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On damped second-order gradient systems

Pascal Bégout∗, Jérôme Bolte† and Mohamed Ali Jendoubi‡

Abstract

Using small deformations of the total energy, as introduced in [31], we establish that damped second order
gradient systems

u
′′(t) + γu

′(t) +∇G(u(t)) = 0,

may be viewed as quasi-gradient systems. In order to study the asymptotic behavior of these systems, we prove that
any (nontrivial) desingularizing function appearing in KL inequality satisfies ϕ(s) > c

√
s whenever the original

function is definable and C2. Variants to this result are given. These facts are used in turn to prove that a
desingularizing function of the potential G also desingularizes the total energy and its deformed versions. Our
approach brings forward several results interesting for their own sake: we provide an asymptotic alternative for
quasi-gradient systems, either a trajectory converges, or its norm tends to infinity. The convergence rates are also
analyzed by an original method based on a one-dimensional worst-case gradient system.

We conclude by establishing the convergence of solutions of damped second order systems in various cases
including the definable case. The real-analytic case is recovered and some results concerning convex functions are
also derived.
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1 Introduction

1.1 A global view on previous results

In this paper, we develop some new tools for the asymptotic behavior as t goes to infinity of solutions u : R+ −→ R
N

of the following second order system

u′′(t) + γu′(t) + ∇G(u(t)) = 0, t ∈ R+. (1.1)

Here, γ > 0 is a positive real number which can be seen as a damping coefficient, N > 1 is an integer and G ∈ C2(RN )
is a real-valued function. In Mechanics, (1.1) models, among other problems, the motion of an object subject to a
force deriving of a potential G (e.g. gravity) and to a viscous friction force −γu′. In particular, the above may be
seen as a qualitative model for the motion of a material point subject to gravity, constrained to evolve on the graph
of G and subject to a damping force, further insights and results on this view may be found in [3, 14]. This type
of dynamical system has been the subject of several works in various fields and along different perspectives, one can
quote for instance [4] for Nonsmooth Mechanics, [12, 11] for recent advances in Optimization and [46] for pioneer
works on the topic, partial differential equations and related aspects [34, 41, 5].

The aim of this work is to provide a deeper understanding of the asymptotic behavior of such a system and of the
mechanisms behind the stabilization of trajectories at infinity (making each bounded orbit approach some specific
critical point). Such behaviors have been widely investigated for gradient systems,

u′(t) + ∇G(u(t)) = 0,

for a long time now. The first decisive steps were made by  Lojasiewicz for analytic functions through the introduction
of the so-called gradient inequality [44, 43]. Many other works followed among which two important contributions: [13]
for convex functions and [42] for definable functions. Surprisingly the asymptotic behavior of the companion dynamics
(1.1) has only been “recently” analyzed. The motivation for studying (1.1) seems to come from three distinct fields
PDEs, Mechanics and Optimization. Out of the convex realm [45, 1], the seminal paper is probably [31]. Like
many of the works on gradient systems the main assumption, borrowed from  Lojasiewicz original contributions, is
the analyticity of the function – or more precisely the fact that the function satisfies the  Lojasiewicz inequality. This
work paved the way for many developments: convergence rates studies [33], extension to partial differential equations
[47, 39, 38, 32, 37, 34, 19, 27, 26, 35, 5], use of various kind of dampings [17, 18] (see also [16, 36, 29, 40]). Despite the
huge amount of subsequent works, some deep questions remained somehow unanswered; in particular it is not clear
to see:

– What are the exact connections between gradient systems and damped second-order gradient systems?

– Within these relationships, how central is the role of the properties/geometry of the potential function G?

Before trying to provide some answers, we recall some fundamental notions related to these questions; they will also
constitute the main ingredients to our analysis of (1.1).
Quasi-gradient fields. The notion is natural and simple: a vector field V is called quasi-gradient for a function L
if it has the same singular point (as ∇L) and if the angle α between the field V and the gradient ∇L remains acute
and bounded away from π/2. Proper definitions are recalled in Section 3.1. Of course, such systems have a behavior
which is very similar to those of gradient systems (see Theorem 3.2). We refer to [6] and references therein for further
geometrical insights on the topic.
Liapunov functions for damped second order gradient systems. The most striking common point between
(1.1) and gradient systems is that of a “natural” Liapunov function. In our case, it is given by the total energy, sum
of the potential energy and the kinetic energy,

ET (u, v) = G(u) +
1

2
‖v‖2.
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The above is a Liapunov function in the phase space, more concretely

d

dt
ET (u(t), u′(t)) =

d

dt

(1

2
|u′(t)|2 +G(u(t))

)

= −γ‖u′(t)‖2.

Contrary to what happens for classical gradient systems the vector field associated to (1.1) is not strictly Lyapunov
for ET : it obviously degenerates on the subspace [v = 0] (or [u′ = 0]). The use of ET is however at the heart of most
results attached to this dynamical system.
KL functions. A KL function is a function whose values can be reparametrized in the neighborhood of each of its
critical point so that the resulting functions become sharp(1). More formally, G is called KL on the slice of level lines

[0 < G < r0]
def
=

{
u ∈ R

N ; 0 < G(u) < r0
}
, if there exists ϕ ∈ C0

(
[0, r0)

)
∩ C1(0, r0) such that ϕ(0) = 0, ϕ′ > 0 and

‖∇(ϕ ◦G)(u)‖ > 1, ∀u ∈ [0 < G < r0].

Proper definitions and local versions can be found in the next section. The above definition originates in [10] and is
based on the fundamental work of Kurdyka [42], where it was introduced in the framework of o-minimal structure(2)

as a generalization of the famous  Lojasiewicz inequality.
KL functions are central in the analysis of gradient systems, the readers are referred to [10] and references therein.
Desingularizing functions. The function appearing above, namely ϕ, is called a desingularizing function: the faster
ϕ′ tends to infinity at 0, the flatter is G around critical points. As opposed to the  Lojasiewicz gradient inequality,
this behavior, in the o-minimal world, is not necessarily of a “power-type”. Highly degenerate functions can be met,
like for instance G(u) = exp

(
− 1/p2(u)

)
where p : RN −→ R is any real polynomial function. This class of functions

belongs to the log-exp structure, an o-minimal class that contains semi-algebraic sets and the graph of the exponential
function [48]. Finally, observe that if it is obvious that ϕ might have an arbitrarily brutal behavior at 0, it is also
pretty clear that the smoothness of G is related to a lower-control of the behavior of ϕ, for instance we must have
ϕ′(0) = ∞ – which is not the case in general in the nonsmooth world (see e.g. [9]).

1.2 Main results

Several auxiliary theorems were necessary to establish our main result, we believe they are interesting for their own
sake. Here they are:

– An asymptotic alternative for quasi-gradient systems: either a trajectory converges or it escapes to infinity,
– A general convergence rate result for the solutions of the gradient systems that brings forward a worst-case

gradient dynamical system in dimension one,
– Lower bounds for desingularizing functions of C2 KL functions.

We are now in position to describe the strategy we followed in that paper for the asymptotic study of the damped
second order gradient system (1.1). Our method was naturally inspired by the Liapunov function provided in [31].

1. First we show that ET can be slightly and “semi-algebraically” (respectively, definably) deformed into a smooth
function Edef

T , so that the gradient of the new energy ∇Edef
T makes an uniformly acute angle with the vector

field associated to (1.1) – this property only holds on bounded sets of the phase space. The system (1.1) appears
therefore as a quasi-gradient system for Edef

T .

2. In a second step we establish/verify that the solutions of the quasi-gradient systems converge whenever they
originate from a KL function.

We also provide rates of convergence and we explain how they may be naturally and systematically derived from
a one-dimensional worst-case gradient dynamics.

At this stage it is possible to proceed abstractly to the proof of the convergence of solutions to (1.1) in several
cases. For instance the definable case: we simply have to use the fact that Edef

T is definable whenever G is, so
it is a KL function and the conclusion follows.

1That is, the norms of its gradient remain bounded away from zero.
2A far reaching concept that generalizes semi-algebraic or (globally) subanalytic classes of sets and functions.
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Although direct and fast, this approach has an important drawback from a conceptual viewpoint since it relies
on a desingularizing function attached to an auxiliary function Edef

T whose meaning is unclear. Whatever
perspectives we may adopt (Mechanics, Optimization, PDEs), an important question is indeed to understand
what happens when G is KL and how the desingularizing function of G actually impacts the convergence of
solutions to (1.1).

