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Single-image super-resolution via linear

mapping of interpolated self-examples
Marco Bevilacqua, Aline Roumy, Member, IEEE, Christine Guillemot, Fellow, IEEE,

and Marie-Line Alberi Morel

Abstract

This paper presents a novel example-based single-image super-resolution (SR) procedure, that upscales to high-

resolution (HR) a given low-resolution (LR) input image without relying on an external dictionary of image examples.

The dictionary instead is built from the LR input image itself, by generating a “double pyramid” of recursively scaled,

and subsequently interpolated, images, from which self-examples are extracted. The upscaling procedure is multi-pass,

i.e. the output image is constructed by means of gradual increases, and consists in learning special linear mapping

functions on this double pyramid, as many as the number of patches in the current image to upscale. More precisely,

for each LR patch, similar self-examples are found, and, thanks to them, a linear function is learned to directly

map it into its HR version. Iterative back projection is also employed to ensure consistency at each pass of the

procedure. Extensive experiments and comparisons with other state-of-the-art methods, based both on external and

internal dictionaries, show that our algorithm can produce visually pleasant upscalings, with sharp edges and well

reconstructed details. Moreover, when considering objective metrics like PSNR and SSIM, our method turns out to

give the best performance.

Index Terms

super resolution, example-based, regression, neighbor embedding

I. INTRODUCTION

Super-resolution (SR) refers to a family of techniques that aim at increasing the resolution of given images.

Nowadays, many applications, e.g. video surveillance and remote sensing, require the display of images at a

considerable resolution, that may not be easy to obtain given the limitations of physical imaging systems or

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must

be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported by the joint research lab INRIA-Alcatel Lucent Bell Labs.

M. Bevilacqua is with IMT Institute for Advanced Studies Lucca, 55100 Italy (e-mail: marco.bevilacqua@imtlucca.it). This work was

performed while he was Ph.D. student at the SIROCCO research team in INRIA.

A. Roumy and C. Guillemot are with the SIROCCO research team in INRIA, Institut national de recherche en informatique et en automatique,

Rennes, 35042 France (e-mail: firstname.lastname@inria.fr).

M-L. Alberi Morel is with Alcatel-Lucent Bell Labs France, Centre de Villarceaux, 91620 France (e-mail: marie line.alberi-morel@alcatel-

lucent.com).

October 15, 2014 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, MONTH 2014 2

environmental conditions. Moreover, with the spread of digital technologies, there is a tremendous amount of

user-produced images collected in the years, that are valuable but may be affected by a poor quality. Therefore,

techniques to augment the resolution of an image, i.e. the total number of pixels, and contextually improve its

visual quality, are particularly appealing.

SR methods are traditionally categorized according to the number of input images: when several low-resolution

(LR) input images are available we speak about multi-frame SR algorithm; vice versa, when the LR input image

is unique, we have the single-image SR problem. In both cases, as an output, a unique high-resolution (HR)

super-resolved image is produced.

Multi-frame SR methods, of which a good overview is given in [1], are the first ones that have been studied,

since the SR problem first appeared in the scientific community [2]. Here, the multiple LR input images are

considered as different views of the same scene, taken with sub-pixel misalignment, i.e. each image is seen as

a degraded version of an underlying HR image to be estimated, where the degradation processes can include

blurring, geometrical transformations, and down-sampling. Single-image SR, instead, aims at constructing the HR

output image from as little as a single LR input image. The problem stated is an inherently ill-posed problem,

as there can be several HR images generating the same LR image. Single-image SR is deeply connected with

traditional “analytical” interpolation, since they share the same goal. Traditional interpolation methods, e.g. bicubic

interpolation, by computing the missing pixels in the HR grid as averages of known pixels, implicitly impose a

“smoothness” prior. However, natural images often present strong discontinuities, such as edges and corners, and

thus the smoothness prior results in producing ringing and blurring artifacts in the output image. Single-image SR

algorithms can be broadly classified into two main approaches: interpolation-based methods [3]–[5], which, possibly

in a nonparametric fashion, follow the interpolation approach by posing more sophisticated statistical priors; and

machine learning (ML) based methods.

In particular, the latter, by taking advantage of the powerfulness of ML techniques, have shown to give very

challenging results, and many algorithms appeared in the literature in the recent years. ML-based algorithms can

consist in pixel-based procedures, where each value in the HR output image is singularly inferred via statistical

learning [6], [7], or patch-based procedures, where the HR estimation is performed thanks to a dictionary of

correspondences of LR and HR patches (i.e. squared blocks of image pixels). ML-based SR that makes use of

patches is also referred to as example-based SR [8]. In the upscaling procedure the LR input image itself is divided

into patches, and for each LR input patch a single HR output patch is reconstructed, by observing the “examples”

contained in the dictionary.

Example-based methods mainly vary in two aspects: the patch reconstruction method used and the typology

of dictionary. As for the method to perform the single patch reconstructions, we have again two main categories:

coding-based reconstruction methods and direct mapping (DM). Neighbor embedding (NE) belongs to coding-based

methods. In NE-based SR [9]–[11], for each LR input patch we select K similar LR examples in the dictionary by

nearest neighbor search (NNS), and a linear combination of these neighbors is computed to possibly approximate

the input patch. The corresponding HR neighbors are then similarly combined, i.e. by using the same weights
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computed with the LR patches, to generate the HR output patch. This approach relies on what in [12] is called

“manifold assumption”: the linear combination weights are meant to capture the local geometry of a manifold

on which the LR patches are supposed to lay; by applying the same weights to reconstruct the HR patches, we

implicitly assume that they too lay on a manifold with similar local structures. In order to enforce the assumption

of manifold similarity between the two distinct spaces represented by the LR and HR patches, Gao et al. propose

in [13] to compute the weights in a subspace common to the LR and HR patches. The method therefore assumes

the existence of a common low-dimensional space that preserve some meaningful characteristics of the patches.

