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Abstract

Context awareness is an essential feature of pervasive applications and runtime detection of context changes is necessary for
enabling context awareness. Context aware applications are applications that are able to adapt their behavior (self adaptivity
property) according to the available resources, environmental conditions, user needs, etc. The self adaptivity property is enforced
by four phases. Monitoring/Collecting context parameters, analyzing the collected context parameters to detect changes, planning
appropriate adaptation actions and finally executing the planned actions to respond to the changes. In this paper, we focus and
discuss the second phase (Analysis phase). Contrary to the most research activities in which the analysis phase is performed
by comparing context parameters against fixed thresholds, we propose an analysis approach that uses a threshold comparison
technique. Fixed as well as adaptive thresholds are appliedto detect changes and trigger notifications that are used to deal with the
changes.
c© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Elhadi M. Shakshuki.
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1. Introduction

The widespread of mobile devices (laptops, palmtops, smartphones) and sensors and the seamless connectivity
between them have transcended the traditional computing era to the pervasive/ubiquitous computing. Pervasive/
ubiquitous computing aims at building smart environments where computing and communication are embedded in
almost every surrounding object and can be accessed all the time and everywhere.

Context aware applications have thus emerged as one of the most important fields of pervasive/ubiquitous com-
puting. These applications are those which can adapt their behavior in response to the context change without user
intervention allowing to increase the application effectiveness by taking environmental context, user requirements into
account? .
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The development of context aware applications is a complex process that requires the fulfilement of four phases.
This process starts by collecting/monitoring context. This phase is considered a main phase ofany context aware
application. Collecting/monitoring context have a variety of sources such as sensors, networks, devices, users and
other sources. The collected context parameters are analyzed in the second phase (Analysis) to detect the context
changes. Several techniques such as threshold comparison,conditions or rules are used to detect changes. Once
context changes are detected, adaptation actions are planned in the third phase (Planning). Finally, the planned actions
are executed in the fourth phase (Execution) to react to the changes.

In this paper, we discuss the second phase (Analysis). This phase is divided into three consecutive steps: Context
storage, context processing and classification, and finally, context change detection. The context storage is out of the
scope of this paper. We first define the context classificationstep that attributes context categories for each context
parameter. Second, we propose the context change detectionstep that targets detecting context changes and raising
notifications when changes occur.

The rest of the paper is organized as follows. In section 2, wegive an overview of some research studies dealing
with context classification and context change detection inpervasive/ubiquitous environments. Then, in section 3, we
introduce a case study named Smart Campus system. Its purpose is to provide suitable services to users according to
the context changes. The analysis approach is presented in section 4. We define first the context classification step that
takes into account the context parameter evolution. Then, we present the context change detection step that allows an
application to analyze context and detect context changes using thresholds. In section 5, we motivate and illustrate
the feasibility of our approach through an illustrative scenario. The last section concludes the paper and gives some
directions for future work.

2. Related work

Many researchers have proposed several classifications of context. Some studies classify the context into two
categories such as Schmidt? , Prekop and Burnett? and Mitchell? . Schmidt? , states two context categories such as
physical environment and human factors. Mitchell? divides the context into two categories. A personal environment
and an environmental context. Other studies classify context to several categories such as the studies of Rodden et
al.? and Schilit et al.? . In order to achieve a better understanding of the concept across a time span, Brown et al.?

add time context such as the time of the day, the week, the month and the season of the year.
Context classification is an important step to discover the possible context easily, simplify the context manipulation

including context analysis. In fact, the context analysis’s purpose is to analyze context parameters and identify context
changes. In the context changes detection research direction, several techniques and models are proposed in order to
detect the context changes.