3. We answer to this question in the following way.

(a) We prove that desingularizing functions of C2 definable functions have a lower bound. Roughly speaking,

we prove that for nontrivial critical points the desingularizing function has the property ϕ(s) > c
√
s
(

or

equivalently(3) ϕ′(s) > c′√
s

)
.

(b) We establish that if ϕ is definable and desingularizing for G at u then it is desingularizing for both ET and
Edef

T at (u, 0).

4. We conclude by combining previous results to obtain in particular the convergence of solutions to (1.1) under
definability assumptions. We also provide convergence rates that depend on the desingularizing function of G,
i.e. on the geometry of the potential.

We would like to point out and emphasize two facts that we think are of interest. First the property ϕ(s) > c
√
s

(see Lemma 2.9 below) is a new result and despite its “intuitive” aspect the proof is nontrivial. We believe it has an
interest in its own sake.

More related to our work is the fact that (in the definable case and in many other relevant cases) our results show
that the desingularizing function of G is conditioning the asymptotic behavior of solutions of the system. Within an
Optimization perspective this means that the “complexity”, or at least the convergence rate, of the dynamical system
is entirely embodied in G when G is smooth. From a mechanical viewpoint, stabilization at infinity is determined by
the conditioning of G provided the latter is smooth enough; in other words the intuition that for large time behaviors,
the potential has a predominant effect on the system is correct – a fact which is of course related to the dissipation
of the kinetic energy at a “constant rate”.

Notation. The finite-dimensional space R
N (N > 1) is endowed with the canonical scalar product 〈 . , . 〉 whose norm

is denoted by ‖ . ‖. The product space R
N ×R

N is endowed with the natural product metric which we still denote by
〈 . , . 〉. We also define for any u ∈ R

N and r > 0, B(u, r) = {u ∈ R
N ; ‖u − u‖ < r}. When S is a subset of RN its

interior is denoted by intS and its closure by S. If F : RN −→ R is a differentiable function, its gradient is denoted
by ∇F. When F is a twice differentiable function, its Hessian is denoted by ∇2F. The set of critical points of F is
defined by

critF =
{
u ∈ R

N ;∇F (u) = 0
}
.

This paper is organized as follows. In Section 2, we provide a lower bound for desingularizing function of C2 functions
under various assumptions, like definability (Proposition 2.8 and Lemma 2.9). In Section 3, we recall the behavior of
a first order system having a quasi-gradient structure for some KL function and we provide an asymptotic alternative
(Theorem 3.2). In Theorem 3.7, the convergence rate of any solution to a first order system having a quasi-gradient
structure is proved to be better than that of a one-dimensional worst-case gradient dynamics (various known results
are recovered in a transparent way). Finally, we establish that any function which desingularizes G in (1.1) also
desingularizes the total energy and various relevant deformation of the latter (Proposition 3.11). In Section 4, we study
the asymptotic behaviour of solutions to (1.1) (Theorem 4.1) while in Section 5, we describe several consequences
of our main results. The Appendix provides, for the comfort of the reader, some elementary facts on o-minimal
structures.

3Recall that ϕ is definable.
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2 Structural results: lower bounds for desingularizing functions of C2

functions

To keep the reading smooth and easy, we will not formally define here o-minimal structure. The definition is postponed
in the Appendix. Let us however recall, at this stage, that the simplest o-minimal structure (containing the graph
of the real product) is given by the class of real semi-algebraic sets and functions. A semi-algebraic set is the finite
union of sets of the form

{
u ∈ R

N ; p(u) = 0, pi(u) < 0, ∀i ∈ I
}
, (2.1)

where I is a finite set and p, {pi}i∈I are real polynomial functions.

Let us recall a fundamental concept for dissipative dynamical systems of gradient type.

Definition 2.1 (Kurdyka- Lojasiewicz property and desingularizing function).
Let G : RN −→ R be a differentiable function.

(i) We shall say that G has the KL property at u ∈ R
N if there exist r0 > 0, η > 0 and ϕ ∈ C([0, r0);R+) such that

1. ϕ(0) = 0, ϕ ∈ C1((0, r0);R+) and ϕ′ positive on (0, r0),

2. u ∈ B(u, η) =⇒ |G(u) −G(u)| < r0; and for each u ∈ B
(
u, η

)
, such that G(u) 6= G(u),

∥∥∇(ϕ ◦ |G( . ) −G(u)|)(u)
∥∥ > 1. (2.2)

Such a function ϕ is called a desingularizing function of G at u on B(u, η).

(ii) The function G is called a KL function if it has the KL property at each of its points.

The following result is due to  Lojasiewicz in its real-analytic version (see e.g. [43, 44]), it was generalized to o-minimal
structures and considerably simplified by Kurdyka in [42] (see the Appendix).

Theorem 2.2 (Kurdyka- Lojasiewicz inequality [42](4)). Let O be an o-minimal structure and let G ∈ C1(RN ;R)
be a definable function. Then G is a KL function.

Remark 2.3. (a) Theorem 2.2 is of course trivial when u 6∈ critG – take indeed, ϕ(s) = cs where c = 1+ε
‖∇G(u)‖

and ε > 0.
(b) Restrictions of real-analytic functions to compact sets included in their (open) domain belong to the o-minimal
structure of globally analytic sets [25]. They are therefore KL functions (see indeed Example A.2). In some o-
minimal structures there are nontrivial functions for which all derivatives vanish on some nonempty set, like G(u) =
exp(−1/f2(u)) where f 6= 0 is any smooth semi-algebraic function achieving the value 0(5) (see also Example A.2).
For these cases, ϕ is not of power-type – as it is the case when G is semi-algebraic or real-analytic. Other types of
functions satisfying the KL property in various contexts are provided in [2] (see also Corollary 5.5).
(c) Desingularizing functions of definable functions can be chosen to be definable, concave and Ck (where k is
arbitrary).

The following trivial notion is quite convenient.

Definition 2.4 (Trivial critical points). A critical point u of a differentiable function G : R
N −→ R is called

trivial if u ∈ int critG. It is nontrivial otherwise. Observe that u is nontrivial if, and only if, there exists un
n→∞−−−−→ u

such that G(un) 6= G(u), for any n ∈ N.

When u is a trivial critical point of G, any function ϕ ∈ C0
(
[0, r0)

)
∩ C1(0, r0) such that ϕ′ > 0 and ϕ(0) = 0 is

desingularizing at u.

An immediate consequence of the KL inequality is a local and strong version of Sard’s theorem.

4See comments in the Appendix.
5This function is definable in the log-exp structure of Wilkie [48].
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Remark 2.5 (Local finiteness of critical values). Let G ∈ C1(RN ;R) and u ∈ R
N . Assume that G satisfies the

KL property at u on B(u, η). Then

u ∈ B(u, η) and ∇G(u) = 0 =⇒ G(u) = G(u).

The simplest functions we can think of with respect to the behavior of the solutions to (1.1) are given by functions
with linear gradients, that is quadratic forms

G(u) =
1

2
〈Au, u〉, u ∈ R

N , where A ∈ MN (R), AT = A.

When A 6= 0, it is easy to establish directly that ϕ(s) =
√

1
|λ|s (where λ is a nonzero eigenvalue with smallest absolute

value) provides a desingularizing function. In the subsections to come, we show that the best we can hope in general
for a desingularizing function ϕ attached to a C2 function G is precisely a quantitative behavior of square-root type.

2.1 Lower bounds for desingularizing functions of potentials having a simple critical

point structure

Our first assumption, formally stated below, asserts that points having critical value must be critical points. The
assumption is rather strong in general but it will be complemented in the next section by a far more general result
for definable functions.





Let u ∈ critG.

There exists η > 0 such that for any u ∈ B(u, η),(
G(u) = G(u) =⇒ u ∈ critG

)
.

(2.3)

Example 2.6. (a) When N = 1 and G ∈ C1 is KL then assumption (2.3) holds.
[If the result does not hold then there exists a sequence (xn)n∈N such that xn

n−→∞−−−−→ u and

G(xn) = G(u), (2.4)

G
′(xn) 6= 0, (2.5)

for any n ∈ N. Without loss of generality, we may assume that (xn)n∈N is monotone, say decreasing. From (2.4)–(2.5) and

Rolle’s Theorem, there exists a sequence (un)n∈N such that xn+1 < un < xn, G
′(un) = 0, G(un) 6= G(u), for any n ∈ N. Thus

G(un) are critical values distinct from G(u) such that G(un) −→ G(u); this contradicts the local finiteness of critical values –

see Remark 2.5.]
(b) Of course, the result in (a) cannot be extended to higher dimensions. Consider for instance

G : R2 −→ R, G(u1, u2) = u21 − u22,

which is obviously KL. One has ∇G(u) = 0 if, and only if, u = 0, yet G(t,−t) = 0 for any t in R.
(c) If G is convex, (2.3) holds globally, i.e., with η = ∞. [This follows directly from the well-known fact that G(u) = minG

if, and only if, ∇G(u) = 0.]