Example-based SR via sparse representations [14], [15] also falls within the family of coding-based methods, and

can be considered very close to NE-based SR: however, here, the weights are not computed on neighbors found by

NNS, but typical sparse coding algorithms are employed. The method presented in [16] bridges the two approaches

(NE and sparse representations), by proposing a “sparse neighbor embedding” algorithm. In [17], instead, another

sparse-representation-based SR algorithm is presented, which, in addition to a sparse example-based term, uses

several regularization terms to globally optimize the image generation process.

All the methods so far require manifold similarity between the LR and HR spaces. A different patch reconstruction

approach that does not rely on this assumption is given instead by direct mapping (DM). Example-based SR via

DM [18]–[20] aims at finding, in fact, for each patch reconstruction, a function that directly map a given LR patch

into its HR version. The mapping function is commonly found with traditional regression methods.

As for the second discriminating aspect of example-based SR, the typology of the dictionary, we have mainly two

choices: an external dictionary, built from a set of external training images, and an “internal” one, built without using

any other image than the LR input image itself. This latter case exploits the so called “self-similarity” property,

typical of natural images, according to which image structures tend to repeat within and across different image

scales: therefore, patch correspondences can be found in the input image itself and possibly scaled versions of

it. To learn these patch correspondences, that specifically take the name of self-examples, we can have one-step

schemes [18], [21], [22] or schemes based on a pyramid of recursively scaled images starting from the LR input

image [23]–[25]. Clearly, the advantage of having an external dictionary instead of an internal one lies in the fact

that it is built in advance, while the internal one is generated online and updated at each run of the algorithm.

However, external dictionaries have a considerable drawback: they are fixed and thus non-adapted to the input image.

The study conducted in [26] also confirms the benefit of using internal statistics in patch-based image processing

algorithms.

A. Main contributions

In this paper we present a novel example-based SR algorithm that makes use of an internal dictionary. The

contributions are twofold. First, we build a “double pyramid”, where the traditional image pyramid of [23] is

juxtaposed with a pyramid of interpolated images. Second, HR patches are reconstructed through DM, whereas in

[23] the HR patches are reconstructed via NE. Therefore, in the proposed algorithm, a linear mapping is learned on

the double pyramid from the LR interpolated patches to the HR patches, and then applied to each interpolated LR
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input patch. As said before, unlike NE, DM does not rely on any theoretical assumption (i.e. a manifold similarity

between the LR and HR spaces), and is therefore preferable.

The rationale for the interpolation operation is to make the computation of the single mapping functions via

regression more robust (LR and HR patches, in fact, turn out to have the same sizes). Moreover, a Tikhonov

regularization is added to the problem to provide numerical stability in the computation, since the linear mapping

requires a matrix inversion. A double-pyramid-like scheme has also been introduced in [22]. However, our proposed

algorithm differs from [22] in two ways. First, the reconstruction in [22] is based on a neighbor embedding technique

analyzed in [27] (NE with a sum-to-one constraint). This NE technique was shown to have a performance highly

dependent on the number of neighbors chosen. More precisely, when this number is equal to the size of the LR

input vectors, the performance of the algorithms dramatically drops. As a second discriminating aspect, while [22]

initializes the pyramid by down-scaling the LR input image only once, we instead initialize the pyramid with many

sub-levels by recursively down-scaling the LR input image. We show that many sub levels are needed in order to

better reconstruct a HR image. More precisely, we have that at the first iteration of the algorithm around 35% of

the selected patches come from the pyramid levels below the first one (see Fig. 3 for details). The patches initially

selected play a crucial role: in fact, since the whole algorithm is by nature recursive, it is very sensitive to its

initialization.

All the listed contributions are possible at the cost of a slight increase in the complexity of the algorithm (i.e.

+10.7% for a scale factor of 3 and +8.1% for a scale factor of 4; see Section IV-B for details), while having a

beneficial effect on the quality performance, both in terms of objective metrics (PSNR and SSIM) and visual results.

B. Organization of the paper

The rest of the paper is organized as follows. Section II reviews the fundamentals of example-based SR using

an internal dictionary, by giving also a general introduction of NE and DM methods. Then, in Section III, our

algorithm is described in detail, by explaining how the internal dictionary is trained and the whole upscaling

procedure. Before drawing the conclusions, Section IV presents some extensive experiments done: the different

implementation choices are here validated and the algorithm is compared with other state-of-the-art methods, by

showing visual and quantitative results.

II. EXAMPLE-BASED SR WITH SELF-EXAMPLES

A. Principles and notations

Single-image SR is the problem of estimating an underlying HR image, given only one observed LR image. The

generation process of the LR image from the original HR image, that we consider, can be written as

IL = (IH ∗B) ↓s , (1)
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where IL and IH are respectively the LR and HR image, B is a blur kernel the original image is convoluted with,

which is typically modeled as a Gaussian blur [28], and the expression ↓s denotes a downsampling operation by a

scale factor of s. The LR image in then a blurred and down-sampled version of the original HR image.

Example-based single-image SR aims at reversing the image generation model (1), by means of a dictionary of

image examples that map locally the relation between an HR image and its LR counterpart, the latter obtained with

the model (1). For general upscaling purposes, the examples used are typically in the form of patches, i.e. squared

blocks of pixels (e.g. 3 × 3 or 5 × 5 blocks). The dictionary is then a collection of patches, which, two by two,

form pairs. A pair specifically consists of a LR patch and its HR version with enriched high frequency details.

Example-based SR algorithms comprise two phases:

1) A training phase, where the above-mentioned dictionary of patches is built;

2) The proper super-resolution phase, that uses the dictionary created to upscale the input image.

As for the training phase, in the next section we discuss how to build an “internal” dictionary of patches, i.e.

starting from as little as the LR input image. As for the SR phase, instead, in example-based algorithms the patch is

also the reconstruction unit used in the upscaling procedure. In fact, the LR input image is partitioned into patches;

for each single LR input patch, then, by using the LR-HR patch correspondences in the dictionary, a HR output

patch is constructed. The HR output image is finally built by re-assembling all the reconstructed HR patches. In

Section II-C we revise the two main patch reconstruction approaches: neighbor embedding and direct mapping.

