations from which a wide range of dynamically

consistent equations of motion can be obtained with-

out doing any variational calculus. We then identified

new Lagrangians corresponding to existing equations

of motion, originally derived by manipulating and

approximating the exact equations of motion rather

that the Lagrangian (Klein and Pauluis 2012; White

and Wood 2012). We also extended Tort and Dubos

(2013) by

d considering a zonally symmetric (not spherical) geo-

potential in a general orthogonal coordinate system

and
d expanding the geopotential and internal energy at

next order in atmospheric shallowness « to achieve

asymptotic consistency in geostrophically balanced

flow.

The last extension underlines the difference between

the dynamical and asymptotic consistency. All appro-

ximations in (32) and (33) can be made independently as

soon as expressions for K, Ri, F, and ›ip/r are kept

identical in the equations. This sometimes leads to rather

exotic but still dynamically consistent models. As an ex-

ample, keeping the exact metric terms inK and neglecting

vertical variations in C, a dynamically consistent deep-

atmosphere model with incomplete Coriolis force is ob-

tained. But itwill not be asymptotically consistent because

some of the terms that are retained are smaller than some

terms that are neglected. The asymptotic consistency

typically depends on the dynamical regime that is

considered. Close to a geostrophic regime, Tort and

Dubos’s (2013) equations are not asymptotically con-

sistent. To be consistent, next-order vertical variations

of J5 a cosf(a1 2z) andF5 g0z(12 z/a) have also to

be retained. The equations derived by Tort and Dubos

(2013) should nevertheless correctly capture the full

Coriolis force in far-from-geostrophic situations (e.g.,

near the equator).

Finally, we provided a method of obtaining explicit

metric terms corresponding to a nearly spherical geo-

potential. It should be quite easy, then, to include non-

spherical corrections in an existing general circulation

model. As for nontraditional regimes, to achieve asymp-

totic consistency close to a geostrophic regime, corrections

at first order in g should be retained:

TABLE 1. Estimations of large-scale parameters m, «, and g (1022).

Solar Extrasolar

Giant planets Jupiter Saturn Uranus Neptune HD 209458b HD 189733b

m 0.4 3 11 12 19 15

« 0.03 0.07 0.13 0.12 2 0.24

g 9.5 18 2.9 2.2 0.55 0.42
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d in the Coriolis term, VR cosf(R cosf 1 2gH) 1 O

(g2);
d in the Jacobian J 5 hlhfhj from (50), where J 5
R2 cosfdjR1 gR(›jaRR cosf1G cosfdjR1HdjR)1
O(g2); and

d in the geopotential (27), where F5 (a2g0/r)1
g( . . . )1 O(g2).

In Table 1, m, «, and g have been estimated for a few

giant planets using large-scale parameters from Cho

and Polvani (1996), Cho et al. (2003), and Showman

and Polvani (2011). Taking into account nonspherical

geopotential corrections could be relevant to model

rapidly rotating giant gas planets for which the

equatorial bulge is more significant than that of the

earth. A few exoplanets have already been modeled

(Cho et al. 2003; Showman and Polvani 2011; Mayne

et al. 2014). For the exoplanets HD202458b and

HD189733b, the aspect ratio « and the flattening g are

of order O(m2) or even smaller. Therefore, the con-

tribution of the centrifugal force should be taken into

account if one wishes to include the nontraditional

and/or nonspherical effects.

Note that, shortly before submitting this manuscript,

the authors became aware of independent work by

Andrew Staniforth, sharing a number of goals and re-

sults, recently submitted to the Quarterly Journal of the

Royal Meteorological Society (Staniforth 2014a,b).

Acknowledgments. The authors are grateful to the

anonymous reviewers for careful examination of the

manuscript and constructive remarks, which helped

improve its clarity and the discussion about the impli-

cations of the results.

REFERENCES

B�enard, P., 2014: An oblate-spheroid geopotential approximation

for global meteorology.Quart. J. Roy. Meteor. Soc., 140, 170–

184, doi:10.1002/qj.2141.

Cho, J. Y. K., and L.M. Polvani, 1996: Themorphogenesis of bands

and zonal winds in the atmospheres on the giant outer planets.

Science, 273, 335–337, doi:10.1126/science.273.5273.335.

——, K. Menou, B. M. S. Hansen, and S. Seager, 2003: The

changing face of the extrasolar giant planet HD 209458b.

Astrophys. J. Lett., 587, L117, doi:10.1086/375016.
Cotter, C. J., and D. Holm, 2013: Variational formulations of

sound-proof models. Quart. J. Roy. Meteor. Soc., doi:10.1002/

qj.2260, in press.