Lemma 2.7 (Comparing values growth with gradients growth).
Let G ∈ C1,1

loc (RN ;R) and u ∈ critG. Assume there exists ε > 0 such that

u ∈ B(u, 2ε) and G(u) = G(u) =⇒ u ∈ critG,

in other words (2.3) holds (with η = 2ε). Then there exists c > 0 such that

|G(u) −G(u)| > c‖∇G(u)‖2, (2.6)

for any u ∈ B(u, ε).
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Proof. Working if necessary with G̃(u) = G(u) − G(u), we may assume, without loss of generality, that G(u) = 0.
Let us proceed in two steps.
Step 1. Let H ∈ C1,1

(
B(u, 2ε);R

)
with u ∈ critH and assume further that H > 0. We claim that there exists c > 0

such that

∀u ∈ B(u, ε), H(u) > c‖∇H(u)‖2, (2.7)

Denote by L2 the Lipschitz constant of ∇H on B(u, 2ε), let L1 = max
u∈B(u,2ε)

‖∇H(u)‖ and set L = L1 + L2. Since,

(
L1 = 0 or L2 = 0

)
=⇒ ∇H|B(u,ε) ≡ 0 =⇒ (2.7),

we may assume that L2 > 0 and L1 > 0. Let u ∈ B(u, ε). We have for any v ∈ B(0, 2ε),

H(v) −H(u) =

∫ 1

0

〈∇H
(
(1 − t)u+ tv

)
, v − u〉dt

=

∫ 1

0

〈∇H
(
(1 − t)u + tv

)
−∇H(u), v − u〉dt+ 〈∇H(u), v − u〉,

so that for any v ∈ B(0, 2ε),

∣∣∣H(v) −H(u) − 〈∇H(u), v − u〉
∣∣∣ 6 L2

2
‖v − u‖2. (2.8)

Note that
∥∥(u− ε

L∇H(u)
)
− u

∥∥ 6 ‖u−u‖+ ε
L‖∇H(u)‖ < ε+εL1

L < 2ε.By convexity, we infer that
[
u, u− ε

L∇H(u)
]
⊂

B(u, 2ε). It follows that v = u− ε
L∇H(u) is an admissible choice in (2.8). Without loss of generality, we may assume

that ε 6 1. This leads to

0 6 H(v) 6 H(u) − ε

2L
‖∇H(u)‖2.

Whence the claim.
Step 2. Define for any u ∈ B(u, 2ε), H(u) = |G(u)|. Since

(
G(u) = 0 =⇒ ∇G(u) = 0

)
, we easily deduce that

H ∈ C1
b

(
B(u, 2ε);R

)
and for any u ∈ B(u, 2ε), ∇H(u) = sign

(
G(u)

)
∇G(u). Denote by L2 the Lipschitz constant of

∇G on B(u, 2ε). We claim that,

‖∇H(u) −∇H(v)‖ 6 L2‖u− v‖, (2.9)

for any (u, v) ∈ B(u, 2ε) × B(u, 2ε). Let (u, v) ∈ B(u, 2ε) × B(u, 2ε). Estimate (2.9) being clear if G(u)G(v) > 0, we
may assume that G(u)G(v) < 0. By the Mean Value Theorem and the assumptions on G, it follows that there exists
t ∈ (0, 1) such that for w = (1 − t)u + tv, G(w) = 0 and ∇G(w) = 0. We then infer,

‖∇H(u) −∇H(v)‖ = ‖∇G(u) + ∇G(v)‖ 6 ‖∇G(u)‖ + ‖∇G(v)‖
= ‖∇G(u) −∇G(w)‖ + ‖∇G(w) −∇G(v)‖
6 L2‖u− w‖ + L2‖w − v‖ = L2‖u− v‖.

Hence (2.9). It follows that H ∈ C1,1
(
B(u, 2ε);R

)
and H satisfies the assumptions of Step 1. Applying (2.7) to H,

we get (2.6). This concludes the proof.

Proposition 2.8 (Lower bound for desingularizing functions). Let G ∈ C1,1
loc (RN ;R) and let u be a nontrivial

critical point, i.e. u ∈ critG\ int critG. Assume that G satisfies the KL property at u and that assumption (2.3) holds
at u.
Then there exists β > 0 such that for any desingularizing function ϕ of G at u,

ϕ′(s) >
β√
s
, (2.10)

for any small positive s.
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Proof. We may assume G(u) = 0. Combining (2.2) and (2.6), we deduce that ϕ′(|G(u)|) > 1
‖∇G(u)‖ >

β√
|G(u)|

, for

any u ∈ B(u, ε) such that G(u) 6= G(u) (Remark 2.5). Changing G into −G if necessary, there is no loss of generality
to assume that there exists un such that un −→ u with G(un) > 0 (recall u is a nontrivial critical point). Since G is
continuous, this implies by a connectedness argument that for some ρ there exists r > 0 such that

∣∣G
(
B(u, ρ)

)∣∣ ⊃ (0, r).

Using the parametrization s ∈ (0, r) we conclude that ϕ′(s) > β√
s
, for any s sufficiently small.

2.2 Lower bounds for desingularizing functions of definable C
2 functions

This part makes a strong use of definability arguments (these are recalled in the last section).

Lemma 2.9 (Lower bounds for desingularizing functions of C
2 definable functions). Let G : Ω −→ R be

a C2 definable function on an open subset Ω ∋ 0 of R
N . We assume that 0 is a nontrivial critical point(6) and that

G(0) = 0.
Since G is definable it has the KL property(7) that is, there exist η, r0 > 0 and ϕ : [0, r0) −→ R as in Definition 2.1
such that

‖∇
(
ϕ ◦ |G|

)
(u)‖ > 1, (2.11)

for any u in B(0, η) such that G(u) 6= 0.
Then there exists c > 0 such that

ϕ′(s) >
c√
s
, (2.12)

so that ϕ(s) > 2c
√
s, for any small s > 0.

Proof. Let us outline the ideas of the proof: after a simple reduction step, we show that the squared norm of a/the
smallest gradient on a level line increases at most linearly with the function values. In the second step, we show that
this estimate is naturally linked to the increasing rate of ϕ itself and to property (2.12). Let ϕ : [0, r0) −→ R be any
desingularizing function of G at 0 on B(0, η), as in Definition 2.1.

Changing G in −G if necessary, we may assume by Definition 2.4, without loss of generality, that there exists a
sequence (un)n such that un

n→∞−−−−→ 0 and G(un) > 0, for any n ∈ N. Let us proceed with the proof in three steps.

Step 1. We first modify the function G as follows. Let ρ ∈ C2(RN ; [0, 1]) be a semi-algebraic function such that
{

supp ρ ⊂ B(0, η) ⊂ Ω,

ρ(x) = 1, if x ∈ B
(
0, η2

)
.

Let us define Ĝ on R
N by

Ĝ(u) =




ρ(u)G(u) + dist

(
u,B

(
0, η2

))3
, if u ∈ Ω,

0, if u ∈ R
N \ Ω.

It follows that Ĝ ∈ C2(RN ;R), leaves the set of desingularizing functions at 0 unchanged, has compact lower level
sets and is definable in the same structure (recall Definition A.1 (iii)). Finally, we obviously have,

un
n→∞−−−−→ 0 with Ĝ(un) > 0, ∀n ∈ N. (2.13)

Without loss of generality, we may assume that η 6 1 and r0 6
η3

8 . Let u ∈ R
N \B(0, η). One has,

Ĝ(u) = dist
(
u,B

(
0,
η

2

))3

=
(
‖u‖ − η

2

)3

>
η3

8
> r0.

6Equivalently, we assume that there exists un

n→∞
−−−−→ 0 such that G(un) 6= 0.

7See Theorem 2.2.
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It follows that,

inf
u∈B(0,η)∩[Ĝ=r]

‖∇Ĝ(u)‖ = min
u∈[Ĝ=r]

‖∇Ĝ(u)‖, ∀r ∈ (0, r0). (2.14)

Step 2. For r > 0, we introduce

(Pr) ψ(r) = min

{
1

2
‖∇Ĝ(u)‖2; u ∈ R

N , Ĝ(u) = r

}
.