Hereinafter in this paper we will use the following notation to indicate the different kinds of patches. X l = {xl
i}

Nx
i=1

will denote the set of LR patches into which the LR input image is partitioned; similarly, X h = {xh
i }

Nx
i=1 will denote

the set of reconstructed HR patches, that will form the HR output image. Each patch is expressed in vector form,

i.e. its pixels are concatenated to form a unique vector. As for the dictionary, Y l = {yl
i}

Ny

i=1 and Yh = {yh
i }

Ny

i=1 will

be respectively the sets of LR and HR example patches. In each patch reconstruction, then, the goal is to predict

an HR output patch xh
i , given the related LR input patch xl

i, and the two coupled sets of patches, Y l and Yh, that

form the dictionary. Fig. 1 shows in a simple manner the operating diagram of an example-based SR algorithm,

where the input image is partitioned into LR patches, a dictionary of patch correspondences is exploited, and new

HR patches are generated and subsequently re-assembled to create the super-resolved output image.

B. Searching for self-examples

In example-based SR, when performing the training phase, we speak about an internal learning when, instead

of making use of external training images, we derive the patches directly from the input image and processed

versions of it. Local image structures, that can be captured in the form of patches, tend to recur across different

scales of an image, especially for small scale factors. We can then use the input image itself, conveniently up-

sampled or down-sampled into one or several differently re-scaled versions, and use pairs of these images to learn

correspondences of LR and HR patches, that will constitute our internal dictionary. We call the patches learned in

this way self-examples. In this respect, there are two main kinds of learning schemes described in the literature:
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𝒀𝒍 𝒀𝒉 

𝑿𝒉 𝑿𝒍 

LR input 

image 

HR output 

image 

Fig. 1. Operating diagram of the example-based SR procedure.

one-step schemes like in [18], [21], [22], and schemes involving the construction of a pyramid of recursively scaled

images [23]–[25].

One-step schemes are meant to reduce as much as possible the size of the internal dictionary, i.e. the number of

self-examples to be examined at each patch reconstruction, and thus the computational time of the SR algorithm.

In fact, from the input image only one pair of training images is constructed and thus taken into account for the

construction of the dictionary. This approach is motivated by the fact that the most relevant patches correspondences

can be found when the rescale factor employed is rather small. Only one rescaling is then sufficient to obtain a

good amount of self-examples. Let D denote an image downscaling operator, s.t. D(I) = (I) ↓p, where p is a

conveniently chosen small scale factor; and let U denote the dual upscaling operator, s.t. U(I) = (I) ↑p. Let IL still

indicate the LR input image. In [22], for example, JL = U(D(IL)), which represents a low-pass filtered version

of the LR input image IL, is used as source for the LR patches, whereas the HR example patches are directly

sampled from the input image (JH = IL). Freedman and Fattal propose in [21] an equivalent approach, except that
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a high-pass version of IL (JH = IL−JL) is used to get HR training patch. In [18], instead, we have JL = (IL ∗B)

and JH = U(IL): the LR examples patches are taken again from a low-pass filtered version of IL, obtained by

blurring the original image with a Gaussian blur kernel B, and the corresponding HR patches are taken from an

upscaled version of IL, which does not alter its frequency spectrum content.

The method described in [23] paved the way to several SR algorithms (e.g. [24], [25]), based on self-examples

derived in an image pyramid. Differently from one-step learning methods, here several training images are con-

structed by recursively down-scaling the LR input image, thus forming a sort of overturned pyramid. Given a LR

input patch, all the levels of this pyramid can be used to find similar self-examples, usually by performing a nearest

neighbor search (NNS) (see Fig. 2).

To test the effective usefulness of constructing a full pyramid of images, we built a pyramid with 6 sub-levels

as in [23] (the original LR image is recursively down-scaled 6 times). For each LR input patch, then, the K = 9

most similar self-examples (the K nearest neighbors) have been searched throughout the whole pyramid, and the

histogram of all the selected neighbors has been drawn, where the histogram classes are the 6 sub-levels of the

pyramid. Fig. 3 presents the histograms of the selected neighbors for two different images.

As we can observe from Fig. 3, it is clear that the first sub-level, i.e. the image obtained with only one rescaling

operation, is the most relevant source of self-examples. Nevertheless, in both cases nearly 35 percent of the neighbors

still come from the other sub-levels, which is not a negligible percentage. Pyramidal scheme like in [23] are then

preferable than one-step scheme like [18], [21], [22].

C. Patch reconstruction methods based on local learning

Once the dictionary of self-examples is built, i.e. we have the two dictionary sets Y l and Yh containing,

respectively, LR and HR example patches, the proper SR upscaling procedure is ready to start. In this respect,

example-based SR algorithms consist in patch-based procedures, where the HR output image is built by means of

single patch reconstructions, as many as the number of LR patches the LR input image is partitioned into.

For example-based SR, two main approaches to reconstruction are possible: neighbor embedding (NE) and direct

mapping (DM). In both cases, for each input patch xl
i, LR and HR local training sets are formed, by performing a

nearest neighbor search (NNS). A desired number of neighbors of the LR input patch xl
i is searched among the LR

self-examples Y l, and consequently an equal number of HR neighbors is determined. Let Y l
i indicate the matrix

collecting, column by column, the selected LR neighbors, and let Y h
i indicate the matrix of the corresponding HR

neighbors. Thanks to the local sets Y l
i and Y h

i , the unknown HR patch xh
i is then predicted. The whole local

learning procedure can be summarized in 3 steps.

1) Nearest Neighbor Search (NNS): The local training sets Y l
i and Y h

i are determined.

2) Model generation: A model Mi for the local reconstruction is computed. Mi generally depends on both

the LR input patch and the local training sets: Mi =M(xl
i, Y

l
i , Y

h
i ).

3) Prediction: The model Mi is applied to actually predict the HR output patch.
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𝒙𝒊
𝒍 

𝒚𝟏
𝒍  

𝒚𝟐
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Fig. 2. Pyramid of recursively scaled images (in this case with 4 sub-levels), where the top level (I0) is represented by the LR input image

IL. Given a LR input patch xl
i, a desired number of “neighbors” (yl

1,y
l
2, . . . ) can be found at any level of the pyramid.