Dellar, P. J., 2011: Variations on a beta-plane: Derivation of

non-traditional beta-plane equations from Hamilton’s

principle on a sphere. J. FluidMech., 674, 174–195, doi:10.1017/

S0022112010006464.

Durran, D. R., 1989: Improving the anelastic approximation. J. At-

mos. Sci., 46, 1453–1461, doi:10.1175/1520-0469(1989)046,1453:

ITAA.2.0.CO;2.

——, 2008: A physically motivated approach for filtering acoustic

waves from theequations governing compressible stratifiedflow.

J. Fluid Mech., 601, 365–379, doi:10.1017/S0022112008000608.

Gates, W. L., 2004: Derivation of the equations of atmo-

spheric motion in oblate spheroidal coordinates. J. Atmos.

Sci., 61, 2478–2487, doi:10.1175/1520-0469(2004)061,2478:

DOTEOA.2.0.CO;2.

Gerkema, T., and V. I. Shrira, 2005: Near-inertial waves in the

ocean: Beyond the traditional approximation. J. Fluid Mech.,

529, 195–219, doi:10.1017/S0022112005003411.

——, J. T. F. Zimmerman, L. R. M. Maas, and H. van Haren, 2008:

Geophysical and astrophysical fluid dynamics beyond the

traditional approximation.Rev. Geophys., 46, 1–33, doi:10.1029/

2006RG000220.

Holm, D. D., J. E. Marsden, and T. S. Ratiu, 2002: The Euler–

Poincar�e equations in geophysical fluid dynamics.Large-Scale

Atmosphere–Ocean Dynamics, J. Norbury and I. Roulstone,

Eds., Cambridge University Press, 251–300.

Hua, B. L., D.W.Moore, and S. Le Gentil, 1997: Inertial nonlinear

equilibration of equatorial flows. J. Fluid Mech., 331, 345–371,

doi:10.1017/S0022112096004016.

Klein, R., and O. Pauluis, 2012: Thermodynamic consistency

of a pseudo-incompressible approximation for general

equations of state. J. Atmos. Sci., 69, 961–968, doi:10.1175/

JAS-D-11-0110.1.

Lipps, F. B., and R. S. Hemler, 1982: A scale analysis of deep moist

convection and some related numerical calculations. J. Atmos.

Sci., 39, 2192–2210, doi:10.1175/1520-0469(1982)039,2192:

ASAODM.2.0.CO;2.

Mayne, N. J., and Coauthors, 2014: The unified model, a fully

compressible, non-hydrostatic, deep atmosphere global cir-

culation model, applied to hot jupiters. Astron. Astrophys.,

561, A1, doi:10.1051/0004-6361/201322174.

Morrison, P. J., 1998: Hamiltonian description of the ideal fluid.Rev.

Mod. Phys., 70, 467–521, doi:10.1103/RevModPhys.70.467.

M€uller, P., 1995: Ertel’s potential vorticity theorem in physi-

cal oceanography. Rev. Geophys., 33, 67–87, doi:10.1029/

94RG03215.

M€uller, R., 1989: A note on the relation between the tra-

ditional approximation and the metric of the primi-

tive equations. Tellus, 41A, 175–178, doi:10.1111/

j.1600-0870.1989.tb00374.x.

Newcomb, W. A., 1967: Exchange invariance in fluid systems in

magneto-fluid and plasma dynamics.Proc. Symp. Appl. Math.,

18, 152–161.
Ogura,Y., andN.A. Phillips, 1962: Scale analysis of deep and shallow

convection in the atmosphere. J. Atmos. Sci., 19, 173–179,

doi:10.1175/1520-0469(1962)019,0173:SAODAS.2.0.CO;2.

Padhye, N., and P. J. Morrison, 1996: Fluid element relabel-

ing symmetry. Phys. Lett., 219A, 287–292, doi:10.1016/

0375-9601(96)00472-0.

Phillips, N. A., 1966: The equations of motion for a shallow rotating

atmosphere and the traditional approximation. J. Atmos.

Sci., 23, 626–628, doi:10.1175/1520-0469(1966)023,0626:

TEOMFA.2.0.CO;2.

Roulstone, I., and S. J. Brice, 1995: On the Hamiltonian formula-

tion of the quasi-hydrostatic equations.Quart. J. Roy. Meteor.

Soc., 121, 927–936, doi:10.1002/qj.49712152410.

Salmon, R., 1988: Hamiltonian fluid dynamics. Annu. Rev. Fluid

Mech., 20, 225–256, doi:10.1146/annurev.fl.20.010188.001301.
Showman, A. P., and L.M. Polvani, 2011: Equatorial superrotation

on tidally locked exoplanets.Astrophys. J., 738, 71, doi:10.1088/

0004-637X/738/1/71.