Since the set of critical values of a definable function is finite and since the level sets are compact, we may choose, if
necessary, r0 so that ψ > 0 on (0, r0) (the fact that 0 is a nontrivial critical point excludes the case when ψ vanishes
around 0). If we denote by S(r) the nonempty compact set of solutions to (Pr), one easily sees that

S : (0, r0) ⇉ R
N ,

is a definable point-to-set mapping – this follows by a straightforward use of quantifier elimination (i.e., by the use of
Definition A.1). Using the Definable Selection Lemma (Lemma A.4), one obtains a definable curve u : (0, r0) −→ R

N

such that u(r) ∈ S(r), for any r ∈ (0, r0). Finally, using the Monotonicity Lemma (Lemma A.3) repeatedly on the
coordinates ui of u, one can shrink r0 so that u is actually in C1((0, r0);RN ).

Fix now r in (0, r0). Since r is noncritical the problem (Pr) is qualified and we can apply Lagrange’s Theorem for
constrained problems. This yields the existence of a real multiplier λ(r) such that

∇2Ĝ(u(r))∇Ĝ(u(r)) − λ(r)∇Ĝ(u(r)) = 0, (2.15)

with of course Ĝ(u(r)) = r.

Note that for any r ∈ (0, r0), ∇Ĝ(u(r)) 6= 0 (as seen at the beginning of this step) so that λ(r) is an actual eigenvalue

of ∇2Ĝ(u(r)). Since Ĝ is C2, the curve ∇2Ĝ(u(r)) is bounded in the space of matrices MN(R). Since eigenvalues
depend continuously on operators, one deduces from the previous remarks that there exists λ > 0 such that

|λ(r)| 6 λ, ∀r ∈ (0, r0).

Multiplying (2.15) by u′(r) gives 〈∇2Ĝ(u(r))∇Ĝ(u(r)), u′(r)〉 = λ(r)〈∇Ĝ(u(r)), u′(r)〉, which is nothing else than

1

2

d

dr
‖∇Ĝ(u(r))‖2 = λ(r)

d

dr
Ĝ(u(r)).

Since Ĝ(u(r)) = r, one has

1

2

d

dr
‖∇Ĝ(u(r))‖2 = λ(r),

so after integration on [s, r] ⊂ (0, r0), one obtains

∣∣∣‖∇Ĝ(u(r))‖2 − ‖∇Ĝ(u(s))‖2
∣∣∣ = 2

∣∣∣∣
∫ r

s

λ(τ)dτ

∣∣∣∣ 6 2λ|r − s| r,s→0−−−−→ 0. (2.16)

It follows that
(
‖∇Ĝ(u(r))‖2

)
s>0

is a Cauchy’s family, so that the limit ℓ of ‖∇Ĝ(u(s))‖2 as s goes to zero exists in

[0,∞). We recall that by assumption (2.13), un
n→∞−−−−→ 0, Ĝ(un) > 0 and ∇Ĝ(un)

n→∞−−−−→ 0. Now, setting rn = Ĝ(un),

one has by definition of u(rn), ‖∇Ĝ(un)‖ > ‖∇Ĝ(u(rn))‖. This implies that ℓ = 0 and as a consequence (2.16) yields

1

2
‖∇Ĝ(u(r))‖2 =

∫ r

0

λ(τ)dτ 6 λr, (2.17)

in other words

ψ(r) 6 λr, ∀r ∈ (0, r0). (2.18)

9



Step 3. Let us now conclude. By KL inequality one has for any r ∈ (0, r0),

ϕ′(r) >
1

‖∇Ĝ(u)‖
, ∀u ∈ B(0, η) ∩ [G = r]. (2.19)

As a consequence, we can use (2.14) in (2.19) and the linear estimate (2.18) above to conclude as follows:

ϕ′(r) >
1

inf
{
‖∇Ĝ(u)‖; u ∈ B(0, η) ∩ [Ĝ = r]

}

=
1

min
{
‖∇Ĝ(u)‖; u ∈ [Ĝ = r]

}

>
1√

2ψ(r)

>
c√
r
.

for any r ∈ (0, r0), with c =
(√

2λ
)−1

. Hence (2.12).

Remark 2.10. (a) Note that if G 6∈ C2 then (2.12) does not hold. Indeed, take G(u) = u
3
2 and ϕ(s) = s

2
3 as a

(semi-algebraic) counter-example.
(b) When we omit the assumption that 0 is a nontrivial critical point, i.e. 0 ∈ int critG, then G vanishes in a
neighborhood of 0. In that case, the result is not true in general since any concave increasing function adequately
regular is desingularizing for G. However a function ϕ(s) = c

√
s can still be chosen as a desingularizing function.

Hence, for an arbitrary C2 definable function, we can always assume that for any critical point, the corresponding
desingularizing function satisfies ϕ′(s) > c 1√

s
(locally for some positive constant c).

3 Damped second order gradient systems

3.1 Quasi-gradient structure and KL inequalities

Definition 3.1. Let Γ be a nonempty closed subset of RN and let F : RN −→ R
N be a locally Lipschitz continuous

mapping.

(i) We say that the first order system

u′(t) + F
(
u(t)

)
= 0, t ∈ R+, (3.1)

has a quasi-gradient structure for E on Γ, if there exist a differentiable function E : RN −→ R and αΓ = α > 0
such that

(angle condition)
〈
∇E(u), F (u)

〉
> α ‖∇E(u)‖ ‖F (u)‖, for any u ∈ Γ, (3.2)

(rest-points equivalence) critE ∩ Γ = F−1({0}) ∩ Γ. (3.3)

(ii) Equivalently a vector field F having the above properties is said to be quasi-gradient for E on Γ.

The following result involves classical material and ideas, yet, the fact that an asymptotic alternative can be derived
in this setting does not seem to be well-known (see however [2] in a discrete context).

Theorem 3.2 (Asymptotic alternative for quasi-gradient fields). Let F : RN −→ R
N be a locally Lipschitz

mapping that defines a quasi-gradient vector field for E on R
N , for some differentiable function E : RN −→ R. Assume

further that the function E is KL. Let u be any solution to (3.1). Then,

10



(i ) either ‖u(t)‖ t→∞−−−→ ∞,

(ii ) or u converges to a singular point u∞ of F as t −→ ∞.

When (ii ) holds then u′ ∈ L1
(
(0,∞);RN

)
and u′(t)

t→∞−−−→ 0. Moreover, we have the following estimate,

‖u(t) − u∞‖ 6
1

α
ϕ
(
E(u(t)) − E(u∞)

)
, (3.4)

where ϕ is a desingularizing function of E at u∞ and α is the constant in (3.2).

Proof. We assume that (i) does not hold, so there exist u∞ ∈ R
N and a sequence sn ր ∞ such that u(sn)

n−→∞−−−−→ u∞.

Note that by continuity of E, one has E
(
u(sn)

) n−→∞−−−−→ E(u∞). Observe also that from the equation (3.1) and the
angle condition (3.2), one has for any t > 0,

d

dt

(
E ◦ u

)
(t) =

〈
∇E

(
u(t)

)
, u′(t)

〉

= −
〈
∇E

(
u(t)

)
, F

(
u(t)

)〉

6 −α‖∇E(u(t))‖ ‖F (u(t))‖, (3.5)

and thus the mapping t 7−→ E(u(t)) is nonincreasing, which implies

lim
t→∞

E(u(t)) = E(u∞).

Note that if E(u(t)) = E(u∞) for some t, one would have d
dt

(
E ◦ u

)
(t) = 0 for any t > t, which would in turn imply,

by (3.5), that ‖∇E(u(t))‖ ‖F (u(t))‖ = 0 by (3.5) for any such t. In view of the rest point equivalence (3.3), this would
mean that F (u(t)) = 0, hence by uniqueness of solution curves, that u(t) = u∞ for any t > 0. We can thus assume
without loss of generality that

E(u(t)) > E(u∞), ∀t > 0. (3.6)

Let t0 > 0 be such that u(t0) ∈ B
(
u∞,

η
2

)
and ϕ

(
E
(
u(t0)

)
− E(u∞)

)
∈
(
0, ηα2

)
, where α > 0 is the constant in (3.2)

[in view of our preliminary comments and of the continuity of E such a t0 exists]. By continuity of u, there exists
τ > 0 such that for any t ∈ [t0, t0 + τ), u(t) ∈ B(u∞, η). So we may define T ∈ (t0,∞] as

T = sup
{
t > t0 ; ∀s ∈ [t0, t), u(s) ∈ B(u∞, η)

}
.