NE and DM differ in steps 2 and 3 of the local learning procedure above. In NE, the reconstruction model

Mi consists of a vector of weights wi ∈ RK (where K is the number of neighbors chosen), that identifies a

linear combination of the LR neighbors Y l
i . The weights are computed w.r.t. the LR input patch and its neighbors

(wi =M(xl
i, Y

l
i )). In [23], e.g., the single weight wi(j), related to the neighbor yl

j found in the pyramid, is an

exponential function of the distance between the latter and the LR input patch, according to the non-local means
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Fig. 3. Percentage of selected neighbors for each sub-level of the pyramid, for two different images.

(NLM) model [29].

wi(j) =
1

C
e−
‖xl

i
−yl

j
‖2
2

t , (2)

where t is a parameter to control the decaying speed and C is a normalizing constant to make the weights sum up

to one.

In other NE methods, instead, the weights are meant to describe a linear combination that approximates the LR

input patch (i.e. xl
i ≈ Y l

i wi). In [9]–[11], e.g., the weights are computed as the result of a least squares problem

with a sum-to-one constraint:

wi = argmin
w

‖xl
i − Y l

i w‖2 s.t. wT1 = 1 . (3)

The formula (3) recalls the method used in Locally Linear Embedding (LLE) [30] to describe a high-dimensional

point lying on a manifold through its neighbors. In [27], instead, the sum-to-one constraint is replaced by a

nonnegative condition, thus leading to nonnegative weights.

wi = argmin
w

‖xl
i − Y l

i w‖2 s.t. w ≥ 0 . (4)

In [13], finally, the weight computation is performed in an appropriate subspace: the LR input patch and its HR

neighbors are expressed as lower-dimensional vectors, thanks to convenient projection matrices. The weights are

then found by minimizing the error in the new subspace with no explicit constraint:

wi = argmin
w

‖P l
ix

l
i − Ph

i Y
h
i w‖2 . (5)

Once the vector of weights wi is computed, the prediction step (Step 3) of the NE learning procedure consists

in generating the HR output patch xh
i as a linear combination of the HR neighbors Y l

i , by using the same weights:

xh
i ≈ Y h

i wi . (6)
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Fig. 4a depicts the scheme of the patch reconstruction procedure in the NE case. The model, i.e. the weights, is

totally learned in the LR space, and then applied to the HR local training set to generate the HR output patch.

In direct mapping (DM) methods [18]–[20], instead, the model is a regression function fi that directly maps the

LR input patch into the HR output patch. The function is learned by taking into account the two local training

sets (fi =M(Y l
i , Y

h
i )), by minimizing the empirical fitting error between all the pairs of examples. An appropriate

regularization term is placed to make the problem well-posed. We then have:

fi = argmin
f∈H

K∑
j=1

‖yh
j − f(yl

j)‖22 + λ‖f‖2H , (7)

where H is a desired Hilbert function space and λ ≥ 0 a regularization parameter. Examples similar to xl
i and their

corresponding HR versions are then used to learn a unique mapping function, which is afterwards simply applied

to xl
i to predict the HR output patch (Step 3):

xh
i = fi(x

l
i) (8)

Fig. 4b depicts the scheme of the patch reconstruction procedure also in the DM case.

An advantage of DM w.r.t. NE is that it can enable fast procedures, while presenting only slightly degraded

performance, as done in [31]. By allowing a mismatch in the neighborhood computation (neighborhood of the

closest atom in the dictionary rather than neighborhood of the input patch), the mappings can be pre-computed and

stored. Hence the fast implementation.

III. PROPOSED ALGORITHM

In this section we present our novel SR algorithm, based on an internal dictionary of self-examples. Starting from

the image pyramid described in Section II-B, we propose a modified scheme with a “double pyramid”, presented in

Section III-A. The self-examples found in this scheme are used to gradually upscale the LR input image up to the

final super-resolved image, according to the cross-level scale factor chosen for the pyramid. The upscaling procedure

employed falls within the local learning based reconstruction methods described in Section II-C. In particular, it is

a direct mapping method, where each LR patch is mapped into its HR version by means of a specifically learned

linear function. The whole upscaling procedure and a summary of the whole algorithm are given in Section III-B.

A. Building the double pyramid

The goal of our SR algorithm is to retrieve the underlying HR image IH from a degraded LR version of its IL,

which is supposed to be originated according to the image generation model (1). We choose the blur kernel B to

be a Gaussian kernel with a given variance σ2
B . The value s is instead an integer scale factor (e.g. 3 or 4), which

is the factor by which we want the LR input image IL to be magnified; i.e. if IL is of size N ×M , the final

super-resolved image ÎH will have a size of sN × sM .

For complexity reason, the SR algorithm later described is applied only on the luminance component Y of the

input image IL (a colorspace transformation from the RGB to the Y IQ model is then possibly performed at the
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beginning), whereas the color components I and Q are simply upsized by Bicubic interpolation to the final desired

size sN × sM . In fact, since humans are more sensitive to changes in the brightness of the image rather than

changes in color, it is a common belief that the SR procedure is worthy to be performed only on Y , so reducing

the complexity of the algorithm by one third. Hereafter, then, all the image matrices and patch vectors must be

intended as collections of pixel luminance values.

As a starting point for our internal dictionary learning procedure, we take the single pyramid depicted in Fig. 2.