In fact, Cioara et al.? propose to use the context entropy concept for detecting thecontext changes and determining
the degree of fulfilling a predefined set of policies. Moreover, context situation entropy defines the level of the
systems self and execution envionment disorder which is measured by evaluating the degree of respecting a set of
policies. Hence, once the context entropy exceeds a fixed threshold, then the system is in a critical state and it must
execute adaptation actions. Although this approach allowsa self adaptation following context changes, it does not
consider many context parameters to study as it is restricted to context parameters related to the environment such as
temperature, humidity and light, etc. In other studies, context changes are detected by comparing a context parameter
value saved in a repository with a new context parameter value. In fact, Zheng et al.? have addressed the issue of
context change detection by proposing a context-aware middleware which conforms to the CORBA component model.
The proposed middleware is composed of context aware services such as a context collector, a context interpreter, a
context repository and a context analyzer. The latter is in charge of filtering and analyzing context information to
determine relevant context changes and notifies the application afterwards. Furthermore, context filtering is based
on a comparison of the context values stored in the context repository with the new context value in order to detect
context changes. The proposed middleware enables to save the scare resources. In fact, the component deployment is
performed just-in-time. However, this middleware does notspecify context information to take into account. In the
work of Baloch and Crespi,? , they have proposed a framework for context acquisition, management and distribution
in a ubiquitous environment. Context is collected from various sources and devices. Then, whenever a context
change occurs, the device publishes its context in order to take the appropriate decision. However, the authors do
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not specify how context changes can be detected using their framework. Another approach for dynamic context
management is proposed by Taconet et al.? . Taconet et al. present CA3M, a context aware middleware, which
enables applications to adapt their behavior by dynamically taking into account context changes. The authors model
the application by entities, which represent a physical or alogical phenomenon (person, concept, etc.) and observable,
which defines something to observe. For instance, a mobile device state is an example of an observable which may
take a finite number of values (e.g low battery, almost low battery or normal battery). They consider that the change of
an observable state or even the observation goes past a giventhreshold from the last notified value leads to a different
application behavior. However, using a given threshold cancause false detections. Other approaches are used to
analyze context. In fact, Bouassida Rodriguez et al.? proposed a model driven approach for collaborative ubiquitous
systems. In order to detect context changes, they specify predefined thresholds. Then, once context values remain
below/under the threshold values, a notification is raised. Although this approach enables to detect instantly context
changes, it may cause false detections as well as missing alarms by using fixed thresholds

3. Case study: Smart Campus

Fig. 1. Case study: Smart Campus

To illustrate the use of our approach, we describe in the following an example of a Smart Campus system illustrated
in Fig. 1. Smart Campuses, with the ability to collect and analyze data, are built in order to benefit the institutions,
the students, the teachers and the staff by providing services which facilitate interaction between the actors such as
the teachers, the students and the staff. For instance, every actor is equipped with a personal device (PDA, smart
phone, PC, tablet, etc) and the Smart Campus system providesdifferent services to actors based on their current
situations. To maintain the cooperation between students and teachers, the actors devices need to be aware of their
environmental, execution context, etc. Consequently, Smart Campuses contain an infrastructure that allows devices
and systems to be monitored and adapted automatically/autonomously according to the context. Our work focuses on
several context parameters related to the environment and the user such as temperature, position and light which need
to be monitored. Furthermore, a multitude of resources related to the devices and to the network such as the available
memory, the energy, the CPU load and the available bandwidthshould be considered and supervised to assess both
the devices and the communication state.

An efficient Smart Campus relies on the cooperation of smart devices. The campus architecture depicted in the
Fig. 1 involves different kinds of participants. On the one side, two controlling servers called Smart Campus Servers
(SCServers) namely SCServer1 and SCServer2 which are Ethernet connected and equipped with important storage
and high computational capabilities. On the other side, fixed (Presence sensors, cameras, lamps, air conditioners)
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and mobile (laptop, PDA, phones) devices are placed. The mobile devices are usually resource constrained in terms
of memory, bandwidth and energy for example. Hence, a periodic monitoring by the controlling servers is needed
in order to check their state which changes according to context. Two gateways called Smart Campus Gateways
(SCGateways), SCGateway1 and SCGateway2 implementing software interfaces are used to connect devices to the
corresponding controlling servers (SCServers) to exchange relevant information. The campus space is composed of
separate rooms (Research laboratory, Meeting room, Classroom1 and Classroom2). Each room is equipped with fixed
devices as well as mobile devices that are carried by the different actors. Because of the complexity of the interaction
between the different entities, we propose to focus our study on a part of the Smart Campus . It consists in the gateway
SCGateway1 connected to both the SCServer1 and the devices located in the Classroom1.

4. The proposed approach

Fig. 2. An overview of the self adaptivity process of a context aware application

Towards detecting context changes, we propose an analysis process which aims at raising notifications if context
changes occur. The analysis process is performed in three steps as highlighted in Fig. 2 (The filled rectangles).

1 Storing context parameters: This step aims at storing context parameters collected from the first phase (Collect).
The context parameters are saved in log files. This step is outof the scope of this paper.