By (3.5), the Kurdyka- Lojasiewicz inequality (2.2) and the equation (3.1), we have for any t ∈ (t0, T ),

− d

dt

(
ϕ ◦

(
E
(
u( . )

)
− E

(
u∞

)))
(t)

= − ϕ′(E
(
u(t)

)
− E(u∞)

) d

dt

(
E ◦ u

)
(t)

> α ϕ′(E
(
u(t)

)
− E(u∞)

) ∥∥∇E
(
u(t)

)∥∥ ∥∥F
(
u(t)

)∥∥

= α
∥∥F

(
u(t)

)∥∥ ∥∥∇
(
ϕ ◦

(
E( . ) − E(u∞)

)(
u(t)

)∥∥
> α‖u′(t)‖. (3.7)

It follows from the above estimate that

‖u(t) − u(t0)‖ 6

t∫

t0

‖u′(s)‖ds 6
ϕ
(
E
(
u(t0)

)
− E(u∞)

)

α
<
η

2
, (3.8)

for any t ∈ (t0, T ). We claim that T = ∞. Indeed, otherwise T <∞ and (3.8) applies with t = T. Hence,

‖u(T ) − u∞‖ 6 ‖u(T ) − u(t0)‖ + ‖u(t0) − u∞‖ < η.
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Then u(T ) ∈ B(u∞, η), which contradicts the definition of T. As a consequence the curve u′ belongs to L1
(
(t0,∞);RN

)

by (3.8) and the curve u converges to u∞ by Cauchy’s criterion. Finally since 0 must be a cluster point of u′
(
recall

indeed
∫∞
0

‖u′(t)‖dt < ∞ and u′ is uniformly continuous by (3.1)
)
, one must have F (u∞) = 0. The announced

estimate follows readily from (3.8) and the fact that T = ∞.

Corollary 3.3. Let F : RN −→ R
N be locally Lipschitz continuous and assume that for any R > 0 the mapping F

defines a quasi-gradient vector field for some differentiable function ER : RN −→ R on B(0, R). Assume further that
each of the functions ER is KL.
Let u be any bounded solution to (3.1). Then u converges to a singular point u∞ of F, u′ is integrable and converges
to 0. In particular, if we take R > sup

{
‖u(t)‖; t ∈ [0,∞)

}
, we have the following estimate,

‖u(t) − u∞‖ 6
1

αR
ϕ
(
ER(u(t)) − ER(u∞)

)
, (3.9)

where ϕ is a desingularizing function of ER at u∞ and αR is the constant in (3.2), for the ball B(0, R).

Proof. Take R > sup
{
‖u(t)‖; t ∈ [0,∞)

}
and observe that the previous proof may be reproduced as it is: just

replace E by ER.

3.2 Convergence rate of quasi-gradient systems and worst-case dynamics

To simplify our presentation we consider first a proper gradient system:

u′(t) + ∇E(u(t)) = 0, (3.10)

where E : RN −→ R is a twice continuously differentiable KL function. We assume that u is bounded so, by virtue
of our previous considerations, the curve converges to some critical point u∞ of E. Observe that if u∞ is a trivial
critical point, one actually has u(0) = u∞ and the asymptotic study is trivial.

We thus assume u∞ to be nontrivial, and we denote by ϕ a desingularizing function of E at u∞. We set

ψ = ϕ−1,

whose domain is denoted by [0, a), (with a ∈ (0,∞]) and we consider the one-dimensional worst-case gradient dynamics
(see [8]):

ν′(t) + ψ′(ν(t)) = 0, ν(0) = ν0 ∈ (0, a). (3.11)

We shall assume that

ϕ′(s) >
c√
s
, on (0, r0), (3.12)

which implies that solutions ν to (3.11) are globally defined on [0,∞) and satisfy lim
tր∞

ν(t) = 0 with ν(t) > ν0e
−c0t,

for any t > 0 (and for some c0 > 0). If we assume that ϕ ∈ C1,1
loc

(
(0, r0);R

)
or if ϕ is concave then the solution of (3.11)

is unique. Finally, note that if E is a C2 definable function then ϕ can be chosen to be C2, concave and satisfying
(3.12) (Remark 2.3 (c) and Lemma 2.9).

Radial functions and worst-case dynamics. A full justification of the terminology “worst-case dynamics” is to
be given further, but at this stage one can observe that E could be taken of the form

Erad(u) = ϕ−1(‖u− u∞‖), with u ∈ B(u∞, η) (η > 0),

provided that ϕ−1 is smooth enough. In that case ϕ is clearly desingularizing and the solutions of the gradient system
(3.10) are radial in the sense that they are of the form(8)

u(t) = u∞ + ν(t)
u0 − u∞

‖u0 − u∞‖ , (3.13)

8Just use the formula in (3.10).
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where ν is a solution to (3.11). In this case, the dynamics (3.11) exactly measures the convergence rates for (3.10),
since one has for any t > 0 and any u0 such that ν(0) = ‖u0 − u∞‖,

Erad(u(t)) = ψ(ν(t)), (3.14)

‖u(t) − u∞‖ = ν(t). (3.15)

We are about to see that this behavior in terms of convergence rate is actually the worst we can expect.

Remark 3.4. (a) As can be seen below, the worst-case gradient system is introduced to measure the rate of conver-
gence of solutions for large t. Since nontrivial solutions to (3.11) have the same asymptotic behavior (they are, indeed,
all of the form ν1(t) = ν(t+ t0) where t0 is some real number), the choice of the initial condition ν(0) in (0, a) can be
made arbitrarily.
(b) The above rewrites ν′(t)ϕ′(ϕ−1(ν(t))

)
= −1. Thus if µ denotes an antiderivative of ϕ′ ◦ ϕ−1, one has ν(t) =

µ−1(−t+ a0) (where a0 is a constant), for any t > 0 large enough.
(c) In general, the explicit integration of such a system depends on the integrability properties of ψ and on the fact
that ϕ′ ◦ ϕ−1 admits an antiderivative in a closed form.
For instance if ϕ(s) = ( sc )θ, with c > 0 and θ ∈

(
0, 12

)
, then ψ(s) = cs

1
θ and

ν′(t) +
c

θ
ν(t)

1−θ

θ = 0, ν(0) ∈ (0, a).

Thus by integration

d

dt
ν1−

1−θ

θ (t) =
d

dt
ν

−1+2θ

θ (t) = c1,

with c1 > 0. As a consequence,

ν(t) =
(
c2 + c1t

)− θ

1−2θ ,

with c2 > 0. When θ = 1
2 one easily sees that ν(t) = ν(0) exp (−2ct) .

Theorem 3.5 (Worst-case rate and worst-case one-dimensional gradient dynamics).

Let E ∈ C2(RN ;R) be a KL function, let u be a bounded solution to (3.10) and let u∞ ∈ critE satisfying u(t)
t→∞−−−→ u∞

(such a u∞ exists by Theorem 3.2). Then for any t large enough,

E(u(t)) − E(u∞) 6 ψ(ν(t)), (3.16)

and

‖u(t) − u∞‖ 6 ν(t), (3.17)

where ν is a solution to (3.11).

Proof. Without loss of generality, we may assume that E(u∞) = 0. From the previous results, we know that for any
t > t0, we have u(t) ∈ B(u∞, η) and E(u(t)) ∈ (0, r0), so that the KL inequality gives (see Theorem 3.2 and (3.7)):

d

dt

(
ϕ ◦ E(u)

)
(t) > ‖u′(t)‖.

Set z(t) = E(u(t)). Since d
dt(E ◦ u)(t) = −‖u′(t)‖2, one has − d

dt (ϕ ◦ z)(t) >
√
−z′(t), or equivalently

ϕ′(z(t)
)2
z′(t) 6 −1.

Consider now the worst-case gradient system with initial condition ν(t0) = ϕ
(
E(u(t0))

)
and set za(t) = ψ(ν(t)) =

ϕ−1(ν(t)), for t > t0. The system (3.11) becomes ϕ′(za(t))z′a(t) + 1
ϕ′(za(t))

= 0, i.e., ϕ′(za(t))2z′a(t) = −1. If µ is an

antiderivative of ϕ′2 on (0, r0), it is an increasing function and one has

d

dt
(µ ◦ z)(t) = ϕ′(z(t)

)2
z′(t) 6 −1 = ϕ′(za(t)

)2
z′a(t) =

d

dt
(µ ◦ za)(t),
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and µ(z(t0)) = µ(za(t0)). As a consequence, µ(z(t)) 6 µ(za(t)), hence z(t) 6 za(t) for any t > t0, which is exactly
(3.16). Using (3.4), we conclude by observing that

‖u(t) − u∞‖ 6 ϕ(E(u(t))) 6 ϕ(za(t)) = ν(t).