Here, the top-level is represented by the LR input image itself (I0 = IL). From it, a finite number of “sub-levels”

is created, according the the following relation:

I−n = (IL ∗Bn) ↓pn , (9)

where p, the pyramid cross-level scale factor, is typically a “small” number (e.g. p = 1.25). The sub-level image

I−n is then a particular rescaled version of the original image IL (the total rescale factor amount to pn). As for

the variance of the Gaussian kernel Bn to which it is subjected, it can be computed according to the following

formula, which is explained in [24]:

σ2
Bn

= n · σ2
B · log(p)/ log(s) . (10)

Once the single pyramid is created, we propose now to interpolate each sub-level I−n by the factor p. The so

obtained interpolated level U(I−n), where U is an upscaling operator s.t. U(I) = (I) ↑p, is an image with the same

size as the original non-interpolated level located just above in the pyramid I−n+1 (except for possible 1-pixel

differences, due to the non-integer interpolation factors). We can then consider the pair constituted by U(I−n) and

I−n+1 a pair of, respectively, LR and HR training images, from which derive a set of self-examples. By using

all the pairs {U(I−n), I−n+1} for n = 1, . . . NL, where NL is the chosen number of sub-levels, and sampling at

corresponding locations pairs of, respectively, LR and HR patches of equal size
√
D×

√
D, we can then form our

LR and HR internal dictionary sets: Y l = {yl
i ∈ RD}Ny

i=1 and Yh = {yh
i ∈ RD}Ny

i=1. Fig. 5 reports the scheme

described, with the “double pyramid” formed by the traditional image cascade and, next to it, a side pyramid of

interpolated levels.

B. Gradual upscalings

Once the LR and HR dictionary sets, Y l and Yh, are formed, by populating them with the correspondences

of self-examples found in the double pyramid described in Section III-A, the proper SR reconstruction algorithm

starts.

The algorithm consists in a multi-pass procedure, where the input image is gradually magnified by an upscale

factor equal to the cross-level scale factor p. Given s as the total scale factor to be achieved, the number of necessary

passes it then:

NP = dlogp se . (11)

If s is not a power of p, the image super-resolved after NP passes will be over-sized w.r.t. to the targeted dimension

(sM × sN ); which means that an extra resizing operation is needed. I0 will be super-resolved into I1, I1 into I2,
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and so until obtaining INP , which will be possibly resized to obtain the SR estimated image ÎH with the desired

dimension. The multi-pass SR procedure is illustrated graphically in Fig. 6.

When generally upscaling the image In, this is first interpolated into the image U(IN ) from which a set of

overlapping patches X l = {xl
i}

Nx
i=1 is formed, by scanning it with a sliding window of dimension

√
D×
√
D. Each

input patch xl
i is processed singularly and, after the learning based patch reconstruction procedure, a corresponding

HR output patch xh
i is produced. By iterating for all patches, we have at the end a set of HR reconstructed patches

X h = {xh
i }

Nx
i=1, which will be finally re-assembled to form the upper-level image In+1. In the following paragraph

we describe the patch reconstruction method adopted.

1) Direct mapping of the self-examples via multi-linear regression: While most of the “pyramid-based” SR

algorithms in the literature [23]–[25] make use of a neighbor embedding (NE) based procedure to express each

input and output patch in terms of combinations of self-examples, we follow instead the direct mapping (DM)

approach. As explained in Section II-C, DM aims at learning, thanks to the LR and HR local training sets, a

mapping to directly derive the single HR output patch as a function of the related LR input patch.

DM has been employed in SR example-based algorithms using external dictionaries [19], [20], by using in

particular the Kernel Ridge Regression (KRR) solution. In this case, the function space H is what is called a

reproducing kernel Hilbert space (RKHS), and the single regression function fi is seen as an expansion of kernel

functions, where Gaussian kernels are typically chosen.

For the sake of simplicity, we believe instead that, since in the case of internal learning the dictionary patches

are more pertinent training examples, a simple linear mapping “can do the job”. With this goal, H is taken as a

linear function space

H =
{
f(x) =Mx |M ∈ RD×D,x ∈ RD

}
(12)

and the regularized empirical error (7) can be re-expressed as follows:

Mi = argmin
M∈RD×D

K∑
j=1

‖yh
j −Myl

j‖22 + λ‖M‖2F

= argmin
M∈RD×D

‖Y h
i −MY l

i ‖22 + λ‖M‖2F , (13)

where Y l
i and Y h

i are the usual, respectively LR and HR, local training sets related to the patch xl
i. In other words,

we are looking for a linear transformation (i.e. the matrix Mi) to be directly applied to the LR input patch. This

linear transformation is learned by observing the relations between the LR and HR dictionary patches which are

neighbors with xl
i, according to the machine learning pattern and a regression model, where Y l

i is the matrix of

the predictor variables or regressors, and Y h
i is the matrix of the response variables.

As the response variables are vectors and not scalars, we properly speak about multi-variate regression (MLR)

[32]. The solution to (13) is known, and can be written in a closed-form formula:

Mi = Y h
i Y

l
i

T
(
Y l
i Y

l
i

T
+ λI

)−1
(14)
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where I is the identity matrix. The equation (14) corresponds exactly to what we called “model generation” (Step

2 of the local learning procedure described in Section II-C). The prediction of the HR unknown patch (Step 3) is

the straight application of the linear mapping learned:

xh
i =Mix

l
i . (15)

Fig. 5 gives a rough depiction of how the DM reconstruction method works in the double pyramid.

2) Patch aggregation and IBP: By learning for each input patch xl
i ∈ X l a linear function Mi with the equation

(14), and by applying this function to generate the related output patch, we end up with a collection of HR patches

X h = {xh
i }

Nx
i=1 that need to be assembled to generate the current upscaling. Before the patch aggregation, the set

of reconstructed HR patches X h and the equivalent set of LR patches from which they have been originated, X l,

are added to the dictionary as new correspondences of patches to be used in future upscalings: the patches of the

two sets, in fact, are equal in number, and a LR-HR relation stands. The update of the dictionary is performed by

simple set union, i.e. Y l = Y l ∪ X l and Yh = Yh ∪ X h.

The patches of the input image, and consequently also in the equally-sized output image, are taken with a certain

overlap; that means that, when they are re-placed in the original positions, at each pixel location we have a set of

different candidate values. We can see the image at this stage as a 3-D image, where the multiple values per pixel

are the results of different local observations of the input image (i.e. different patches taken), and therefore contain

different partial information about the unknown HR image. We obtain a single output image by convexly combining

these candidates at each pixel location: the convex combination is done by simply taking uniform weights, i.e. each

candidate is weighted by 1/Np, where Np is the number of overlapping patches contributing to that particular

position.