2 Classifying and processing context parameters: This steptakes as input the retrieved context parameters from
log files. It’s aim is to attribute categories to each contextparameter. The context classification step is detailed
in Section 4.1.

3 Detecting context change: This step aims at analyzing the context parameters and detecting changes based on
thresholds. This step is detailed in Section 4.2.

4.1. Context parameters classification step

With a wide range of context parameters, context parametersshould be classified into categories towards using
context effectively. We propose a context classification that takes into account the evolution of the context parameters.
Three categories are distinguished. Context parameters which evolve in a trend way, context parameters which are
characterized by peaks and context parameters which are characterized bu bursts. The three context categories are
depicted in Fig. 3.

1 The term trend refers to a stable tendency of growth or decline exhibited in the data as illustrated in Fig. 3(a).
For example, each mobile device such as PDA, mobile phone, etc. mentioned in section 3 periodically monitors
its resource state (Battery level, memory consumption) that belong to the trend category.

2 Peaks are defined as high values with sharp rise followed quickly by sharp fall implying a narrow period width? .
We define a peak P by its amplitude “Ap” and its period T as depicted in Fig. 3(b). In fact, the peak isa very
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Fig. 3. The proposed context categories
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Fig. 4. An example of threshold calculation for a context parameters whose evolution is characterized by a trend

narrow period of high values- That is, its amplitude “Ap” exceeds for “n” times the average amplitude“Aav” of
the time series formed by the context parameter values. For example, the link load context parameter illustrated
in Fig. 3(b) belongs to the peak category.So, a peak is definedby the following formulas:

{

Ap = n× Aav

T ≤ m× TimeUnit

WhereAp defines the peak’s amplitude,Aav defines the average amplitude of the parameter curve,n andm are
constants fixed by the application designers.

3 A burst consists on a relatively wide contiguous region of values. A burst is defined as a large number of
occurring events Klan et al.? . As depicted in the Fig. 3(c), we can model the wide region by an ON-period and
the other by an OFF-behavior Yang? . The ON-period models a single flow such as the transfer of a single web
page, and the OFF-period models the users thinking time. Noting that the ON-period and the OFF-period are
strictly alternating. The message number is modeled as a burst as depicted in Fig. 3(c).

4.2. Context change detection step

Since the context parameters classification step is based onthe context parameters evolution, we detail in the
following the threshold calculation for each context category defined previously. For each context parameter belonging
to a category, we propose to assign a number of thresholds. Each threshold is characterized by a level and for each
level corresponds a notification type. When context parameters curve cuts the threshold, a notification is raised (See
Fig. 4).

4.2.1. Threshold calculation for trend based context parameters evolution
For this category, the context parameters evolution is described by a trend. In order to avoid false detections as well

as missing alarms, we need to define thresholds which are uncorrelated with the context parameter evolution. The
notification raised when the context parameter value crosses the threshold is illustrated in Fig. 4. Different kinds of
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thresholds can be applied for this category, such as fixed thresholds, adaptive thresholds and step function thresholds.
For instance, fixed thresholds may be defined by the application designers according to the context parameter char-
acteristics. Then, a notification is raised once the contextparameter value crosses the fixed threshold as depicted in
the Fig. 4(a). For the adaptive threshold denoted in the Fig.4(b), mathematical models need to be applied in order to
update threshold values at runtime such as the Exponential Weighted Moving Average technique? used by Lahyani et
al.? . However, for this kind of context parameters characterized by a trend, adaptive threshold must be uncorrelated
with the parameter evolution in order to avoid false detections and missing alarms. Finally, for the step function
threshold described in the Fig. 4(c), thresholds are definedper period and notifications are raised when the context
parameter values crosse the thresholds. In our case study: Smart Campus, the memory consumption can be modeled
by a trend. Each mobile device needs to monitor and analyze the memory consumption to evaluate its state. So each
mobile device compares periodically its memory consumption state with the threshold. A notification is raised when
there is an intersection between the threshold and the memory values as illustrated in Fig. 4.

4.2.2. Threshold calculation for peak based context parameters evolution
Identifying and detecting peaks in a given time series is important in order to react accordingly and to avoid

undesirable effects. In this context category, the idea consists of specifying adaptive thresholds. In fact, using fixed
thresholds in this category could cause false alarms. As mentioned in the Smart Campus case study (section 3),
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Fig. 5. Threshold calculation for a context parameter whoseevolution is characterized by a peak

the servers receive periodically contextual information from the devices through the gateways. In case of a sudden
large amount of data, the servers could be overloaded and need to perform an important processing. This overload is
identified when the CPU load oversteps the adaptive threshold for this context category as illustrated in Fig.5.