The theorem is proved.

Remark 3.6. Observe that in the case of a desingularizing function of power type (see Remark 3.4 (c)), we recover
well-known estimates [33].

Theorem 3.7 (Worst-case one-dimensional gradient dynamics for quasi-gradient systems).
Let F : R

N −→ R
N be a locally Lipschitz continuous mapping that defines a quasi-gradient vector field for some

function E ∈ C2(RN ;R) on B(0, R), for any R > 0. Assume further that the function E is KL and that for any
R > 0, there exists a positive constant b > 0 such that

‖∇E(u)‖ 6 b‖F (u)‖, (3.18)

for any u ∈ B(0, R). Assume further that for a given initial data u0 ∈ R
N the solution u to (3.1) converges to some

rest point u∞. Denote by ϕ some desingularizing function for E at u∞.
Then there exist some constants c, d > 0, t0 ∈ R such that

‖u(t) − u∞‖ 6 dν (ct+ t0) , (3.19)

where ν is a solution to (3.11).

Proof. Combining the techniques used in Theorem 3.2 and 3.5, the proof is almost identical to that of Theorem 3.5.
Without loss of generality, we may assume that E(u∞) = 0. We simply need to check the following inequality which
is itself a consequence of the assumption (3.18) applied with R = sup

t>0
‖u(t)‖.

− d

dt
(E ◦ u)(t) = −〈u′(t),∇E(u(t))〉

6 ‖F (u(t))‖ ‖∇E(u(t))‖
6 b ‖F (u(t))‖2

6 b ‖u′(t)‖2.

From (3.7) one has − d
dt (ϕ ◦ E)(u(t)) > α‖u′(t)‖, for any t sufficiently large. Setting z(t) = E(u(t)), one obtains

− d
dt (ϕ ◦ z)(t) > α√

b

√
−z′(t). The conclusion follows as before by using a reparametrization of (3.11).

Remark 3.8. Assumption (3.18) is of course necessary and simply means that the vector field F drives solutions to
their rest points at least “as fast as ∇E” (see also [20]).

3.3 Damped second order systems are quasi-gradient systems

As announced earlier our approach to the asymptotic behavior of damped second order gradient system is based on
the observation that (1.1) can be written as a system having a quasi-gradient structure. For G ∈ C2(RN ;R), let us
define F : RN −→ R

N by

F(u, v) =
(
− v, γv + ∇G(u)

)
.

Then (1.1) is equivalent to

U ′(t) + F
(
U(t)

)
= 0, t ∈ R+, with U = (u, v). (3.20)

As explained in the introduction the total energy function ET (u, v) = G(u) + 1
2‖v‖2 (sum of the potential energy and

the kinetic energy) is a Liapunov function for our dynamical system (1.1). Formally

〈∇ET (u, v),F(u, v)
〉

= γ‖v‖2.
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From the above we see, that the damped system (1.1) is not quasi-gradient for ET since one obviously has a degeneracy
phenomenon

〈
∇ET (u, v),F(u, v)

〉
= 0 whenever v = 0, (3.21)

where in general ∇ET (u, v) 6= 0 and F(u, v) 6= 0.
The idea that follows consists in continuously deforming the level sets of ET , through a family of functions:

Eλ : RN × R
N −→ R with E0 = ET (λ denotes here a positive parameter),

so that the angle formed between each of the gradients of the resulting functions Eλ, λ > 0 and the vector F remains
far away from π/2. In other words we seek for functions making ◦F a quasi-gradient vector field.

Proposition 3.9 (Second order gradient systems are quasi-gradient systems). Let G ∈ C2(RN ;R) and let
γ > 0. For λ > 0, define Eλ ∈ C1(RN × R

N ;R) by

Eλ(u, v) =

(
1

2
‖v‖2 +G(u)

)
+ λ〈∇G(u), v〉.

For any R > 0, there exists λ0 > 0 satisfying the following property. For any λ ∈ (0, λ0], there exists α > 0 such that
〈
∇Eλ(u, v),F(u, v)

〉
> α ‖∇Eλ(u, v)‖ ‖F(u, v)‖, (3.22)

for any (u, v) ∈ B(0, R) × R
N . Furthermore,

critEλ ∩
(
B(0, R) × R

N
)

= F−1({0}) ∩
(
B(0, R) × R

N
)
, (3.23)

for any λ ∈ [0, λ0].

Proof. For each (u, v) ∈ R
N × R

N , we have ∇Eλ(u, v) =
(
∇G(u) + λ∇2G(u)v, v + λ∇G(u)

)
. Let R > 0 be given

and let M = max
{
‖∇2G(u)‖; u ∈ B(0, R)

}
. Choose λ0 > 0 small enough to have

γ −
(
M +

γ2

2

)
λ0 > 0.

Let λ ∈ (0, λ0]. Then for any (u, v) ∈ B(0, R) × R
N , we obtain by Young’s inequality,

〈
∇Eλ(u, v),F(u, v)

〉
= γ‖v‖2 − λ 〈∇2G(u)v, v〉 + λ 〈∇G(u), γv〉 + λ ‖∇G(u)‖2

>

(
γ −Mλ0 −

λ0
2
γ2

)
‖v‖2 +

λ

2
‖∇G(u)‖2

> α0 (‖v‖2 + ‖∇G(u)‖2), (3.24)

where α0 = min
{
γ −

(
M + γ2

2

)
λ0,

λ
2

}
> 0. Moreover,

‖∇Eλ(u, v)‖ ‖F(u, v)‖ 6
1

2
‖∇Eλ(u, v)‖2 +

1

2
‖F(u, v)‖2 6 C(‖v‖2 + ‖∇G(u)‖2). (3.25)

Combining (3.25) with (3.24), we deduce that the angle condition (3.22) is satisfied with α = α0

C . Finally, the rest
point equivalence (3.23) follows from (3.24).

Remark 3.10. Note that for λ = 0, we recover the total energy ET (u, v) = E0(u, v) = 1
2‖v‖2 +G(u).

The following result is of primary importance: roughly speaking it shows that functions which desingularize the
potential G at some critical point u, also desingularize the energy function ET and more generally the family of
deformed functions Eλ at the corresponding critical point (u, 0). This result implies in turn that the decay rate of
the energy is essentially conditioned by the geometry of G as one might expect from a mechanical or an intuitive
perspective.

In the proposition below one needs the kinetic energy to be desingularized by ϕ. This explains our main assumption.
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Proposition 3.11 (Desingularizing functions of the energy). Let G ∈ C2(RN ;R), u ∈ critG and assume
that there exists a desingularizing function ϕ ∈ C1

(
(0, r0);R+

)
of G at u on B(u, η) such that ϕ′(s) >

c√
s
, for any

s ∈ (0, r0).
Then there exist λ1 > 0, η1 > 0 and c > 0 such that

∥∥∥∥∇
(
ϕ ◦ 1

2
|Eλ( . , . ) − Eλ(u, 0)|

)
(u, v)

∥∥∥∥ > c, (3.26)

for any λ ∈ [0, λ1] and any (u, v) ∈ B(u, η1) ×B(0, η1) such that Eλ(u, v) 6= Eλ(u, 0).

Proof. By standard translation arguments, we may assume without loss of generality that G(u) = 0 and u = 0. Then
Eλ(0, 0) = 0 and (3.26) consists in showing that for some constant c > 0,

ϕ′
(

1

2
|Eλ(u, v)|

)
>

c

‖∇Eλ(u, v)‖ ,

for any λ ∈ [0, λ1] and any (u, v) ∈ B(0, η1) × B(0, η1) such that Eλ(u, v) 6= 0. Recall that 0 ∈ critG. Let M =

max
{
‖∇2G(u)‖; u ∈ B(0, η)

}
and define λ1 = min

{
1
4 ,

1
2(M2+1)

}
. We have,

‖∇Eλ(u, v)‖2 = ‖∇G(u) + λ∇2G(u)v‖2 + ‖v + λ∇G(u)‖2

> ‖∇G(u)‖2 + ‖v‖2 − λ1(M2 + 1)‖v‖2 − 2λ1‖∇G(u)‖2

>
1

2

(
‖v‖2 + ‖∇G(u)‖2

)
, (3.27)

and in particular,

‖∇G(u)‖ 6 2‖∇Eλ(u, v)‖, (3.28)

for any λ ∈ [0, λ1] and any (u, v) ∈ R
N × R

N . Let now (λ, u, v) ∈ [0, λ1] × B(0, η) × R
N be such that Eλ(u, v) 6= 0.