After the image of the new level is formed, by overlapping and averaging, before it is used as a starting image for

the next upscaling, it is further refined in an iterative fashion by the iterative back-projection (IBP) procedure. IBP

is an additional operation adopted by several SR algorithms (e.g. [14], [23]), for which the output super-resolved

image, once reconstructed, is “back-projected” to the LR dimension in order to assure it to be consistent with the

LR input image, i.e. to assure it to be a plausible estimation of the underlying HR image, and conveniently corrected

if errors are observed.

At the iteration t of this refining procedure, the generic reconstructed n-th level Itn is first back-projected into

an estimated LR image ÎtL:

ÎtL =
(
Itn ∗Bn

)
↓pn (16)

where Bn is a Gaussian blur with variance as expressed in (10). The deviation between this LR image found by

back-projection and the original LR image is then used to further correct the HR estimated image:

It+1
n = Itn +

((
IL − ÎtL

)
↑pn

)
∗ b , (17)

where b is a back-projection filter that locally spreads the differential error.
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In Listing 1, our proposed SR procedure is described in a simplified manner, by reporting the pseudocode for the

two main routines of the algorithm: “InternalLearning”, where the double pyramid is constructed and the dictionary

sets of LR and HR patches are initially formed, and “SingleUpscale”, that reports the procedure to upscale a generic

level In to the upper level. To be noted, in particular, on line 15 the for loop, which consists of 3 instructions and

implements the 3 steps of the local learning based patch reconstruction procedure described in Section II-C: nearest

neighbor search, model generation, and prediction.

IV. EXPERIMENTAL RESULTS

In this section we conduct some experiments on the proposed single-image SR algorithm. In particular, in Section

IV-A we evaluate the different contributions, in terms of implementation choices, that led to its final formulation

summarized in Listing 1. Section IV-B provides some considerations about the complexity, intended both as time and

space complexity, of the proposed algorithm. In particular, we evaluate the amount of extra complexity possibly

brought by the double pyramid. In Section IV-C, finally, we compare our algorithm with other state-of-the-art

methods, by both showing visual comparisons on super-resolved images and reporting quantitative results, according

to the PSNR and SSIM metrics. PSNR and SSIM values are obtained as measures of the distance between the HR

original image, from which the LR input image, for test purposes, has been originated, and the super-resolved

image. The image generation model adopted is the one expressed in Equation (1), with the variance of the Gaussian

blur σ2
B set to 1 in all experiments. The interpolation method used is Bicubic interpolation.

As for the various parameters of the algorithms, they have been “tuned” by empirically looking for their optimal

values. Notably, the cross-level scale factor p is taken as p = 1.25; as for the patch size, instead, 5× 5 patches are

sampled from the internal images with a 4-pixel overlap. For each input patch, then, K = 12 are selected in the

dictionary via NNS.

A. Evaluation of the different contributions

In this section we want to assess the different contributions of our algorithm, which have been discussed in

Section III. With respect to the well-known single-image SR algorithm in [23], two main contributions have been

presented:

1) The employment of a DM reconstruction method (i.e. MLR), instead of NE;

2) The introduction of a different training and upscaling scheme, i.e. the “double” pyramid.

To singularly evaluate the two “ingredients” above, we test three different procedures (summarized in Table I),

which all fall in the category of example-based single-image SR algorithms employing an internal dictionary.

We first start with an algorithm, where a single pyramid is constructed and NE with non-local means (NLM)

weights (2) is used as patch reconstruction method (“Algorithm 1”). This algorithm is very close in the spirit to the

method in [23], and thus its implementation can be considered as a reference for the mentioned method, except for
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Listing 1 Single-image SR via linear mapping of interpolated self-examples

1: procedure INTERNALLEARNING(IL, NL, s, p, σ2
B )

2: for n← 1, NL do . Create the pyramid levels

3: σ2
Bn
← n · σ2

B · log(p)/ log(s)

4: I−n ← (IL ∗Bn) ↓pn

5: U(I−n)← (I−n) ↑p
6: end for

7: for n← 1, NL do . Populate the internal dict.

8: Sample patches from U(I−n) and add to Y l

9: Sample patches from I−n+1 and add to Yh

10: end for

11: end procedure

12: procedure SINGLEUPSCALE(In, p, Y l, Yh)

13: U(In)← (In) ↑p . Upscale the current level

14: Extract LR patches from U(In) → X l = {xl
i}

Nx
i=1

15: for i← 1, Nx do . Single patch reconstructions

16: Find the local train. sets of xl
i by NNS → Y l

i , Y
h
i

17: Mi ← Y h
i Y

l
i
T
(
Y l
i Y

l
i
T
+ λI

)−1
18: xh

i ←Mix
l
i

19: end for

20: Form In+1 with the constr. patches X h = {xh
i }

Nx
i=1

21: Refine In+1 by IBP

22: Y l ← Y l ∪ X l . Update the LR dictionary

23: Yh ← Yh ∪ X h . Update the HR dictionary

24: end procedure
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TABLE I

SUMMARY OF THE INTERNAL-DICTIONARY PROCEDURES CONSIDERED TO EVALUATE THE DIFFERENT CONTRIBUTIONS OF OUR

ALGORITHM.

Rec. Method Double pyr.

Algorithm 1 NE No

Algorithm 2 DM No

Proposed DM Yes

possible slight differences in the code configuration and the choice of the parameters. With respect to Algorithm 1,

“Algorithm 2” uses a DM patch reconstruction method instead of NE, i.e. the MLR method described in Section

III-B that linearly maps each LR patch into the related HR patch. The finally proposed algorithm introduces then

the double pyramid scheme, featuring the side pyramid of interpolated levels. Table II presents the PSNR and SSIM

values for all the considered algorithms, when tested on seven input images and for two different scale factors

(s = 3, 4).