4.2.3. Threshold calculation for burst based context parameter evolution
In this category, our idea consists on transforming a burstymodel into a peaked or a trend model. So, we propose

to apply an aggregate function G in each ON-period. The aggregate function application is illustrated in Fig. 6(b). As
depicted in the Fig. 6(b), the obtained model roughly coincides with a trend function. After applying thresholds, a
notification is raised when the context parameter values cross the threshold calculated in an ON-period. For the Smart
Campus case study (section 3), the gateway SCGateway1 analyzes the received data from the devices. The maximum
queue size of the gateway is set by the application designer.So, if the traffic received by this gateway in a period
Ti exceeds a maximum, then a burst is identified inTi . Towards detecting bursty periods, the function G is applied.
In our case study, the function G calculates the slope of the scatter diagram obtained in each ON-period. And, the
intensity of each slope formed in each ON-period is computed(Result shown in Fig. 6(b)). Consequently, if the slope
intensity exceeds the threshold, then a burst is detected and appropriate adaptation actions are launched as shown in
Fig. 6(c).

5. Illustrative scenario

In this section, we consider the case of a Smart Campus as shown in section 3. We focus in the interaction of
the actors of the Classroom1 and SCServer1 through SCGateway1. This Classroom1 is used by the researchers, the
teachers, the students. The context parameters consideredin this scenario are the following:
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Fig. 6. An example of threshold application for burst based context parameters evolution

• The actors’ position: It belongs to the peak category. Adaptive thresholds are applied to this context parameter.
• The CPU load: It belongs also to the peak category. Adaptive thresholds are applied to this context parameter.
• The memory consumption: It belongs to the trend category. Fixed, adaptive or step function thresholds are

applied to this context parameter.

The scenario starts as follows: At the beginning of each course session, the presence sensor captures and localizes
the mobile actors. Their positions are then forwarded to SCServer1. SCServer1 runs the analysis algorithm based on
thresholds on the context parameter (mobile actors position) and takes the appropriate desicion. Since the SCGateway1
communicates information received from the devices to the corresponding SCServer, in case of a large amount of data
received by the gateway SCGateway1 atTi , the load of SCGateway1 increases rapidly reaching a high value (i.e a
peak) and exceeding the adaptive threshold specified for this context parameter. The analysis algorithm integrated
in SCGateway1 raises a notification and the gateway decides to split its load with its neighboring gateway namely
SCGateway2.

Each student participating to a course uses a tablet device to which the course will be dispatched through bluetooth.
The tablet device holds the analysis algorithm in order to detect context changes. During the course, the students tablet
display appropriate slides and follow their courses. Furthermore, the students can write annotations on their tablets
and publish their comments to share knowledge between all the group members to enrich the course and enhance the
cooperation. A student holding a tablet is participating tothe course by exchanging information and slides. For each
amount of data received, the tablet device retrieves the memory consumption from the operating system using probes.
Then, it compares each value with the threshold which can be either fixed, adaptive or step function since memory
consumption belongs to the trend context parameter category as illustrated in Fig. 7. The tablet detects that at an instant
Ti , the memory consumption exceeds the threshold (Notification2). So, the device closes unecessary applications
(Specified by the user). If this action is not enough (Notification3), the device displays a message proposing to the
user to close some other running applications . This scenario highlights the interaction of the campus application with

Fig. 7. An example of threshold application on the memory context parameter
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context in such a way that it can detect context changes usingthe analysis approach in order to adapt its behavior
accordingly.

6. Conclusion

The challenges for context aware applications design and implementation are to handle monitoring/collection,
analysis, planning and acting. In this paper, we have discussed the second phase (Analysis). The analysis phase is
divided into three steps. We have defined first a context classification step based on context parameters evolution.
Three categories have been identified. A trend category, a peak category and a burst one. Then, we have presented a
context change detection step which aims at analyzing context and identifying context changes. In order to identify
changes, we propose a threshold comparison technique. Different thresholds are used to detect changes such as fixed,
adaptive and step function. As future work, we plan to stretch the context classification step. For further development,
we intend to implement our analysis approach and to use it by generic applications.
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