JULY 2014 TORT AND DUBOS 2465

Unauthenticated | Downloaded 11/12/21 08:17 AM UTC

http://dx.doi.org/10.1002/qj.2141
http://dx.doi.org/10.1126/science.273.5273.335
http://dx.doi.org/10.1086/375016
http://dx.doi.org/10.1002/qj.2260
http://dx.doi.org/10.1002/qj.2260
http://dx.doi.org/10.1017/S0022112010006464
http://dx.doi.org/10.1017/S0022112010006464
http://dx.doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
http://dx.doi.org/10.1017/S0022112008000608
http://dx.doi.org/10.1175/1520-0469(2004)061<2478:DOTEOA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2004)061<2478:DOTEOA>2.0.CO;2
http://dx.doi.org/10.1017/S0022112005003411
http://dx.doi.org/10.1029/2006RG000220
http://dx.doi.org/10.1029/2006RG000220
http://dx.doi.org/10.1017/S0022112096004016
http://dx.doi.org/10.1175/JAS-D-11-0110.1
http://dx.doi.org/10.1175/JAS-D-11-0110.1
http://dx.doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2
http://dx.doi.org/10.1051/0004-6361/201322174
http://dx.doi.org/10.1103/RevModPhys.70.467
http://dx.doi.org/10.1029/94RG03215
http://dx.doi.org/10.1029/94RG03215
http://dx.doi.org/10.1111/j.1600-0870.1989.tb00374.x
http://dx.doi.org/10.1111/j.1600-0870.1989.tb00374.x
http://dx.doi.org/10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2
http://dx.doi.org/10.1016/0375-9601(96)00472-0
http://dx.doi.org/10.1016/0375-9601(96)00472-0
http://dx.doi.org/10.1175/1520-0469(1966)023<0626:TEOMFA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1966)023<0626:TEOMFA>2.0.CO;2
http://dx.doi.org/10.1002/qj.49712152410
http://dx.doi.org/10.1146/annurev.fl.20.010188.001301
http://dx.doi.org/10.1088/0004-637X/738/1/71
http://dx.doi.org/10.1088/0004-637X/738/1/71


Staniforth, A., 2014a: Spheroidal and spherical geopotential

approximations. Quart. J. Roy. Meteor. Soc., doi:10.1002/

qj.2324, in press.

——, 2014b: Deriving consistent approximate models of the global

atmosphere using Hamilton’s principle.Quart. J. Roy. Meteor.

Soc., doi:10.1002/qj.2273, in press.

Tort, M., and T. Dubos, 2013: Dynamically consistent shallow-

atmosphere equations with a complete Coriolis force.Quart. J.

Roy. Meteor. Soc., doi:10.1002/qj.2274, in press.

Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics:

Fundamentals and Large-scale Circulation. Cambridge Uni-

versity Press, 745 pp.

White, A. A., and R. A. Bromley, 1995: Dynamically consistent,

quasi-hydrostatic equations for global models with a complete

representation of the Coriolis force. Quart. J. Roy. Meteor.

Soc., 121, 399–418, doi:10.1002/qj.49712152208.

——, and G. W. Inverarity, 2012: A quasi-spheroidal system for

modelling global atmospheres: Geodetic coordinates. Quart.

J. Roy. Meteor. Soc., 138, 27–33, doi:10.1002/qj.885.

——, and N. Wood, 2012: Consistent approximate models

of the global atmosphere in non-spherical geopotential

coordinates. Quart. J. Roy. Meteor. Soc., 138, 980–988,

doi:10.1002/qj.972.

——, B. J. Hoskins, I. Roulstone, and A. Staniforth, 2005: Con-

sistent approximate models of the global atmosphere: Shal-

low, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic.

Quart. J. Roy. Meteor. Soc., 131, 2081–2107, doi:10.1256/

qj.04.49.

——, A. Staniforth, and N. Wood, 2008: Spheroidal co-

ordinate systems for modelling global atmospheres.

Quart. J. Roy. Meteor. Soc., 134, 261–270, doi:10.1002/

qj.208.

2466 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71

Unauthenticated | Downloaded 11/12/21 08:17 AM UTC

http://dx.doi.org/10.1002/qj.2324
http://dx.doi.org/10.1002/qj.2324
http://dx.doi.org/10.1002/qj.2273
http://dx.doi.org/10.1002/qj.2274
http://dx.doi.org/10.1002/qj.49712152208
http://dx.doi.org/10.1002/qj.885
http://dx.doi.org/10.1002/qj.972
http://dx.doi.org/10.1256/qj.04.49
http://dx.doi.org/10.1256/qj.04.49
http://dx.doi.org/10.1002/qj.208
http://dx.doi.org/10.1002/qj.208