As we can observe from the table, from Algorithm 1 to the Proposed algorithm we have almost always a

progressive consistent improvement in the SR performance, with our finally proposed procedure presenting an

average gain of about 0.22 dB w.r.t. to the traditional scheme based on a single pyramid and NE (Algorithm 1).

This gain can be appreciated when observing the output images. Fig. 7 shows in fact the visual results obtained

with the three different procedures, for two super-resolved images.

As we can observe from the zoomed-in areas of the images, with the finally proposed algorithm, we are able

to produce finer details (see the branch of the tree behind the bird, or the texture of the hat of the woman). In

particular, by observing the woman’s hat, we can appreciate a sort of progress in the outcome of the three algorithms:

Algorithm 1 gives a pretty blurred result; Algorithm 2, thanks to the use of DM in the place of NE, shows instead

more regular structures; the edges and the shapes of these structures look even sharper with the Proposed algorithm,

where the DM functions have been computed on the interpolated patches of the double pyramid.

B. Considerations on the algorithm complexity

In order to evaluate the time complexity of the algorithm, we ran two versions of it, featuring the usual single

pyramid and our double pyramid, for two different scale factors (3 and 4). The single-pyramid implementation gives

an idea of the complexity of several algorithms in the literature (e.g. [23]–[25]). The goal of this test is to evaluate

the penalty brought by the use of our double pyramid, in terms of increased complexity. Table III summarizes the

results of the tests made.

As we can see from Table III, the double pyramid leads to an extra complexity in the order of about 10%. The

increase in the computational cost is mainly due to the fact that bigger LR vectors are processed (LR patches have

the same size as HR patches). Nevertheless, we believe that the complexity increase is still within a tolerable extent.
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TABLE II

PERFORMANCE RESULTS (PSNR AND SSIM VALUES) OF THE THREE DIFFERENT ALGORITHMS USING AN INTERNAL DICTIONARY, WHEN

SUPER-RESOLVING SEVERAL IMAGES FOR SCALE FACTORS OF 3 AND 4.

Algorithm 1 Algorithm 2 Proposed

Image Scale PSNR SSIM PSNR SSIM PSNR SSIM

Bike 3 23.13 0.792 23.20 0.796 23.30 0.799

Bird 3 33.71 0.884 34.06 0.890 34.13 0.890

Butterfly 3 27.08 0.833 27.38 0.840 27.56 0.841

Hat 3 29.95 0.651 30.11 0.655 30.11 0.655

Head 3 32.43 0.633 32.47 0.667 32.43 0.668

Lena 3 30.68 0.770 30.91 0.775 30.89 0.775

Woman 3 30.33 0.862 30.41 0.866 30.52 0.867

Avg gain w.r.t. A1 - - 0.18 0.009 0.23 0.010

Bike 4 21.58 0.685 21.53 0.688 21.63 0.689

Bird 4 30.61 0.810 30.89 0.824 31.01 0.826

Butterfly 4 24.68 0.763 24.71 0.772 25.05 0.775

Hat 4 28.54 0.553 28.60 0.556 28.53 0.555

Head 4 31.17 0.556 31.28 0.591 31.23 0.590

Lena 4 29.02 0.681 29.22 0.687 29.28 0.689

Woman 4 27.60 0.778 27.90 0.793 27.96 0.793

Avg gain w.r.t. A1 - - 0.13 0.012 0.21 0.013

TABLE III

AVERAGE RUNNING TIME OF THE ALGORITHM, FOR TWO SCALE FACTORS, WITH SINGLE OR DOUBLE PYRAMID. TIME IS EXPRESSED IN

SECONDS.

Scale LR size N. Passes Single Pyr. Double Pyr. ∆T

3 85× 85 5 75 83 +10.7%

4 64× 64 7 111 120 +8.1%

To evaluate the space complexity, i.e. memory storage requirement, we can instead compute an estimation of the

size of the internal dictionary. Here, the only discriminating factor between the single and the double pyramid is

the size of the LR patches. In fact, in the case of double pyramid, both patches have the same size, whereas the LR

patches are p2 smaller in the case of single pyramid (where p is the small scale factor used at each pass). Given

this, it is easy to compute the ratio between the two dictionary sizes:
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R =
2

1 + 1
s2

. (18)

In our tests p was set to 1.25, which corresponds to a 22% increase of the storage requirement.

C. Comparison with state-of-the-art algorithms

In this section we perform a comparative assessment of our method with other single-image SR algorithms in the

state-of-the art, by extending the comparison also to SR methods based on external dictionaries. For this purpose,

we consider Bicubic interpolation as a reference for traditional analytical interpolation methods, and four other

example-based SR algorithms. The characteristic of the latter, as well as those ones of our proposed method, are

summarized in Table IV.

TABLE IV

SUMMARY OF OUR METHOD AND THE FOUR EXAMPLE-BASED SR ALGORITHMS CONSIDERED FOR THE COMPARISON.

Method Reference Dictionary Rec. Method

LLE-based NE Chang et al. [9] External NE with LLE weights (3)

Nonnegative NE Bevilacqua et al. [33] External NE with NN weights (4)

Sparse SR Yang et al. [14] External Sparse coding

Pyramid Glasner et al. [23] Internal, single pyramid NE with NLM weights (2)

Proposed This paper Internal, double pyramid DM via Multi-linear Regress.

For the first three methods in the table, the original code of the respective authors, possibly slightly modified to

make the comparison fair, has been used. For the “pyramid” method of [23], instead, the third-party code of the

authors of [24] has been adopted. Table V reports the performance results of the algorithms considered (PSNR and

SSIM values), with the usual set of seven test images, and 3 and 4 as scale factors.

Table V shows clearly that our method outperforms the other algorithms in terms of objective quality of the

super-resolved images, for all the images and the two scale factors considered. The results are confirmed when

observing the visual comparisons (Fig. 8, Fig. 9, and Fig. 10).