Since ϕ′ is decreasing, we have

ϕ′
(

1

2
|Eλ(u, v)|

)
> ϕ′

(
1

2
|Eλ(u, v) − Eλ(u, 0)| +

1

2
|Eλ(u, 0)|

)

> ϕ′ (max
{
|Eλ(u, v) − Eλ(u, 0)|, |Eλ(u, 0)|

})
. (3.29)

Let us first find a lower bound on ϕ′(|Eλ(u, 0)|).Observe that necessarily Eλ(u, 0) = G(u) 6= 0. In particular, ∇G(u) 6= 0
(Remark 2.5). We then have by (2.2) and (3.28), ∇Eλ(u, v) 6= 0 and

ϕ′(|Eλ(u, 0)|
)

= ϕ′(|G(u)|
)
>

1

‖∇G(u)‖ >
1

2‖∇Eλ(u, v)‖ , (3.30)

for any λ ∈ [0, λ1] and any (u, v) ∈ B(0, η) × R
N such that Eλ(u, 0) 6= 0.

Let us now estimate ϕ′(|Eλ(u, v)−Eλ(u, 0)|) in (3.29) under the assumption Eλ(u, v) 6= Eλ(u, 0). The Cauchy-Schwarz’
inequality implies that for any λ ∈ [0, λ1],

|Eλ(u, v) − Eλ(u, 0)| 6 1

2

(
‖v‖2 + λ1‖v‖2 + λ1‖∇G(u)‖2

)
. (3.31)

Combining (3.31) with (3.27), we deduce that for any λ ∈ [0, λ1] and any (u, v) ∈ R
N × R

N ,

|Eλ(u, v) − Eλ(u, 0)| 6 (1 + λ1)‖∇Eλ(u, v)‖2 (3.32)

By continuity of ∇G, there exists η1 ∈ (0, η) such that

sup
{

(1 + λ1)‖∇Eλ(u, v)‖2; (λ, u, v) ∈ [0, λ1] ×B(0, η1) ×B(0, η1)
}
< r0.
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Using successively the fact that ϕ′ is decreasing and ϕ′(s) > c√
s
, it follows from (3.32) that if (u, v) ∈ B(0, η1)×B(0, η1)

with Eλ(u, v) 6= Eλ(u, 0) then ∇Eλ(u, v) 6= 0 and

ϕ′(|Eλ(u, v) − Eλ(u, 0)|
)
> ϕ′((1 + λ1)‖∇Eλ(u, v)‖2

)
>

c1
‖∇Eλ(u, v)‖ , (3.33)

where c1 > 0 is a constant. Finally, inequalities (3.30) and (3.33) together with (3.29) yield the existence of a constant
c > 0 such that for any λ ∈ [0, λ1] and any (u, v) ∈ B(0, η1)×B(0, η1) such that Eλ(u, v) 6= 0, there holds ∇Eλ(u, v) 6= 0
and ϕ′ ( 1

2 |Eλ(u, v)|
)
‖∇Eλ(u, v)‖ > c, which is the desired result.

4 Convergence results

Before providing our last results, we would like to recall to the reader that a bounded trajectory of (1.1) may not
converge to a single critical point; finite-dimensional counterexamples for N = 2 are provided in [4, 41], in each case
the trajectory of (1.1) ends up circling indefinitely around a disk.

We now proceed to establish a central result whose specialization to various settings will provide us with several
extensions of Haraux-Jendoubi’s initial work [31].

Theorem 4.1. Let G ∈ C2(RN ;R) and (u0, u
′
0) ∈ R

N × R
N be a set of initial conditions for (1.1). Denote by

u ∈ C2
(
[0,∞);RN) the unique regular solution to (1.1) with initial data (u0, u

′
0). Assume that the following holds.

1. (The trajectory is bounded) sup
t>0

‖u(t)‖ <∞.

2. (Convergence to a critical point) G is a KL function. Each desingularizing function ϕ of G satisfies

ϕ′(s) >
β√
s
, (4.1)

for any s ∈ (0, η0), where β and η0 are positive constants (see Definition 2.1).

Then,

(i) u′ and u′′ belong to L1
(
(0,∞);RN

)
and in particular u converges to a single limit u∞ in critG.

(ii) When u converges to u∞, we denote by ϕ the desingularizing function of G at u∞. One has the following estimate

‖u(t) − u∞‖ 6 cν(t),

where ν is the solution of the worst-case gradient system

ν′(t) + (ϕ−1)′(ν(t)) = 0, ν(0) > 0.

Proof of Theorem 4.1. Let G ∈ C2(RN ;R), let (u0, u
′
0) ∈ R

N × R
N , let u ∈ C2

(
[0,∞);RN) and let u ∈ R

N .

Set U(t) =
(
u(t), u′(t)

)
, U0 = (u0, u

′
0) and U = (u, 0). Let F and let Eλ be defined as in Subsection 3.1 and

Proposition 3.9, respectively. Note that if u 6∈ critG then U 6∈ crit Eλ and ϕ(t) = ct desingularizes Eλ at U,
for any λ > 0

(
Remark 2.3 (a) and (3.23)

)
. Otherwise, u ∈ critG and we shall apply Proposition 3.11. Since

supt>0 ‖u(t)‖ < ∞, u′′(t) + γu′(t) = A(t) where A is bounded. Thus, u′(t) = u′(0)e−γt +
∫ t

0
exp(−γ(t − s))A(s)ds,

and by a straightforward calculation, supt>0 ‖u′(t)‖ <∞. It follows that supt>0 ‖U(t)‖ <∞. Let R = supt>0 ‖U(t)‖.
Let λ0 > 0 and 0 < λ1 < λ0 be given by Propositions 3.9 and 3.11, respectively. Let us fix 0 < λ⋆ < λ1 and let α > 0
be given by Proposition 3.9 for such Eλ⋆

and R. By Proposition 3.9, the first order system

U ′(t) + F
(
U(t)

)
= 0, t ∈ R+, (4.2)

has a quasi-gradient structure for Eλ⋆
on B(0, R) (Definition 3.1). Finally, since G has the KL property at u, Eλ⋆

also
has the KL property at U (Proposition 3.11). It follows that Theorem 3.2 applies to U, from which (i) follows.
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The estimate part of the proof of (ii) will follow from Theorem 3.7, if we establish that for any R > 0, there exists
b > 0 such that for any (u, v) ∈ B(0, R) ×B(0, R),

‖∇Eλ⋆
(u, v)‖ 6 b‖F(u, v)‖.

First we observe that for each R > 0 and for any (u, v) ∈ B(0, R) ×B(0, R), there exists k1 > 0 such that

‖∇Eλ⋆
(u, v)‖2 6 k1

(
‖∇G(u)‖2 + ‖v‖2

)
. (4.3)

This follows trivially by the Cauchy-Schwarz’ inequality and the fact that ∇2G is continuous hence bounded on

bounded sets. Fix σ > 0 and recall the inequality 2ab 6 σ2a2 + b2

σ2 for all real numbers a, b. By the Cauchy-Schwarz’
inequality and the previous inequality

‖F(u, v)‖2 = ‖v‖2 + ‖γv + ∇G(u)‖2

> (1 + γ2)‖v‖2 + ‖∇G(u)‖2 − 2‖γv‖‖∇G(u)‖

> (1 + γ2)‖v‖2 + ‖∇G(u)‖2 − σ2‖γv‖2 − 1

σ2
‖∇G(u)‖2

= (1 − (σ2 − 1)γ2)‖v‖2 +

(
1 − 1

σ2

)
‖∇G(u)‖2.

Choosing σ > 1 so that 1−(σ2−1)γ2 > 0 yields k2 > 0 such that ‖F(u, v)‖2 > k2
(
‖∇G(u)‖2+‖v‖2

)
, for any u, v in R

N .

Combining this last inequality with (4.3), we obtain ‖∇Eλ⋆
(u, v)‖2 6

k1

k2
‖F(u, v)‖2, for any (u, v) ∈ B(0, R)×B(0, R).

Remark 4.2. (a) As announced previously convergence rates depend directly on the geometry of G through ϕ.
(b) The fact that the length of the velocity curve u′ is finite suggests that highly oscillatory phenomena are unlikely.

5 Consequences

In the following corollaries, the mapping R+ ∋ t 7−→ u(t) is a solution curve of (1.1).

Corollary 5.1 (Convergence theorem for real-analytic functions [31]). Assume that G : RN −→ R is real-
analytic and that

(
u(t)

)
t>0

is bounded. Then,

(i) (u, u′) has a finite length. In particular u converges to a critical point u∞.