From the visual results presented, we can see that methods based on external dictionaries (“LLE-based NE”,

“NN NE”, and “Sparse SR”) often present blurring and ringing artifacts (see e.g. the Bike images in Fig. 9). Results

for the two algorithms based on an internal dictionary (the “pyramid” algorithm of [23] and ours), instead, are

certainly more pleasant at sight, presenting sharp edges and smooth artifact-free results in the regions with no

texture. However, the algorithm of [23] in some cases shows results that look somehow “artificial”, with over-

smoothed areas or unnatural edges (see Lena’s eye in Fig. 10e, whose shape is deformed). Our algorithm succeeds

also in avoiding these undesired effects.
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TABLE V

PERFORMANCE COMPARISON (PSNR AND SSIM VALUES) WITH OTHER STATE-OF-THE-ART METHODS, WHEN SUPER-RESOLVING SEVERAL

IMAGES FOR SCALE FACTORS OF 3 AND 4.

Bicubic LLE-based NE NN NE Sparse SR Pyramid Proposed

Image Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bike 3 20.84 0.640 22.38 0.754 23.02 0.784 22.71 0.771 22.81 0.772 23.30 0.799

Bird 3 29.88 0.820 32.11 0.834 33.37 0.864 32.90 0.858 32.18 0.862 34.13 0.890

Butterfly 3 21.75 0.712 24.27 0.774 26.36 0.823 24.92 0.787 26.63 0.825 27.56 0.841

Hat 3 27.27 0.536 29.24 0.619 29.65 0.632 29.21 0.602 29.66 0.626 30.11 0.655

Head 3 31.02 0.583 32.05 0.626 32.28 0.638 32.23 0.653 31.69 0.629 32.43 0.668

Lena 3 28.03 0.670 29.78 0.729 30.52 0.754 30.06 0.738 30.28 0.748 30.89 0.775

Woman 3 26.17 0.778 28.27 0.806 29.35 0.840 29.02 0.815 29.89 0.857 30.52 0.867

Average 26.42 0.677 28.30 0.734 29.22 0.762 28.72 0.746 29.02 0.760 29.85 0.785

Bike 4 19.83 0.536 20.75 0.634 21.26 0.667 20.93 0.651 21.46 0.681 21.63 0.689

Bird 4 28.09 0.738 29.25 0.741 30.41 0.786 30.00 0.787 30.10 0.803 31.01 0.826

Butterfly 4 20.30 0.637 21.83 0.682 23.41 0.738 22.18 0.701 24.44 0.761 25.05 0.775

Hat 4 26.30 0.462 27.48 0.505 27.85 0.530 27.31 0.506 28.41 0.544 28.53 0.555

Head 4 30.07 0.516 30.71 0.537 30.92 0.556 30.85 0.573 30.86 0.575 31.23 0.590

Lena 4 26.85 0.593 27.84 0.628 28.52 0.670 27.98 0.649 28.70 0.668 29.28 0.689

Woman 4 24.61 0.697 25.84 0.696 26.76 0.752 26.18 0.732 27.20 0.777 27.96 0.793

Average 25.15 0.597 26.24 0.632 27.02 0.671 26.49 0.657 27.31 0.687 27.81 0.702

V. CONCLUSION

In this paper we presented a novel single-image single-image (SR) method, which belongs to the family of

example-based SR algorithms, using a dictionary of patches in the upscaling procedure. The algorithm originally

makes use of a “double pyramid” of images, built starting from the input image itself, to extract the dictionary

patches (thus called “self-examples”), and employs a regression-based method to directly map the low-resolution

(LR) input patches into their related high-resolution (HR) output patches. When compared to other state-of-the-art

algorithms, our proposed algorithm shows the best performance, both in terms of objective metrics and subjective

visual results. As for the former, it presents considerable gains in PSNR and SSIM values. When observing the super-

resolved images, also, it turns out to be the most capable in producing fine artifact-free HR details. The algorithm

does not rely on extra information, since making use of an internal dictionary automatically “self-adapted” to the

input image content, and also the few parameters have proven to be easy to tune. This makes it a particularly

attractive method for SR upscaling purposes.
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(a) Neighbor Embedding
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(b) Direct Mapping

Fig. 4. Operating schemes of the local learning based reconstruction procedure, for the two approaches described (NE and DM). From the

image it is clear how NE exploits the intra-space relationships, by learning a model among the LR patches and applying it on the HR patches.

DM, instead, exploits the “horizontal” relationships, by attempting to learn the mapping between the two spaces.
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Fig. 5. Creation of the “double pyramid” and search of self-examples throughout it. The figure concerns the upscaling of I0 to I1. Given a

reference patch in the interpolated version of the starting image U(I0), xl
i, 3 LR neighbors are found in the “side pyramid” of interpolated

levels (yl
1,y

l
2,y

l
3). Thanks to these and the corresponding HR neighbors (yh

1 ,y
h
2 ,y

h
3 ), a linear function M is meant to be learned to directly

map xl
i into its corresponding HR output patch xh

i .
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Fig. 6. Estimation of the HR image by gradual upscalings. The original image IL, by 4 upscalings by a factor of p, is super-resolved into I4,

that exceeds in dimension the desired scale factor s. ÎH is obtained by a finally resizing operation.
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Algorithm 2 Algorithm 2

Proposed Proposed

Fig. 7. Super-resolved images with zoomed-in areas for the three different internal-dictionary procedures. The image and the scale factors

considered are: Bird x4 (left) and Woman x4 (right).
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(d) (e) (f)

Fig. 8. Comparative results with zoomed-in areas for Butterfly magnified by a factor of 3. The methods considered are: (a) Bicubic interpolation,

(b) LLE-based NE, (c) NN NE, (d) Sparse SR, (e) Pyramid, (f) Proposed.
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Fig. 9. Comparative results with zoomed-in areas for Bike magnified by a factor of 3. The methods considered are: (a) Bicubic interpolation,

(b) LLE-based NE, (c) NN NE, (d) Sparse SR, (e) Pyramid, (f) Proposed.
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Fig. 10. Comparative results with zoomed-in areas for Lena magnified by a factor of 3. The methods considered are: (a) Bicubic interpolation,

(b) LLE-based NE, (c) NN NE, (d) Sparse SR, (e) Pyramid, (f) Proposed.
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