(ii) When u converges to u∞, we denote by ϕ(s) = csθ
(
with c > 0 and θ ∈

(
0, 12

])
the desingularizing function of

G at u∞ – the quantity θ is the  Lojasiewicz exponent associated to u∞. One has the following estimates

(i) ‖u(t) − u∞‖ 6 ct−
θ

1−2θ , with c > 0, when θ ∈
(
0, 12

)
.

(ii) ‖u(t) − u∞‖ 6 c′′ exp(−c′t), with c′, c′′ > 0, when θ = 1
2 .

Proof. The proof follows directly from the original  Lojasiewicz inequality [44, 43] and the fact that desingularizing
functions for real-analytic functions are indeed of the form ϕ(s) = csθ with θ ∈ (0, 12 ]. Hence (2.10) holds and Theorem
4.1 applies, see also Remark 3.4 (c).

Corollary 5.2 (Convergence theorem for definable functions). Let O be an o-minimal structure that contains
the collection of semi-algebraic sets. Assume G : RN −→ R is C2 and definable in O. Let u be a bounded solution to
(1.1). Then,

(i) u′ and u′′ belong to L1
(
(0,∞);RN

)
and in particular u converges to a single limit u∞ in critG.
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(ii) When u converges to u∞ we denote by ϕ the desingularizing function of G at u∞. One has the following estimate

‖u(t) − u∞‖ 6 cν(t),

where ν is the solution of the worst-case gradient system

ν′(t) + (ϕ−1)′(ν(t)) = 0, ν(0) > 0.

Proof. G is a KL function by Kurdyka’s version of the  Lojasiewicz inequality. The fact that ϕ′(s) > c√
s

comes from

Lemma 2.9. So, Theorem 4.1 applies.

Corollary 5.3 (Convergence theorem for the one-dimensional case [30]). Let G ∈ C2(R;R) and assume that(
u(t)

)
t>0

is bounded. Then u converges to a single point and we have the same type of rate of convergence as in the
previous corollary.

Proof. We proceed as in [49]. Argue by contradiction and assume that ω(u0, u
′
0), the ω-limit set of (u0, u

′
0), is not a

singleton. Since ω(u0, u
′
0) is connected in R, it is an interval and has a nonempty interior. Take u in the interior of

ω(u0, u
′
0) The  Lojasiewicz inequality trivially holds at u for G ≡ 0 with ϕ(s) =

√
s (recall u is interior). Apply then

Theorem 4.1.

Remark 5.4. In the one-dimensional case, convergence can be obtained with much more general forms of damping,
see [15].

Corollary 5.5 (Convergence theorem for convex functions satisfying growth conditions).
Let G ∈ C2(RN ;R) be a convex function such that

argminG
def
=

{
u ∈ R

N ;G(u) = minG
}
,

is nonempty (note that argminG = critG). Assume further that, for each minimizer x∗, there exists η > 0, such that
G satisfies

∀u ∈ B(x∗, η), G(u) > minG+ c dist(u, argminG)r, (5.1)

with r > 1 and c > 0. Then the solution curve t 7−→ (u(t), u′(t)) has a finite length. In particular u converges to a
minimizer u∞ of G as t goes to ∞.

Proof. A general result of Alvarez [1] ensures that u is bounded (and even converges). On the other hand it has
been shown in [10] that functions satisfying the growth assumption (5.1), also satisfy the  Lojasiewicz inequality with
desingularizing functions of the form s 7−→ c′s1−1/r with c′ > 0. Combining the previous arguments, the conclusion
follows readily.

Remark 5.6. An alternative and more general approach to establish that trajectories have a finite length has been
developed for convex functions in [45, 22].

A Appendix: some elements on o-minimal structures

Some references for o-minimal structures are [21, 25, 42, 23]. We only collect in this appendix the elements that are
necessary to follow our main developments.

Definition A.1 (o-minimal structure [21, Definition 1.5]). An o-minimal structure on (R,+, . ) is a sequence
of Boolean algebras(9) O = {On}n∈N of subsets of Rn such that for each n ∈ N,

(i) if A belongs to On then A× R and R×A belong to On+1;

9Recall that a Boolean algebra is stable by finite union, finite intersection and contains the empty set and the total space; here ∅ ∈ On

and Rn ∈ On.
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(ii) if Π : Rn+1 −→ R
n is the canonical projection onto R

n then for any A ∈ On+1, the set Π(A) belongs to On;

(iii) On contains the family of real algebraic subsets of Rn, that is, every set of the form

{
x ∈ R

n; p(x) = 0
}
,

where p : Rn −→ R is a real polynomial function;

(iv) the elements of O1 are exactly the finite unions of intervals and points.

A mapping F : D ⊂ R
n −→ R

m is said to be definable in O if its graph is definable in Ω as a subset of Rn × R
m. A

point-to-set mapping

S : Rn
⇉ R

m,

maps each point x in R
n to a subset S(x) of Rm. The domain of S, denoted by domS, is given by the set of elements

x in R
n such that S(x) is nonempty. The graph of S is defined by

graphS =
{

(x, y) ∈ R
n × R

m; y ∈ S(x)
}
.

As previously a point-to-set mapping is called definable (in O) if its graph is definable in R
n × R

m.

Example A.2. (a) Semi-algebraic sets. The first and simplest example of o-minimal structure is given by the class
of semi-algebraic objects (see (2.1)). Tarski-Seidenberg principle (see [7]) asserts that linear projections semi-algebraic
sets are semi-algebraic sets, in other words item (ii) of Definition A.1 holds for the class of semi-algebraic sets. The
other items of the definition are easy to establish.
(b) Globally subanalytic sets. There exists an o-minimal structure that contains semi-algebraic sets and sets of
the form

{
(x, t) ∈ [−1, 1]n × R; f(x) = t

}
, where f : [−1, 1]n −→ R (n ∈ N) is a real analytic function that can

be extended analytically on a neighborhood of the square [−1, 1]n – these are sometimes called restricted analytic
functions. This result is essentially due to Gabrielov [28]; sets belonging to this structure are called globally subanalytic
sets (see [24] and references therein).
(c) Log-exp structure. There exists an o-minimal structure containing the globally subanalytic sets and the graph
of exp : R −→ R, see [24].

There are other results on o-minimal structures and the field is still very active, but the above examples give a good
idea of the power of the concept.

We now describe some stability/regularity results that we used in this paper.

Let O be an o-minimal structure on (R,+, . ).

Lemma A.3 (Monotonicity Lemma [25, Theorem 4.1]). Let f : I ⊂ R −→ R be a definable function and k ∈ N.
Then there exists a finite partition of I into p intervals I1, . . . , Ip, such that f restricted to each nontrivial interval Ij ,
j ∈ {1, . . . , p} is Ck and either strictly monotone or constant.

Lemma A.4 (Definable Selection Lemma [21]). Let S : Rn −→ R
m be a definable point-to-set mapping. Then

there exists a definable mapping F : domS −→ R
m such that

F (x) ∈ S(x), ∀x ∈ domS.

We recall the following theorem as stated in Kurdyka’s original work [42].

Theorem A.5. Let Ω be a nonempty open bounded subset of R
n and f : Ω → R a differentiable definable function

with f > 0 on Ω. Then there exist r0 > 0 and a continuous function ϕ : [0, r0) → R+ such that ϕ(0) = 0, ϕ ∈ C1(0, r0)
and ϕ′ > 0 such that

‖∇ (ϕ ◦ f) (x)‖ > 1, ∀x ∈ Ω.
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Remark A.6. Let us show how to recover the form of KL inequality given in Theorem 2.2.
We adopt the notation of Theorem 2.2. Fix µ > 0. Apply first, the above result to G−G(u) (respectively, to G(u)−G)
on Ω1 = B(u, µ)∩ [G−G(u) > 0] (respectively, on Ω2 = B(u, µ)∩ [G(u)−G > 0]). This gives ϕ1 : [0, r1) −→ R+ and
ϕ2 : [0, r2) −→ R+, as in Kurdyka’s Theorem. Let us now build a “global” ϕ as in Theorem 2.2. First recall that the
derivative of a differentiable definable function is definable in the same structure, see [21]. Set p(s) = (ϕ′

1 − ϕ′
2)(s).

By definability, p is positive, negative or null on an interval of the form (0, ε). This yields the existence of r in
(0,min{r1, r2}) such that, for instance, ϕ′

1 > ϕ′
2 on (0, r). Set then ϕ = ϕ1 and observe that

‖∇ (ϕ ◦ |G( · ) −G(u)|) (u)‖ > 1, ∀u ∈ B(0, η) \ [G 6= G(u)],

when η is sufficiently small.
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